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As everyone here is well aware, 
the idea of mirror symmetry, ~ 26 years ago, 

had amazing implications for math & physics, 
and spawned important generalizations,  
such as homological mirror symmetry.

Today, I want to survey developments in another 
generalization, known as heterotic mirror symmetry 

or (0,2) mirror symmetry.

Most of this talk will focus on one aspect, 
a generalization of quantum cohomology, 

but first, 
in general terms, what is heterotic mirror symmetry?



Ordinary mirror symmetry is about, in `typical’ cases  
(“type II strings”), 

complex Kahler manifolds.

Heterotic mirror symmetry, in `typical’ cases, 
concerns pairs 

(complex Kahler manifold    , hol’ vector bundle            ) 
such that 

X E ! X

ch2(E) = ch2(TX)



In `typical’ geometric cases, when spaces are Calabi-Yau,

Ordinary mirror symm’ Heterotic mirror symm’

X, Y mirror mirror(X, E), (Y,F)

hp,q(X) = hn�p,q(Y ) hp(X,^qE⇤) = hp(Y,^qF)

dimX = dim Y dimX = dim Y
rk E = rkF

cpx moduliX
= Kähler moduliY

{cpx, Kähler, bdle moduli}(X, E)
= {cpx, Kähler, bdle moduli}(Y,F)

In the special case E = TX, heterotic becomes ordinary.

Why in the world would we believe this exists?



h1(E)� h1(E⇤)

h1(E) + h1(E⇤)

Horizontal:

Vertical:

where     is rk 4E

(Blumenhagen, Schimmrigk, Wisskirchen,  
NPB 486 (’97) 598-628)

Numerical evidence for heterotic mirror symmetry:

Why in the world would we believe this exists?



Unlike ordinary mirror symmetry,  
which is now well-understood,  

heterotic mirror symmetry is still under development.

Constructions include:
• Blumenhagen-Sethi ’96 extended Greene-Plesser orbifold 

construction to heterotic models — handy but only gives 
special cases

• Adams-Basu-Sethi ’03 repeated Hori-Vafa-style GLSM duality
— but results must be supplemented by manual 

computations;  
het’ version does not straightforwardly generate examples

More recent progress includes a version of Batyrev’s 
construction….



• Melnikov-Plesser ’10 extended Batyrev’s construction & monomial-
divisor mirror map to include def’s of tangent bundle, for 

special (‘reflexively plain‘) polytopes

Progress, but still don’t have a general construction.

P

0 = {y|hx, yi � �1 8x 2 P}

Dualize 
polytopes 
as before:

& encode  
tangent bdle def’s 

in a matrix:
A AT

Current state-of-the-art in constructions of heterotic mirrors:



One of the driving developments behind interest in mirror 
symmetry were, of course, Gromov-Witten invariants and 

quantum cohomology.

There is a heterotic analogue of quantum cohomology, and 
significant progress has been made in understanding it.

For most of the rest of this talk, I want to focus on this 
particular aspect of heterotic mirror symmetry,  

this heterotic analogue of quantum cohomology, 
known as quantum sheaf cohomology.

Quantum cohomology?



Outline

• Outline def’n of quantum sheaf cohomology

• Computations on P1 ⇥ P1

• (0,2) Toda-like Landau-Ginzburg mirrors

& results for toric varieties

• Results for Grassmannians



Review of quantum sheaf cohomology

When \neq tangent bundle, Gromov-Witten inv’ts not relevant.
Mathematical GW computational tricks no longer apply.
No known analogue of periods, Picard-Fuchs equations.

New methods needed….
… and a few have been developed.

Quantum sheaf cohomology is the heterotic version of 
quantum cohomology — defined by space + bundle.

(Katz-ES ’04, ES ’06, Guffin-Katz ’07, ….)

When bundle = tangent bundle, 
encodes Gromov-Witten invariants.

(A Adams, J Distler, R Donagi, J Guffin, S Katz, J McOrist, I Melnikov, R Plesser, ES, ….)



Strictly speaking, quantum cohomology & Gromov-Witten 
invariants arise in a topological field theory, the A model.

