A-twisted Landau-Ginzburg models, gerbes, and Kuznetsov's homological projective duality

Eric Sharpe
Virginia Tech

J. Guffin, ES, arXiv: 0801.3836, 0803.3955 T Pantev, ES, hepth/0502027, 0502044, 0502053 S Hellerman, A Henriques, T Pantev, ES, M Ando, hepth/0606034 A Caldararu, J Distler, S Hellerman, T Pantev, ES, arXiv: 0709.3855

Outline:

* A, B topological twists of Landau-Ginzburg models on nontrivial spaces
* Stacks in physics: how to build the QFT, puzzles and problems w/ new string compactifications
* Strings on gerbes: decomposition conjecture * Application of decomposition conj' to LG \& GLSM's: physical realization of Kuznetsov's homological projective duality,
GLSM's for K's noncommutative resolutions
* Heterotic LG models

A Landau-Ginzburg model is a nonlinear sigma model on a space or stack X plus a "superpotential" W.

$$
\begin{array}{r}
S=\int_{\Sigma} d^{2} x\left(g_{\overline{\bar{\jmath}}} \partial \phi^{i} \bar{\partial} \phi^{\jmath}+i g_{i \bar{\jmath}} \psi_{+}^{j} D_{\bar{z}} \psi_{+}^{i}+i g_{i \bar{\jmath}} \psi_{-}^{\jmath} D_{z} \psi_{-}^{i}+\cdots\right. \\
\\
+g^{i \bar{j}} \partial_{i} W \partial_{\jmath} \bar{W}+\psi_{+}^{i} \psi_{-}^{j} D_{i} \partial_{j} W+\psi_{+}^{\bar{\imath}} \psi_{-}^{\bar{\jmath}} D_{\bar{\imath}} \partial_{\bar{\jmath}} \bar{W}
\end{array}
$$

The superpotential $W: X \longrightarrow \mathrm{C}$ is holomorphic, (so LG models are only interesting when X is noncompact).

There are analogues of the A, B model TFTs for Landau-Ginzburg models.....

LG B model:

The states of the theory are Q-closed (mod Q-exact) products of the form

$$
b(\phi)_{\bar{\imath}_{1} \cdots \bar{l}_{n}}^{j_{1} \cdots j_{m}} \eta^{\bar{\imath}_{1}} \cdots \eta^{\bar{q}_{n}} \theta_{j_{1}} \cdots \theta_{j_{m}}
$$

where η, θ are linear comb's of ψ
$Q \cdot \phi^{i}=0, Q \cdot \phi^{\bar{\imath}}=\eta^{\bar{\tau}}, Q \cdot \eta^{\bar{\imath}}=0, Q \cdot \theta_{j}=\partial_{j} W, Q^{2}=0$
Identify $\quad \eta^{\bar{\imath}} \leftrightarrow d \bar{z}^{\bar{i}}, \quad \theta_{j} \leftrightarrow \frac{\partial}{\partial z^{j}}, \quad Q \leftrightarrow \bar{\partial}$
so the states are hypercohomology
$\mathbf{H}^{\cdot}\left(X, \cdots \longrightarrow \Lambda^{2} T X \xrightarrow{d W} T X \xrightarrow{d W} \mathcal{O}_{X}\right)$

Quick checks:

1) $W=O$, standard B-twisted NLSM
$\mathbf{H}^{\cdot}\left(X, \cdots \longrightarrow \Lambda^{2} T X \xrightarrow{d W} T X \xrightarrow{d W} \mathcal{O}_{X}\right)$

$$
\mapsto H^{\cdot}\left(X, \Lambda^{\cdot} T X\right)
$$

2) $X=C^{n}, W=$ quasihomogeneous polynomial

Seq' above resolves fat point $\{d W=0\}$, so
$\mathbf{H}\left(X, \cdots \rightarrow \Lambda^{2} T X \xrightarrow{d W} T X \xrightarrow{d W} \mathcal{O}_{X}\right)$

$$
\mapsto \mathrm{C}\left[x_{1}, \cdots, x_{n}\right] /(d W)
$$

LG A model:

Defining the A twist of a LG model is more interesting. (ean, Jaw vis, Ruan) (Ito : J Guffin, ES)
involves changing what bundles the ψ couple to, e.g.

$$
\psi \in \Gamma\left(\Sigma, \sqrt{K_{\Sigma}} \otimes \phi^{*} T X\right) \mapsto \Gamma\left(\Sigma, \phi^{*} T X\right), \Gamma\left(\Sigma, K_{\Sigma} \otimes \phi^{*} T X\right)
$$

The two inequivalent possibilities are the A, B twists. To be consistent, the action must remain well-defined after the twist.

