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Analytic Continuation

See Arfken & Weber pp 432-434 (in section 6.5 on Laurent expansions) for some of the
material below. Our description here will closely follow [1].

1 Definition

The intersection of two domains (regions in the complex plane) Dy, Dy, denoted Dy N Dy, is
the set of all points common to both D; and Ds. The union of two domains Dy, Dy, denoted
Dy U D,y, is the set of all points in either Dy or Ds.

Now, suppose you have two domains Dy and Ds, such that the intersection is nonempty and
connected, and a function f; that is analytic over the domain ;. If there exists a function
fo that is analytic over the domain Dy and such that f; = fy on the intersection Dy N Dy,
then we say fu is an analytic continuation of fi into domain Ds.

Now, whenever an analytic continuation exists, it is unique. The reason for this is a basic
mathematical result from the theory of complex variables:

A function that is anelytic in a domain D is uniquely determined over D by its values over
a domain, or along an arc, interior to D.

Define the function F'(z), analytic over the union D; U Dy, as

| fi(z) when zisin D;
Fz) = { f2(2) when z is in D,

In other words, F is given by fi; over Dy and by fa over Dy, and since f; = f; over the
intersection of Dy and D, this is a well-defined, holomorphic function. By the mathematical
result quoted above, since F' is analytic in D; U Dy, it is uniquely determined by f; on Dy.
(For that matter, it is also uniquely determined by f, on D;.) In other words, there is only
one possible holomorphic function on D U Dy that matches fi on D;.

In this case, the function F(z) is said to be the analytic continuation over Dy U Ds of either
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Example: Consider first the function
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This power series converges when |2] < 1 to 1/(1 — z), and is not defined when |2 > 1. (In
particular, this is just a geometric series, so we can sum it as a geometric series, so long as
we're in the region of convergence.)
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On the other hand, the function .

1—=2

flz) =
is defined and analytic everywhere except z = 1.

Since f; = fo on the disk |2| < 1, we can view f; as the analytic continuation of f; to the
rest of the complex plane {minus the point z = 1).

Example: Consider the function

fiz) = [ exp(—atyat

This integral exists only when Re z > 0, and for such z, this integral has value 1/ z.

Since the function 1/z matches f; on the domain Re z > 0, the function 1/z is the analytic
continuation of f; to nonzero complex numbers.

While we're at it, define

o) = i;(z-i—i)n

2
This series converges for |z + 4] < 1, and so f, is defined only within that disk centered on

—4. Within that unit disk, one can show that f2(z) = 1/z, using the fact that the series is a
geometric series.

Since f, matches 1/z on a disk, we can view 1/z as the analytic continuation of f; to nonzero
complex numbers.

Also, we can view f, as the analytic continuation of f; to the disk |z 44| < 1.
Example: The Gamma function.

Recall the second definition of the Gamma function,
I'(z) = / exp(—t}t*1dt
0

is valid for Re z > 0. Other definitions, such as the Weierstrass form

ﬁ = zexp(’YZ)E (1 + %) exp(—z/n)

are valid more generally. Thus, we can view the Weierstrass form as an analytic continuation
of the Fuler integral form.