These are pseudo-topological field theories  
— not quite TFT’s in the usual sense,  

but, 
at least at genus zero, behave like TFT’s.

To describe the heterotic version of quantum cohomology, 
I need to describe the heterotic analogues of the A, B models, 

known as the A/2, B/2 models.



Heterotic versions of topological field theories:

A/2 model: det E⇤ ⇠= KXExists when
H•(X,^•E⇤)States counted by

Reduces to A model when              .E = TX

B/2 model: det E ⇠= KXExists when
H•(X,^•E)States counted by

Reduces to B model when             .E = TX

A/2(X, E) ⇠= B/2(X, E⇤)New symmetries:

& ch2(E) = ch2(TX)

& ch2(E) = ch2(TX)

For a space     and bundleX E ! X



In add’n, these pseudo-TFT’s behave well under mirror 
symmetry:

X,YOrdinary mirrors: If are mirror, then
A(X) ⇠= B(Y )

Heterotic mirrors: (X, E), (Y,F)If are mirror, then
A/2(X, E) ⇠= B/2(Y,F)

Now, how to compute in these theories?



Classical A model computations:

For     a space,X

hO1 · · · Oki =

Z

X
!1 ^ · · · ^ !k

for ‘operators’ Oi ⇠ !i 2 Hpi,qi(X)

This (classical contribution to the) correlation function is 
nonzero when

X
pi = dimX =

X
qi

ie, when !1 ^ · · · ^ !k is a top-form.



Classical A/2 model computations:

For     a space,X E ! X a  hol’ vector bundle s.t.
^topE⇤ ⇠= KX , ch

2

(E) = ch
2

(TX)

hO1 · · · Oki =

Z

X
!1 ^ · · · ^ !k

Oi ⇠ !i 2 Hqi (X,^piE⇤)for `operators’

Now, !1 ^ · · · ^ !k 2 H
P

qi
⇣
X,^

P
piE⇤

⌘

hO1 · · · OkiIn order for to be a number,
X

qi = dimX
X

pi = rank Erequire
^topE⇤ ⇠= KX& use



A model computations:

where Oi ⇠ !i 2 Hpi,qi(Md)

we compute a “correlation function”

which encodes minimal area surface information.

Such computations are at the heart of Gromov-Witten theory.

in A model TFT

Schematically:  For X a space,
a space of holomorphic S2  —> XMd

hO1 · · · Oki = qd
Z

Md

!1 ^ · · · ^ !k

= qd
Z

Md

(top form on Md)

(^c
top

(Obs))



A/2 model computations:

E

hO1 · · · Oki = qd
Z

Md

!̃1 ^ · · · ^ !̃k

Schematically: For X a space,     a bundle on X, 
a space of holomorphic S2  —> XMd

where Oi ⇠ !̃i 2 Hqi (Md,^piF⇤)
⇡ : ⌃⇥Md ! Md

↵ : ⌃⇥Md ! X

F ⌘ R0⇡⇤↵
⇤E

F1 ⌘ R1⇡⇤↵
⇤E⌦ 2 H1 (Md,F⇤ ⌦ F1 ⌦ (Obs)⇤)

hence, again,
=

Z

M
(top form on M) (S Katz, ES, 2004)

^topF⇤ ⌦ ^topF
1

⌦ ^top(Obs)⇤ ⇠= KMd

^topE⇤ ⇠= KX

ch
2

(E) = ch
2

(TX)

�
GRR

=)

for
where

(^⌦n)



More succinctly, whereas the ordinary A model computes 
intersection theory on a moduli space of curves,

the A/2 model is computing sheaf cohomology  
on a moduli space of curves.

In the rest of this talk, I’m going to present results for 
correlation functions & quantum sheaf cohomology, 

but, it should be emphasized that computational methods for 
A/2 theories are still relatively primitive by comparison to what 

exists for GW theory.



Correlation functions are often usefully encoded in  
`operator products’ (OPE’s), which encode ring rel’ns.