True for A, B NLSM's \& B LG, but not A LG....

LG A model:

The problem is terms in the action of the form

$$
\psi_{+}^{i} \psi_{-}^{j} D_{i} \partial_{j} W
$$

If do the standard A NLSM twist, this becomes a 1-form on Σ, which can't integrate over Σ.

Fix: modify the A twist.

LG A model:

There are several ways to fix the A twist, and hence, several different notions of a LG A model.

One way: multiply offending terms in the action by another 1-form.
Another way: use a different prescription for modifying bundles.
The second is advantageous for physics, so I'll use it, but,
disadvantage: not all LG models admit A twist in this prescription.

To twist, need a $U(1)$ isometry on X w.r.t. which the superpotential is quasi-homogeneous.

Twist by "R-symmetry + isometry"
Let $Q\left(\psi_{i}\right)$ be such that

$$
W\left(\lambda^{Q\left(\psi_{i}\right)} \phi_{i}\right)=\lambda W\left(\phi_{i}\right)
$$

then twist: $\quad \psi \mapsto \Gamma\left(\right.$ original $\left.\otimes K_{\Sigma}^{-(1 / 2) Q_{R}} \otimes \bar{K}_{\Sigma}^{-(1 / 2) Q_{L}}\right)$
where

$$
Q_{R, L}(\psi)=Q(\psi)+ \begin{cases}1 & \psi=\psi_{+}^{i}, R \\ 1 & \psi=\psi_{-}^{i}, L \\ 0 & \text { else }\end{cases}
$$

Example: $X=C^{n}, W$ quasi-homog' polynomial Here, to twist, need to make sense of e.g. $K_{\Sigma}^{1 / r}$

$$
\text { where } r=2 \text { (degree) }
$$

Options: * couple to top' gravity (FJR)

* don't couple to top' grav' (GS) -- but then usually cant make sense of $K_{\Sigma}^{1 / r}$ I'll work with the latter case.

LG A model:
A twistable example:
LG model on $\mathrm{X}=\operatorname{Tot}\left(\mathcal{E}^{\vee} \xrightarrow{\pi} B\right)$ with $W=p \pi^{*} s, s \in \Gamma(B, \mathcal{E})$

Accessible states are Q-closed (mod Q-exact) prod's:

$$
b(\phi)_{\bar{\tau}_{1} \cdots \bar{\tau}_{n} j_{1} \cdots j_{m}} \psi_{-}^{\overline{1}_{1}} \cdots \psi_{-}^{\bar{\imath}_{n}} \psi_{+}^{j_{1}} \cdots \psi_{+}^{j_{m}}
$$

where

$$
\left.\phi \sim\{s=0\} \subset B \quad \psi \sim T B\right|_{\{s=0\}}
$$

$$
Q \cdot \phi^{i}=\psi_{+}^{i}, \quad Q \cdot \phi^{\bar{i}}=\psi_{-}^{\bar{i}}, \quad Q \cdot \psi_{+}^{i}=Q \cdot \psi_{-}^{\bar{i}}=0, Q^{2}=0
$$

Identify $\psi_{+}^{i} \leftrightarrow d z^{i}, \quad \psi_{-}^{\bar{\imath}} \leftrightarrow d \bar{z}^{\bar{\imath}}, Q \leftrightarrow d$ so the states are elements of $\left.H^{m, n}(B)\right|_{\{s=0\}}$

Correlation functions:

B-twist:

Integrate over X, weight by

$$
\exp \left(-|d W|^{2}+\text { fermionic }\right)
$$

and then perform transverse Gaussian, to get the standard expression.

A-twist:
Similar: integrate over \mathcal{M}_{X} and weight as above.

