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Basics of GLSM’s, & an interesting example

Cluster decomposition conjecture for strings 
on gerbes:                                         
CFT(gerbe) = CFT(disjoint union of spaces)

Application to GLSM’s; realization of 
Kuznetsov’s homological projective duality

Outline



GLSM’s
Today:  gauged linear sigma models (GLSM’s).

These are two-dimensional gauge theories,
generalizing the susy CPN model.

We add a superpotential to the CPN model,
and the resulting theory flows in the IR to

e.g. a nonlinear sigma model on a hypersurface in 
CPN.



Standard lore about GLSM’s:

* Only (complete intersections of) hypersurfaces in 
CPN and other toric varieties

can be described with 2d abelian gauge theory.

* Geometries arising in different limits of Kahler 
moduli space are `birational’ to one another.

Today we’ll learn that’s all wrong.



Let’s first briefly review a simple example of a GLSM 
and its interpretation.

Build an abelian gauge theory that flows in the IR to 
a NLSM on a quintic hypersurface in CP4.

Start with susy CP4 model:

5 chiral superfields Φ = (φ, ψ, F )

(one for each homogeneous coordinate on CP4)

Each has charge 1 under a gauged U(1)



D-terms:  

Have bosonic potential |D|2

where D =

∑

i

|φi|
2 − r

In the IR, susy vacua satisfy D=0

Classical moduli space = 

S5/U(1) = CP
4



How to describe the hypersurface {G = 0} ⊂ CP
4

where    is a degree 5 homogeneous poly?G

First guess:  Add a superpotential W = G.

This fails:
* superpotential must be gauge-invariant.

* Wrong F terms: get bosonic potential
∑

i

|∂iG|2

which wants to flow to dG = 0 locus, not G=0 locus.



Correct method:

First, add a new chiral superfield P = (p, ψp, Fp)

of charge -5.
Then, W = pG

* W is gauge-invariant.

* F-terms are

|G|2 + |p|2
∑

i

|∂iG|2

and so have susy vacua at G=0=p,
exactly the desired quintic!



A little more carefully:

D-terms:

F-terms: |G|2 + |p|2
∑

i

|∂iG|2

∣

∣

∣

∣

∣

∑

i

|φi|
2 − 5|p|2 − r

∣

∣

∣

∣

∣

2

r ! 0 :

φi not all zero
G = p = 0

NLSM on quintic

r ! 0 :

p != 0

< φi > all vanish

Z5 orb’ of LG model



A more interesting example:

Describe complete intersection of 2 deg 2 
hypersurfaces in CP3.

Have 4 chiral superfields Φi = (φi, ψi, Fi)
(one for each homog’ coord’ on CP3)

each of charge 1

Add 2 chiral superfields
(one for each of the              ){Ga = 0}

Pa = (pa, ψpa, Fpa)

(=T2)



D-terms:

∣

∣

∣

∣

∣

∑

i

|φi|
2 − 2

∑

a

|pa|
2 − r

∣

∣

∣

∣

∣

2

F-terms:
∑

i

∑

a

|Ga|
2

+

∑

i

∑

a

|pa|
2 |∂iGa|

2

r ! 0 :

φi not all zero

pa = Ga = 0

NLSM on CY CI

The other limit is
more interesting....



D-terms:

∣

∣

∣

∣

∣

∑

i

|φi|
2 − 2

∑

a

|pa|
2 − r

∣

∣

∣

∣

∣

2

r ! 0 :

pa not all zero

φi massive (since deg 2)

NLSM on P1 ????

W =
∑

a

paGa(φ) =
∑

ij

φiA
ij(p)φj



The correct analysis of the         limit is more subtle.r ! 0

One subtlety is that the    are not massive 
everywhere.

φi

Write

then they are only massive away from the locus

But that just makes things more confusing....

{detA = 0} ⊂ P
1

W =
∑

a

paGa(φ) =
∑

ij

φiA
ij(p)φj



A more important subtlety is the fact that the p’s 
have nonminimal charge,

so over most of the P1 of p vevs,
we have a nonminimally-charged abelian gauge 

theory,
meaning massless fields have charge -2,

instead of 1 or -1.

Why should this matter?

Nonperturbative effects



General argument:

Compact worldsheet:
To specify Higgs fields completely, need to specify 

what bundle they couple to.  

If the gauge field     
then    charge    implies 

  

Different bundles => different zero modes 
=> different anomalies => different physics 

∼ L

Φ Q

Φ ∈ Γ(L⊗Q)

For noncpt worldsheets, analogous argument exists.
(Distler, Plesser)



P
N−1 : U(1)A !→ Z2N

Here : U(1)A !→ Z2kN

Example:  Anomalous global U(1)’s

P
N−1

: < XN(d+1)−1 > = qd

Here : < XN(kd+1)−1 > = qd

Example:  A model correlation functions

Example:  quantum cohomology
P

N−1 : C[x]/(xN
− q)

Here : C[x]/(xkN
− q)

Different
physics

To illustrate, imagine an analogue of the CPN-1 model
but in which all chiral superfields have charge k 

instead of charge 1.