Physics:  Say OAOB =
X

i

Oi (“operator product”)

if all correlation functions preserved:
hOAOBOC · · · i =

X

i

hOiOC · · · i

Math:  if interpret correlation functions as maps
Sym•W �! C

(where      is the space of     ’s)W O
then OPE’s are the kernel, of form OAOB �

X

i

Oi



This discussion is getting a bit too abstract for my taste.

Next:  Quickly outline results for correlation f’ns, 
to show how ordinary quantum cohomology 

& quantum sheaf cohomology arise.

Then:  after outlined results, 
I’ll go back and outline computations.



Examples:

Ordinary (“type II”) case: (E = T )

X = P1 ⇥ P1

Space of operators = W = H1,1(P1 ⇥ P1) ⇠= C2 = C[ ,  ̃]

Correlation functions:

h  ̃i = 1 h 2i = 0 = h ̃2i

h 3 ̃i = q h  ̃3i = q̃

h 5 ̃i = q2 h 3 ̃3i = qq̃ h  ̃5i = q̃2

· · ·

 2 = q,  ̃2 = q̃Pattern (`OPE’):



Examples:

Ordinary (“type II”) case:
X = P1 ⇥ P1

OPE’s:

Looks like a deformation of cohomology ring, 
hence called “quantum cohomology”

q, q̃ ⇠ exp(�area)where
�! 0 in classical limit

W = H1,1(P1 ⇥ P1) ⇠= C2 = C[ ,  ̃]

 2 = q,  ̃2 = q̃



Examples:
Heterotic case:

X = P1 ⇥ P1 T (P1 ⇥ P1)E a deformation of

Def’n of E : 0 �! W ⇤ ⌦O ⇤�! O(1, 0)2 �O(0, 1)2 �! E �! 0

⇤ =


Ax Bx

Cx̃ Dx̃

�
where A,B,C,D const’ 2x2 matrices

x, x̃ vectors of homog’ coord’s

E = TX when A = D = I2⇥2, B = C = 0

and W = C2

Special case:

H1(X, E⇤) = W = C[ ,  ̃]Can show space of operators =

Results for correlation functions….



2-pt correlation functions:

�1 = �AB detD � �CD detB �2 = �CD detA� �AB detC

�AB = det(A+B)� detA� detB

�CD = det(C +D)� detC � detD

� = detA detD � detB detC

↵ = �2 � �1�2

where

= locus where bundle degenerates{↵ = 0}

Heterotic case:
X = P1 ⇥ P1 T (P1 ⇥ P1)E a deformation of

— messier than the ordinary non-deformed case

h  i = �↵�1�1 h  ̃i = ↵�1� h ̃ ̃i = �↵�1�2



Heterotic case:
X = P1 ⇥ P1 T (P1 ⇥ P1)E a deformation of

4-pt correlation functions:

h 4i = q
�1

↵2
[�CD�1 � 2� detD] + q̃

�1

↵2
[��AB�1 + 2� detB]

h 3 ̃i = q
1

↵2

⇥
��2

1 detC +�2 detD
⇤
+ q̃

1

↵2

h
�2
1 detA � �2 detB

i

h 2 ̃2i = q
�

↵2
[��2 detD + �1 detC] + q̃

�

↵2
[�2 detB � �1 detA]

h  ̃3i = q
1

↵2

h
�2
2 detD � �2 detC

i
+ q̃

1

↵2

h
��2

2 detB + �2 detA
i

h ̃4i = q
�2

↵2
[��CD�2 + 2� detC] + q̃

�2

↵2
[��AB�2 � 2� detA]

— messier still …



Heterotic case:
X = P1 ⇥ P1 T (P1 ⇥ P1)E a deformation of

Although these correlation functions are increasingly unwieldy, 
one can quickly detect some basic patterns, for example:

h 2 det(A +B ̃)i = qh 2i h 2 det(C +D ̃)i = q̃h 2i

hf2( ,  ̃) det(C +D ̃)i = q̃hf2( ,  ̃)i

hf2( ,  ̃) det(A +B ̃)i = qhf2( ,  ̃)i
& more gen’ly in 4-pt functions,

which (correctly) suggests that the OPE’s (ring relations) are
det(A +B ̃) = q, det(C +D ̃) = q̃

— These are the quantum sheaf cohomology rel’ns.