Witten equ'n in A-twist:
BRST: $\delta \psi_{-}^{i}=-\alpha\left(\bar{\partial} \phi^{i}-i g^{i \bar{j}} \partial_{\bar{\jmath}} \bar{W}\right)$
implies localization on sol'ns of

$$
\bar{\partial} \phi^{i}-i g^{i \bar{\jmath}} \partial_{\bar{\jmath}} \bar{W}=0 \quad \text { ("Witten equ'n") }
$$

On complex Kahler mflds, there are 2 independent BRST operators:

$$
\delta \psi_{-}^{i}=-\alpha_{+} \bar{\partial} \phi^{i}+\alpha_{-} i g^{i \bar{\jmath}} \partial_{\bar{\jmath}} \bar{W}
$$

which implies localization on sol'ns of

$$
\begin{aligned}
& \bar{\partial} \phi^{i}=0 \\
& g^{i \bar{J}} \partial_{\bar{j}} \bar{W}=0 \quad \text { which is what } \\
& \text { we're using. }
\end{aligned}
$$

Sol'ns of Witten equ'n:

$$
\int_{\Sigma}\left|\bar{\partial} \phi^{i}-i g^{i \bar{\jmath}} \partial_{\bar{\jmath}} \bar{W}\right|^{2}=\int_{\Sigma}\left(\left|\bar{\partial} \phi^{i}\right|^{2}+\left|\partial_{i} W\right|^{2}\right)
$$

$$
L H S=0 \text { iff } R H S=0
$$

hence sol'ns of Witten equ'n same as the moduli space we're looking at.

LG A model, contd

In prototypical cases,

The MQ form rep's a Tho class, so
$\begin{aligned}\left\langle\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right\rangle & =\int_{\mathcal{M}} \omega_{1} \wedge \cdots \wedge \omega_{n} \wedge \operatorname{Eul}\left(N_{\{s=0\} / \mathcal{M}}\right) \\ & =\int_{\{s=0\}} \omega_{1} \wedge \cdots \wedge \omega_{n}\end{aligned}$
-- same as A twisted NLSM on $\{s=0\}$
Not a coincidence, as we shall see shortly...

Renormalization (semi)group flow

Constructs a series of theories that are approximations to the previous ones, valid at longer and longer distance scales.

The effect is much like starting with a picture and then standing further and further away from it, to get successive approximations; final result might look very different from start.
 Problem: cannot follow it explicitly.

Renormalization group

Longer distances

Lower energies

Space of physical theories

Furthermore, RG preserves TFT's.

If two physical theories are related by RG, then, correlation functions in a top' twist of one correlation functions in corresponding twist of other.

Example:

LG model on $\mathrm{X}=\operatorname{Tot}\left(\mathcal{E}^{\vee} \xrightarrow{\pi} B\right)$ with $W=p s$

Renormalization group
 flow

NLSM on $\{s=0\} \subset B$ where $s \in \Gamma(\mathcal{E})$

This is why correlation functions match.

Another way to associate LG models to NLSM.
S'pose, for ex, the NLSM has target space $=$ hypersurface $\{G=0\}$ in P^{n} of degree d

Associate LG model on $\left[\mathbf{C}^{n+1} / Z_{d}\right]$

$$
\text { with } W=G
$$

* Not related by RG flow
* But, related by Kahler moduli, so have same B model

LG model on
$\operatorname{Tot}\left(O(-5) \rightarrow P^{4}\right)$
with $W=P$ s
Relations between
LG models

(Kahler)
NLSM on $\{s=0\} \subset P^{4}$

LG model on
[C^{5} / Z_{5}]
with $W=s$

RG flow interpretation:

In the case of the A -twisted correlation $\mathrm{f}^{\prime} \mathrm{ns}$, we got a Mathai-Quillen rep of a Thom form.

Something analogous happens in elliptic genera: elliptic genera of the LG \& NLSM models are related by Thom forms.

Suggests: RG flow interpretation in twisted theories as Thom class.

Possible mirror symmetry application:

Part of what we've done is to replace NLSM's with LG models that are 'upstairs' in RG flow.

Then, for example, one could imagine rephrasing mirror symmetry as a duality between the 'upstairs' LG models.
-- P. Clarke, 0803.0447

Next:

* decomposition conjecture for strings on gerbes
* LG duals to gerbes
* application of gerbes to LG's \& GLSM's as, physical realization of Kuznetsov's homological projective duality

To do this, need to review how stacks appear in physics....