This variation of the CPN model is how we describe 
strings propagating on certain Zk gerbes over CPN.

More generally, we make sense of strings propagating 
on stacks as follows: 

Every* (smooth, Deligne-Mumford) stack can be 
presented as a global quotient

[X/G]

for    a space and    a group.X G

To such a presentation, associate a G-gauged sigma 
model on X.

(* with minor caveats)



When some subgroup of G acts trivially,
the result is mathematically a gerbe.

Physically, we see that strings on gerbes 
are different from
strings on spaces.

The difference is nonperturbative effects
 -- a sigma model on a gerbe 

looks like a sigma model on a space,
but with fewer nonperturbative sectors.

There is a cluster decomposition issue, solved as 
follows....



General decomposition 
conjecture

Consider [X/H ] where

1 −→ G −→ H −→ K −→ 1

and G acts trivially.

We now believe, for (2,2) CFT’s,

(together with some B field), where
Ĝ is the set of irreps of G

CFT([X/H ]) = CFT
([

(X × Ĝ)/K
])



Decomposition 
conjecture

For banded gerbes, K acts trivially upon Ĝ

so the decomposition conjecture reduces to

where the B field is determined by the image of

CFT(G − gerbe on Y ) = CFT





∐

Ĝ

(Y, B)





H2(Y, Z(G))
Z(G)→U(1)

−→ H2(Y, U(1))

(Y = [X/K])



Basic point:
Maps into Zk gerbe over X

= maps into X of degree divisible by k

Path integral into disjoint union of k copies of X,
with variable B fields:

* if degree not divisible by k,
then proportional to sum over kth roots of unity

= 0   -- cancel out
* if degree is divisible by k,

then add instead of cancelling out

Result is same as path integral on gerbe.



 Banded Example:

Consider [X/D4] where the center acts trivially.

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1

The decomposition conjecture predicts

One of the effective orbifolds has vanishing discrete 
torsion, the other has nonvanishing discrete torsion.

(Using the relationship between discrete torsion and 
B fields first worked out by ES, c. 2000.)

CFT ([X/D4]) = CFT
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)



Check genus one partition functions:

D4 = {1, z, a, b, az, bz, ab, ba = abz}

Z2 × Z2 = {1, a, b, ab}

Z(D4) =
1

|D4|

∑

g,h∈D4,gh=hg

Zg,h

Each of the Zg,h twisted sectors that appears,
is the same as a Z2 × Z2 sector, appearing with
multiplicity |Z2|

2
= 4 except for the

g

h

a

b

a

ab

b

ab

sectors.



Partition functions, cont’d

Z(D4) = |Z2×Z2|
|D4|

|Z2|2 (Z(Z2 × Z2) − (some twisted sectors))

= 2 (Z(Z2 × Z2) − (some twisted sectors))

(In ordinary QFT, ignore multiplicative factors,
but string theory is a 2d QFT coupled to gravity,

and so numerical factors are important.)
Discrete torsion acts as a sign on the

a

b

a

ab

b

ab

twisted sectors

so we see that Z([X/D4]) = Z
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)

with discrete torsion in one component.



A quick check of this example comes from 
comparing massless spectra:

Spectrum for
2

0 0

0 54 0

2 54 54 2

0 54 0

0 0

2

1

0 0

0 3 0

1 51 51 1

0 3 0

0 0

1

1

0 0

0 51 0

1 3 3 1

0 51 0

0 0

1

Sum matches.

and for each                   :[T 6/Z2 × Z2]

[T 6/D4] :



Nonbanded example:

Consider [X/H] where H is the eight-element
group of quaternions, and a Z4 acts trivially.

1 −→ < i > (∼= Z4) −→ H −→ Z2 −→ 1

The decomposition conjecture predicts

CFT([X/H]) = CFT
(

[X/Z2]
∐

[X/Z2]
∐

X
)

Straightforward to show that this is true at the level 
of partition functions, as before.



K theory implications
This equivalence of CFT’s implies a statement about

 K theory (thanks to D-branes).

1 −→ G −→ H −→ K −→ 1

If G Xacts trivially on
then the ordinary XH-equivariant K theory of

is the same as
twisted K-equivariant K theory of X × Ĝ

* Can be derived just within K theory
* Provides a check of the decomposition conjecture



D-branes and sheaves

D-branes in the topological B model can be described 
with sheaves and, more gen’ly, derived categories.