Summary so far:

Ordinary (“type II”) case: X = P1 ⇥ P1

OPE’s:  2 = q,  ̃2 = q̃
Heterotic case:

X = P1 ⇥ P1 T (P1 ⇥ P1)E a deformation of

Def’n of E : 0 �! W ⇤ ⌦O ⇤�! O(1, 0)2 �O(0, 1)2 �! E �! 0

⇤ =


Ax Bx

Cx̃ Dx̃

�
where A,B,C,D const’ 2x2 matrices

x, x̃ vectors of homog’ coord’s

W = H1(X, E⇤) = C2 = C{ ,  ̃}Here,
OPE’s: det

⇣
A +B ̃

⌘
= q, det

⇣
C +D ̃

⌘
= q̃

E = TXCheck: when A = D = I2⇥2, B = C = 0

& in this limit, OPE’s reduce to those of ordinary case
quantum sheaf cohomology



So far:

Outlined results for correlation functions in ordinary & heterotic 
cases, to illustrate how in general terms quantum corrected 

cohomology rings arise.

However, I have not yet explained how to compute those 
correlation functions, or derive q.s.c. more systematically.

That, I’ll do next….



Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and

Let’s consider the

Operators counted by H 1(E*)= H 0 (W ⊗O)=W

n-pt correlation function is a map SymnH1(E*)=SymnW→H n (∧n E*)

OPE’s = kernel
Plan:  study map corresponding to classical corr’ f’n

Quantum sheaf cohomology



Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and
Since this is a rk 2 bundle, classical sheaf cohomology 

defined by products of 2 elements of                                 .H 1(E*) = H 0 (W ⊗O)=W

0→∧2 E*→∧2 Z→ Z⊗W →Sym2W ⊗O→ 0

H 0 (Sym2W ⊗O)→H 2 (∧2E*) = corr’ f’nSo, we want to study map

This map is encoded in the resolution

Quantum sheaf cohomology



Quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0
→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine second sequence:

H 0 (Z⊗W )→H 0 (Sym2W⊗O)→
δ
H 1(S1)→H 1(Z⊗W )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
0 0

hence H 0 (Sym2W ⊗O)→
~
H 1(S1) is an iso.δ :

induces

Next, consider the other short exact sequence at top….



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0

→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine other sequence:

H 1(∧2Z )→H 1(S1)→
δ
H 2 (∧2E*)→H 2 (∧2Z )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
H 2 (∧2Z )= 0 but H 1(∧2Z )=!⊕!
and so H 1(S1)→H 2 (∧2E*) has a 2d kernel.

Now, assemble the coboundary maps….

H 0 (Sym2W ⊗O)→
~
H 1(S1)δ :

δ :

0
induces



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Now, assemble the coboundary maps….

A classical (2-pt) correlation function is computed as
H 0 (Sym2W ⊗O)→

~
H 1(S1)H 1(S1)→H 2 (∧2E*)

δ δ

where the right map has a 2d kernel, which one can show is 
generated by

det(Aψ + B !ψ ) det(Cψ + D !ψ ),
where A, B, C, D are four matrices defining the def’ E, 

and         correspond to elements of a basis for W.ψ , !ψ

Classical sheaf cohomology ring:
![ψ , "ψ ] / det(Aψ + B "ψ ),det(Cψ + D "ψ )( )



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

Instanton sectors have the same form, 
except X replaced by moduli space M of instantons, 
E replaced by induced sheaf F over moduli space M.

Must compactify M, 
and extend F over compactification divisor.

∧ topE* ≅ KX

ch2(E)= ch2(TX) }⇒
GRR

∧ topF* ≅ KM

Within any one sector, can follow the same method just 
outlined….



Review of quantum sheaf cohomology
In the case of our example, 

one can show that in a sector of instanton degree (a,b), 
the `classical’ ring in that sector is of the form

Sym•W/ (Qa+1, !Qb+1)
where Q = det(Aψ + B !ψ ) !Q = det(Cψ + D !ψ ),

Now, OPE’s can relate correlation functions in different 
instanton degrees, and so, should map ideals to ideals.