String compactifications on stacks

First, motivation:
-- new string compactifications
-- better understand certain existing string compactifications

Next: how to construct QFT's for strings propagating on stacks?

Stacks

How to make sense of strings on stacks concretely?
Most (smooth, Deligne-Mumford) stacks can be presented as a global quotient

$$
[X / G]
$$

for X a space and G a group.
(G need not be finite; need not act effectively.)
To such a presentation, associate a "'G-gauged sigma model on X."
Problem: such presentations not unique

Stacks

If to $[X / G]$ we associate " G-gauged sigma model," then:
$\left[\mathbf{C}^{2} / \mathbf{Z}_{2}\right]$ defines a 2d theory with a symmetry called conformal invariance
$\left[X / \mathrm{C}^{\times}\right]$ defines a 2d theory w/o conformal invariance

Same stack, different physics!
Potential presentation-dependence problem: fix with renormalization group flow (Can't be checked explicitly, though.)

The problems here are analogous to the derived-categories-in-physics program.

There, to a given object in a derived category, one picks a representative with a physical description (as branes/antibranes/tachyons).

\squareAlas, such representatives are not unique.

It is conjectured that different representatives give rise to the same low-energy physics, via boundary renormalization group flow.

Only indirect tests possible, though.

Stacks

Other issues: deformation theory
massless spectra
To justify application of stacks to physics, need to conduct tests of presentation-dependence, understand issues above.

This was the subject of several papers.
For the rest of today's talk,
I want to focus on special kinds of stacks, namely, gerbes.
(= quotient by noneffectively-acting group)

Gerbes

Gerbes have add'l problems when viewed from this physical perspective.

Example: The naive massless spectrum calculation contains multiple dimension zero operators, which manifestly violates cluster decomposition, one of the foundational axioms of quantum field theory.

There is a single known loophole: if the target space is disconnected. We think that's what's going on....

Decomposition conjecture

Consider $[X / H]$ where

$$
1 \longrightarrow G \longrightarrow H \longrightarrow K \longrightarrow 1
$$

and G acts trivially.
Claim
$\operatorname{CFT}([X / H])=\operatorname{CFT}([(X \times \hat{G}) / K])$
(together with some B field), where
\hat{G} is the set of irreps of G

Decomposition conjecture

For banded gerbes, K acts trivially upon \hat{G} so the decomposition conjecture reduces to
$\operatorname{CFT}(G$ - gerbe on $X)=\operatorname{CFT}\left(\int_{\hat{G}}(X, B)\right)$
where the B field is determined by the image of

$$
H^{2}(X, Z(G)) \xrightarrow{Z(G) \rightarrow U(1)} H^{2}(X, U(1))
$$

Banded Example:

Consider $\left[X / D_{4}\right]$ where the center acts trivially.

$$
1 \longrightarrow \mathbf{Z}_{2} \longrightarrow D_{4} \longrightarrow \mathbf{Z}_{2} \times \mathbf{Z}_{2} \longrightarrow 1
$$

The decomposition conjecture predicts
$\left.\operatorname{CFT}\left(\left[X / D_{4}\right]\right)=\operatorname{CFT}\left(\left[X / \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right]\right]\left[X / \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right]\right)$
One of the effective orbifolds has vanishing discrete torsion, the other has nonvanishing discrete torsion.

Checks: can show partition functions match:

$$
Z\left(\left[X / D_{4}\right]\right)=Z\left(\left[X / \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right] \amalg\left[X / \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right]\right)
$$

Another quick check-- compare massless spectra:

and for each $\left[T^{6} / \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right]$:

Sum matches.

Nonbanded example:

Consider $[X / H]$ where \mathbf{H} is the eight-element group of quaternions, and a \mathbf{Z}_{4} acts trivially.

$$
1 \longrightarrow<i>\left(\cong \mathbf{Z}_{4}\right) \longrightarrow \mathbf{H} \longrightarrow \mathbf{Z}_{2} \longrightarrow 1
$$

The decomposition conjecture predicts

$$
\left.\operatorname{CFT}([X / \mathbf{H}])=\operatorname{CFT}\left(\left[X / Z_{2}\right] \amalg\left[X / Z_{2}\right]\right\rfloor X\right)
$$

Straightforward to show that this is true at the level of partition functions, as before.