This also is consistent with the decomp’ conjecture:

A sheaf on a banded G-gerbe
is the same thing as

a twisted sheaf on the underlying space,
twisted by image of an element of H2(X,Z(G))

Math fact:

which is consistent with the way D-branes should 
behave according to the conjecture.



D-branes and sheaves
Similarly, massless states between D-branes should be 

counted by Ext groups between the corresponding 
sheaves. 

Math fact:
Sheaves on a banded G-gerbe decompose according to 

irrep’ of G,
and sheaves associated to distinct irreps have 

vanishing Ext groups between them.

Consistent w/ idea that sheaves associated to distinct 
reps should describe D-branes on different 

components of a disconnected space.



Gromov-Witten prediction

Notice that there is a prediction here for Gromov-
Witten theory of gerbes:

GW of [X/H ]

should match

GW of
[

(X × Ĝ)/K
]

Works in basic cases:  
BG (T Graber), other exs (J Bryan)



Mirrors to stacks

Standard mirror constructions now produce 
character-valued fields, a new effect, which ties into 

the stacky fan description of (BCS ‘04).

(ES, T Pantev, ‘05)

There exist mirror constructions for any model 
realizable as a 2d abelian gauge theory.

For toric stacks (BCS ‘04), there is such a description.



Toda duals
Ex:  The ``Toda dual’’ of CPN is described by

the holomorphic function
W = exp(−Y1) + · · · + exp(−YN ) + exp(Y1 + · · · + YN )

The analogous duals to Zk gerbes over CPN are
described by

W = exp(−Y1) + · · · + exp(−YN ) + Υn exp(Y1 + · · · + YN )

where Υ is a character-valued field

(ES, T Pantev, ‘05)

(discrete Fourier transform of components in decomp’ conjecture)



GLSM’s

Example:  CP3[2,2]

Superpotential:
∑

a

paGa(φ) =
∑

ij

φiA
ij(p)φj

* mass terms for the    , away from locus             .φi {detA = 0}

* leaves just the p fields, of charge -2
* Z2 gerbe, hence double cover

Let’s now return to our analysis of GLSM’s.

r ! 0 :



The Landau-Ginzburg point:

{ det = 0 }CP1

Because we have a Z2 gerbe over CP1....

(r ! 0)



The Landau-Ginzburg point:

Double 
cover

{ det = 0 }CP1 Berry phase

Result:  branched double cover of CP1

(r ! 0)



where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, ‘06; R Donagi, ES, ‘07;
A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

So far:

The GLSM realizes:

CP3[2,2]
branched double cover

of CP1
Kahler

* novel realization of geometry
(as something other than CI)



Branched double cover of CP1 over deg 4 locus

XX

XX

XX

XX

So our GLSM for CP3[2,2] relates

T2 T2Kahler (no surprise)

CP1 CP1= T2



Next simplest example:

GLSM for CP5[2,2,2] = K3

At LG point, have a branched double cover of CP2,
branched over a degree 6 locus

 --- another K3

K3 K3Kahler

(no surprise)



A more interesting example:

GLSM for CP7[2,2,2,2]    = CY 3-fold

At LG point,
get branched double cover of CP3,

branched over degree 8 locus.

-- another CY
(Clemens’ octic double solid)

Here, different CY’s;
so different, they’re not even birational !



We’ll see same pattern in more examples 
-- complete intersections of quadrics are

related to branched double covers.

This particular example is more interesting,
but, let’s pause a moment.

* novel realization of geometry 
(as something other than CI)

* limits of Kahler moduli space not birational

Violates std lore on GLSMs.



If the limits aren’t birational,
then how are they related?

They are related by Kuznetsov’s
``homological projective duality’’

More gen’ly, we conjecture that all Kahler phases of 
GLSM’s are related by h.p.d.

First, let’s return to the CP7[2,2,2,2] example,
to uncover more details, 

then we’ll see more examples.



A puzzle:

* the branched double cover will be singular, 
but the GLSM is smooth at those singularities.

Solution?....

There’s more going on in this particular example.



Solution:

We believe the GLSM is actually describing
a `noncommutative resolution’ of the branched double 

cover worked out by Kuznetsov.

Kuznetsov has defined 
`homological projective duality’ 

that relates CP7[2,2,2,2] to the noncommutative 
resolution above.



Check that we are seeing K’s noncomm’ resolution:

K defines a `noncommutative space’ via its sheaves 
-- so for example, a Landau-Ginzburg model can be a 

noncommutative space via matrix factorizations.

Here, K’s noncomm’ res’n is defined by (P3,B)
where B is the sheaf of even parts of Clifford 

algebras associated with the universal quadric over P3 
defined by the GLSM superpotential.

B plays the role of structure sheaf; 
other sheaves are B-modules.

Physics?......