To be compatible with those ideals,
〈O〉a,b = q

′a −a !q ′b −b 〈OQ ′a −a !Q ′b −b 〉 ′a , ′b

for some constants q, !q => OPE’s Q = q, !Q = !q

— quantum sheaf cohomology rel’ns



Review of quantum sheaf cohomology

General result:

For any toric variety, and any def’ E of its tangent bundle,

0→W * ⊗O→
*
⊕O(!qi )

Z*
"#$→E → 0

the chiral ring is

∏α (detM (α ) )
Qα
a

= qa
where the M’s are matrices of chiral operators built from *.

(Math: Donagi, Guffin, Katz, ES, ’11)

Generalizes Batyrev’s ring
Y

i

 
X

b

Qb
i b

!Qa
i

= qa

(Physics: McOrist, Melnikov ’08)



So far I’ve outlined quantum sheaf cohomology for toric 
varieties with deformations of their tangent bundles.

Next:  proposals for heterotic Toda duals



Toda duals

The mirror to the A model on      is a B-twisted Landau-
Ginzburg model, defined by a superpotential

Pn

W = X1 + · · ·+Xn +
q

X1 · · ·Xn

Analogous statements are known for heterotic theories, 
which we’ll review, but first let’s review how this works.

often referred to as the `Toda dual.’



Toda duals

W = X1 + · · ·+Xn +
q

X1 · · ·Xn

Genus zero correlation functions:

dW = 0 =) X1 = X2 = · · · = Xn ⌘ X

& (q.c. rel’n!)X = qX�n Xn+1 = qor

(to      )Pn

det(@2W ) = (n+ 1)XnCan show

hXmi =
X

Xn+1=q

Xm

(n+ 1)Xnhence

hXn+d(n+1)i = qdthus matching A model.

hf(X1, · · · , Xn)i =
X

dlnXW=0

f(X1, · · · , Xn)

det (@2
lnXW )



A heterotic Landau-Ginzburg model is defined by

• complex Kahler manifold X

• holomorphic vector bundle E ! X

• holomorphic section (Ja) 2 �(E⇤)

Recover ordinary Landau-Ginzburg models when
E = TX, Ja = @aW

What’s the heterotic analogue?



The mirror to the (A/2) theory on                ,Pn ⇥ Pm

with def’ of tangent bundle param’d by matrices A,B,C,D,

is a Landau-Ginzburg theory on                           with(C⇥)n ⇥ (C⇥)m E = T

a = detA, b = detB, c = detC, d = detD,

det(Ax+By) = ax

n+1 + by

n+1 +
nX

i=1

µix
i
y

n+1�i
,

det(Cx+Dy) = cx

m+1 + dy

m+1 +
nX

k=1

⌫kx
k
y

n+1�k
,

Ji = a(1�n)/n

 
aXi + b

X̃n+1
1

Xn
1

+
nX

i=1

µn+1�i
X̃i

1

Xi�1
1

� q1
X1 · · ·Xn

!

J̃k = d(1�m)/m

 
dX̃k + c

Xm+1
1

X̃m
1

+
mX

k=1

⌫k
Xk

1

X̃k�1
1

� q2

X̃1 · · · X̃m

!

(Z Chen, ES, R Wu,  
in progress)



Let me outline correlation functions in these theories.

For heterotic LG models of the form just discussed,

hf(Xi, X̃k)i =
X

J,J̃=0

f(Xi, X̃k)

det(@(J, J̃))

J, J̃ = 0 =) X1 = · · · = Xn ⌘ X, X̃1 = · · · = X̃m ⌘ X̃

det(AX +BX̃) = q, det(CX +DX̃) = q̃

at genus 0,

&

Can show all (genus 0) correlation functions match those of 
the corresponding A/2 theory, which is how we’ve checked this 

proposal.

— the quantum sheaf cohomology ring rel’ns



Grassmannians

Let me quickly outline results for q.s.c. rings for 
Grassmannians.