Another class of examples:

 global quotients by nonfinite groupsThe banded \mathbf{Z}_{k} gerbe over \mathbf{P}^{N} with characteristic class $-1 \bmod k$
can be described mathematically as the quotient

$$
\left[\frac{\mathrm{C}^{N+1}-\{0\}}{\mathbf{C}^{\times}}\right]
$$

where the C^{\times}acts as rotations by k times which physically can be described by a $U(1)$ susy gauge theory with $N+1$ chiral fields, of charge K

How can this be different from ordinary P^{N} model?

The difference lies in nonperturbative effects. (Perturbatively, having nonminimal charges makes no difference.)

To specify Higgs fields completely, need to specify what bundle they couple to.

If the gauge field $\sim L$
then Φ charge Q implies

$$
\Phi \in \Gamma\left(L^{\otimes Q}\right)
$$

Different bundles => different zero modes
=> different anomalies => different physics
(Noncompact worldsheet - theta angle -- J Distler, R Plesser)

Return to the example $\left[\frac{\mathrm{C}^{N+1}-\{0\}}{\mathrm{C}^{\times}}\right]$

Example: Anomalous global $U(1)$'s

$$
\begin{aligned}
\mathbf{P}^{N-1}: & U(1)_{A}
\end{aligned} \mapsto_{2 N} \mathbf{Z}_{2 N}, \mathbf{Z}_{2 k N}
$$

Example: A model correlation functions

$$
\begin{aligned}
\mathbf{P}^{N-1}: & <X^{N(d+1)-1}>=q^{d} \\
\text { Here }: & <X^{N(k d+1)-1}>=q^{d}
\end{aligned}
$$

Example: quantum cohomology

$$
\begin{aligned}
\mathbf{P}^{N-1}: & \mathbf{C}[x] /\left(x^{N}-q\right) \\
\text { Here : } & \mathbf{C}[x] /\left(x^{k N}-q\right)
\end{aligned}
$$

Different physics

K theory implications

This equivalence of CFT's implies a statement about K theory (thanks to D-branes).

$$
1 \longrightarrow G \longrightarrow H \longrightarrow K \longrightarrow 1
$$

If G acts trivially on X
then the ordinary H-equivariant K theory of X is the same as
twisted K-equivariant K theory of $X \times \hat{G}$

* Can be derived just within K theory
* Provides a check of the decomposition conjecture

D-branes and sheaves

D-branes in the topological B model can be described with sheaves and, more gen'ly, derived categories.

This also is consistent with the decomp' conjecture: Math fact:

A sheaf on a banded G-gerbe is the same thing as
a twisted sheaf on the underlying space, twisted by image of an element of $\mathrm{H}^{2}(\mathrm{X}, \mathrm{Z}(\mathrm{G}))$
which is consistent with the way D-branes should behave according to the conjecture.

D-branes and sheaves

Similarly, massless states between D-branes should be counted by Ext groups between the corresponding sheaves.
Math fact:
Sheaves on a banded G-gerbe decompose according to irrep' of G,
and sheaves associated to distinct irreps have vanishing Ext groups between them.

Consistent w/ idea that sheaves associated to distinct reps should describe D-branes on different components of a disconnected space.

Gromov-Witten prediction

Notice that there is a prediction here for GromovWitten theory of gerbes:

GW of $[X / H]$
should match

$$
\text { GW of }[(X \times \hat{G}) / K]
$$

Banded Z_{k} gerbes:
E Andreini, Y Jiang, H-H Tseng, 0812.4477

Quantum cohomology

Some old results of Morrison-Plesser (q.c. from gauge theory) generalize from toric varieties to toric stacks.