Physics picture of K’s noncomm’ space:

Matrix factorization for a quadratic superpotential: 
even though the bulk theory is massive, one still has 

D0-branes with a Clifford algebra structure.

Here: a `hybrid LG model’ fibered over P3,
gives sheaves of Clifford algebras (determined by the 

universal quadric / GLSM superpotential)
and modules thereof. 

So:  open string sector duplicates Kuznetsov’s def’n.

(Kapustin, Li)



Note we have a physical
realization of nontrivial examples of Kontsevich’s 

`noncommutative spaces’
realized in gauged linear sigma models.



The GLSM realizes:

CP7[2,2,2,2]
branched double cover

of CP3

where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

Non-birational twisted derived equivalence
Physical realization of Kuznetsov’s homological 

projective duality

Summary so far:

Kahler



More examples:

CI of
n quadrics in P2n-1

branched double 
cover of Pn-1,

branched over deg 2n 
locus 

Both sides CY

Homologically projective dual

Kahler



More examples:

CI of 2 quadrics in the total space of

branched double cover of P1xP1xP1,
branched over deg (4,4,4) locus

* In fact, the GLSM has 8 Kahler phases,
4 of each of the above.

* Related to an example of Vafa-Witten involving 
discrete torsion

(Caldararu, Borisov)

P
(

O(−1, 0)⊕2 ⊕O(0,−1)⊕2
)

−→ P
1 × P

1

* Believed to be homologically projective dual

Kahler



A non-CY example:

CI 2 quadrics
in P2g+1

branched double 
cover of P1,

over deg 2g+2
(= genus g curve) 

Here, r flows -- not a parameter.
Semiclassically, Kahler moduli space falls apart

into 2 chunks.
Positively
curved

Negatively
curved

r flows:

Homologically projective dual.

Kahler



Depending upon the cutoff,
can replace branched double cover
by a space with codim 1 orbifolds.

Have double cover outside of cutoff-sized sphere 
about the branch locus.

As the cutoff varies, 
interpolate between

* branched double cover
* codim 1 Z2 orbifold   

←− Λ −→



Another non-CY example:

CI 2 quadrics
in P4

(= deg 4 del Pezzo)
P1 w/ 5 Z2 singularities

Why codim 1 sing’ instead of a double cover?
Well, no double cover exists, only the other cutoff 

limit makes sense.

Analogous results for P6[2,2,2], P6[2,2,2,2]

Homologically projective dual

Kahler



So far, we have only considered complete 
intersections of quadrics.

However, part of the analysis applies more generally.

Ex:  P5[3,3]

The LG point of the GLSM is a hybrid LG model,
with base a Z3 gerbe over P1, 
and fibers LG models for K3’s. 

Matches Kuznetsov’s homological projective duality.



Aside:

One of the lessons of this analysis is that 
gerbe structures are commonplace, 

even generic,
in the hybrid LG models arising in GLSM’s.

To understand the LG points of typical GLSM’s,
requires understanding gerbes in physics.



So far we have discussed several GLSM’s s.t.:

* the LG point realizes geometry in an unusual way

* the geometric phases are not birational

* instead, related by Kuznetsov’s homological
projective duality

We conjecture that Kuznetsov’s homological projective 
duality applies much more generally to GLSM’s.....



More Kuznetsov duals:

Another class of examples, also realizing Kuznetsov’s 
h.p.d., were realized in GLSM’s by Hori-Tong.

(Rodland, Kuznetsov, Borisov-Caldararu, Hori-Tong)

G(2,7)[17] Pfaffian CY

* non-birational

* unusual geometric realization
(via strong coupling effects in nonabelian GLSM)

Kahler



More Kuznetsov duals:

G(2,5)[14]
(= deg 5 del Pezzo)

Vanishing locus in P3

of Pfaffians

Positively
curved

Negatively
curved

r flows:

Kahler
==

G(2,5)[16]Vanishing locus in P5

of Pfaffians
Kahler



More Kuznetsov duals:

G(2,N)[1m]
(N odd)

vanishing locus in Pm-1

of Pfaffians

Check r flow:

K = O(m-N) K = O(N-m)

Opp sign, as desired,
so all flows in same direction.

Kahler



More Kuznetsov duals:

So far we have discussed how Kuznetsov’s h.p.d. 
realizes Kahler phases of several GLSM’s with

exotic physics.

We conjecture it also applies to ordinary GLSM’s.

Ex:  flops
Some flops are already known to be related by h.p.d.;

K is working on the general case.



Setup of a GLSM with an interesting limit

Cluster decomposition conjecture for strings 
on gerbes:                                      
CFT(gerbe) = CFT(disjoint union of spaces)

Application to GLSM’s; realization of 
Kuznetsov’s homological projective duality

Future directions

Summary