On G(k,n), the Grassmannian of k-planes in Cn,
for 1 < k < n-1, the tangent bundle has moduli:

h1(G(k, n),EndT ) =

⇢
n2 � 1 1 < k < n� 1

0 else

We’ll deform the tangent bundle,  
and describe the resulting q.s.c. ring.

(J Guo, Z Lu, ES, 1512.08586 & to appear)



Deformations of tangent bundle of G(k,n)

The tangent bundle itself can be represented as the cokernel

0 �! S⇤ ⌦ S
⇤�! On ⌦ S⇤ �! T �! 0

We can encode a deformation     of the tangent bundle 
by modifying the map *.

E

⇤ : !

�
↵ 7! A

i
j!

�
↵x

j
� + B

i
j!

�
�x

j
↵

The tangent bundle arises in the special case that 
A = I,   B = 0.

where the      are Stiefel coordinates, 
and S is the universal subbundle.

x

i
↵

So long as A invertible, can perform GL(n) rotation to 
eliminate, so moduli are in (traceless part of) B.



Given a deformation     of T,E

• we don’t have a mathematical derivation/def’n  
of the quantum sheaf cohomology ring,  

but

• we can use physics computations to determine its form.

Since this is a mostly math audience, I’ll spare you the physics 
details, and instead outline the results.



Structure of quantum sheaf cohomology ring for 
a generic deformation of T G(k,n)

C[�(1),�(2), · · · ]/
⌦
Dk+1, Dk+2, · · · , R(n�k+1), · · · , R(n�1),

R(n) + q,R(n+1) + q�(1), R(n+2) + q�(2), · · ·
↵

Dm = det
�
�(1+j�i)

�
1i,jm

R(r) =

min(r,n)X

i=0

Ii�(r�i)�
i
(1)

det(tI +B) =
nX

i=0

In�it
ifor     the char’ poly’s of B:Ii

I0 = 1, I1 = TrB, In = detBExs:

where



C[�(1),�(2), · · · ]/
⌦
Dk+1, Dk+2, · · · , R(n�k+1), · · · , R(n�1),

R(n) + q,R(n+1) + q�(1), R(n+2) + q�(2), · · ·
↵

If we turn off the deformation (set B=0), then
R(n) = �(n)

Quantum sheaf cohomology ring:

and with some work it can be shown that the ring above can 
be presented as

C[�(1), · · · ,�(n�k)]/hDk+1, · · · , Dn�1, Dn + (�)nqi

which is a standard presentation of the (ordinary) quantum 
cohomology ring of G(k,n).
(Buch, Kresch, Tamvakis, Bertram, Witten, Siebert, Tian, ….)



Example: G(1,3)
This has no nontrivial deformations, so any result should be 

equivalent to ordinary quantum cohomology ring of      .P2

C[�(1),�(2), · · · ]/hD2, · · · , R(3) + q,R(4) + q�(1), · · · i

= C[�(1)]/hR(3) + qiiwhich

using D2 = �2
(1) � �(2), · · · to eliminate         for m>1, and�(m)

the result R(3+`) + q�(`) = �(`)(R(3) + q)

R(3) =
3X

i=0

Ii�(3�i)�
i =

 
3X

i=0

Ii

!
�3 = (det(I +B))�3Now,

C[�]/hdet(I +B)�3 + qiso the qsc ring is

which is equivalent to std quantum cohomology ring.



G(1,n), G(n-1,n) admit no deformations and so their q.s.c. 
rings coincide with ordinary q.c. rings

However, for 1 < k < n-1, 
the q.s.c. ring of a def’ of G(k,n) is not the same as 

the ordinary q.c. ring.



The description of the q.s.c. ring given is valid generically.

Breaks down along discriminant locus, where bundle 
degenerates.

This turns out to be the locus where, on G(k,n), 
B has k eigenvalues whose sum is -1.



Summary

• Outlined def’n of quantum sheaf cohomology

• Computations on P1 ⇥ P1

& results for toric varieties

• Results for Grassmannians

• Survey of heterotic mirror symmetry

• (0,2) Toda-like Landau-Ginzburg mirrors



I hope to see you all at

June 27 - July 2, 2016

Paris, France