Let the toric stack be described in the form

$$
\left[\frac{\mathrm{C}^{N}-E}{\left(\mathrm{C}^{\times}\right)^{n}}\right] \quad \begin{aligned}
& \text { E some exceptional set } \\
& Q_{i}^{a} \text { the weight of the } \\
& \text { th }
\end{aligned}
$$ vector under $a^{\text {th }} \mathrm{C}^{\times}$

then Batyrev's conjecture becomes
$\mathrm{C}\left[\sigma_{1}, \cdots, \sigma_{n}\right]$ modulo the relations

$$
\prod_{i=1}^{N}\left(\sum_{b=1}^{n} Q_{i}^{b} \sigma_{b}\right)^{Q_{i}^{i}}=q_{a}
$$

Quantum cohomology

Ex: Quantum cohomology ring of P^{N} is

$$
C[x] /\left(x^{N+1}-q\right)
$$

Quantum cohomology ring of Z_{k} gerbe over P^{N} with characteristic class $-n \bmod k$ is

$$
C[x, y] /\left(y^{k}-q_{2}, x^{N+1}-y^{n} q_{1}\right)
$$

Aside: these calculations give us a check of the massless spectrum -- in physics, can derive q.c. ring w/o knowing massless spectrum.

Quantum cohomology

We can see the decomposition conjecture in the quantum cohomology rings of toric stacks.

Ex: Q.c. ring of a Z_{k} gerbe on P^{N} is given by

$$
C[x, y] /\left(y^{k}-q_{2}, x^{N+1}-y^{n} q_{1}\right)
$$

In this ring, the y 's index copies of the quantum cohomology ring of P^{N} with variable $q^{\prime} s$.

The gerbe is banded, so this is exactly what we expect -- copies of $P N$, variable B field.

Quantum cohomology

More generally, a gerbe structure is indicated from this quotient description whenever C^{x} charges are nonminimal.
In such a case, from our generalization of Batyrev's conjecture, at least one rel'n will have the form

$$
p^{k}=q
$$

where p is a rel'n in q.c. of toric variety, and k is the nonminimal part.

Can rewrite this in same form as for gerbe on PN , and in this fashion can see our decomp' conj' in our gen'l of Batyrev's q.c.

Mirrors to stacks

There exist mirror constructions for any model realizable as a $2 d$ abelian gauge theory.

For toric stacks (BCS '04), there is such a description.

Standard mirror constructions now produce character-valued fields, a new effect, which ties into the stacky fan description of (BCS '04).

Toda duals

Ex: The LG mirror of PN^{N} is described by the holomorphic function

$$
W=\exp \left(-Y_{1}\right)+\cdots+\exp \left(-Y_{N}\right)+\exp \left(Y_{1}+\cdots+Y_{N}\right)
$$

The analogous duals to Z_{k} gerbes over P^{N} are described by
$W=\exp \left(-Y_{1}\right)+\cdots+\exp \left(-Y_{N}\right)+\Upsilon^{n} \exp \left(Y_{1}+\cdots+Y_{N}\right)$
where Υ is a character-valued field
(discrete Fourier transform of components in decomp' conjecture)
(ES, T Pantev, '05;
E Mann, '06)

GLSM's

Decomposition conjecture can be applied to GLSM's.

Example: $\mathbf{P}^{\top}[2,2,2,2]$

At the Landau-Ginzburg point, have superpotential

$$
\sum_{a} p_{a} G_{a}(\phi)=\sum_{i j} \phi_{i} A^{i j}(p) \phi_{j}
$$

* mass terms for the ϕ_{i}, away from locus $\{\operatorname{det} A=0\}$. * leaves just the p fields, of charge -2 $* Z_{2}$ gerbe, hence double cover

The Landau-Ginzburg point:

Because we have a Z_{2} gerbe over P^{3} - det....

The Landau-Ginzburg point:

Double cover

Result: branched double cover of p^{3}

So far:

The GLSM realizes:

branched double cover of P^{3}
(Clemens' octic double solid)
where RHS realized at LG point via local Z_{2} gerbe structure + Berry phase.
(S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, '06; R Donagi, ES, '07; A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., '07)

Non-birational twisted derived equivalence Unusual physical realization of geometry

Rewrite with Landau-Ginzburg models:
large
GLSM for $P^{7}[2,2,2,2]$

LG model on
$\operatorname{Tot}\left(O(-2)^{4} \rightarrow P^{7}\right)$

GLIM

Kahler

$$
\begin{gathered}
\text { LG model on } \\
\text { Tot }\left(O(-1)^{8} \rightarrow P^{3}[2,2,2,2]\right)
\end{gathered}
$$

$R G$
NLSM on
branched double cover of P^{3},
branched over deg 8 locus

Puzzle:

the branched double cover will be singular, but the GLSM is smooth at those singularities.

Solution?....
We believe the GLSM is actually describing a 'noncommutative resolution' of the branched double cover worked out by Kuznetsov.

Kuznetsov has defined
'homological projective duality'
that relates $P^{7}[2,2,2,2]$ to the noncommutative resolution above.

Check that we are seeing K's noncomm' resolution:
K defines a 'noncommutative space' via its sheaves -- so for example, a Landau-Ginzburg model can be a noncommutative space via matrix factorizations.

Here, K's noncomm' res' $n=\left(P^{3}, B\right)$
where B is the sheaf of even parts of Clifford algebras associated with the universal quadric over P^{3} defined by the GLSM superpotential.
B ~ structure sheaf; other sheaves ~ B-modules.

Physics?

Physics:

B-branes in the RG limit theory
= B-branes in the intermediate LG theory.

Claim: matrix factorizations in intermediate LG
= Kuznetsov's B-modules

K has a rigorous proof of this; B-branes $=$ Kuznetsov's nc res'n sheaves.

Intuition....

Local picture:

Matrix factorization for a quadratic superpotential: even though the bulk theory is massive, one still has DO-branes with a Clifford algebra structure.
(Kapustin, Li)

Here: a 'hybrid LG model' fibered over P3, gives sheaves of Clifford algebras (determined by the universal quadric / GLSM superpotential) and modules thereof.

So: open string sector duplicates Kuznetsov's def'n.

Summary so far:

The GLSM realizes:
$P^{7}[2,2,2,2]$
nc res'n of branched double cover
of P^{3}
where RHS realized at LG point via local Z_{2} gerbe structure + Berry phase.
(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., '07)

Non-birational twisted derived equivalence Unusual physical realization of geometry Physical realization of Kuznetsov's homological projective duality

More examples:

branched double

CI of

n quadrics in $p^{2 n-1}$
Kahler
.
branched over deg $2 n$ locus
Both sides $C Y$

Homologically projective dual

Rewrite with Landau-Ginzburg models:

$$
\begin{array}{cc}
\text { LG model on } \\
\text { Tot }\left(O(-2)^{k}-->P^{n}\right) & \text { KLSM } \\
\text { RG model on } \\
\text { Tot }\left(O(-1)^{n+1} \ldots P^{k-1}[2, \ldots, 2]\right)
\end{array}
$$

A math conjecture:
Kuznetsov defines his h.p.d. in terms of coherent sheaves. In the physics language

LG model on GLSM
Tot($O(-2)^{k}-->P^{n}$)
Kahler Tot $\left(O(-1)^{n+1} \rightarrow P^{k-1}[2, \ldots, 2]\right)$
Kuznetsov's h.p.d. becomes a statement about matrix factorizations, analogous to those in Orlov's work.

Math conjecture: Kuznetsov's h.p.d. has an alternative (\& hopefully easier) description in terms of matrix factorizations between LG models on birational spaces.

More examples:

CI of 2 quadrics in the total space of

$$
\mathbf{P}\left(\mathcal{O}(-1,0)^{\oplus 2} \oplus \mathcal{O}(0,-1)^{\oplus 2}\right) \longrightarrow \mathbf{P}^{1} \times \mathbf{P}^{1}
$$

branched double cover of $\mathrm{P}^{1} \times \mathrm{P}^{1} \times \mathrm{P}^{1}$, branched over deg $(4,4,4)$ locus

* In fact, the GLSM has 8 Kahler phases, 4 of each of the above.
* Related to an example of Vafa-Witten involving discrete torsion
(Caldararu, Borisov)
* Believed to be homologically projective dual

A non-CY example:
branched double

CI 2 quadrics in $P^{2 g+1}$

Homologically projective dual. Here, r flows -- not a parameter.
Semiclassically, Kahler moduli space falls apart into 2 chunks.

Positively curved

Negatively
curved
r flows:

More examples:

Hori-Tong 0609032 found closely related phenomena in nonabelian GLSMs:
$G(2,7)\left[1^{7}\right] \longleftrightarrow$ Pfaffian $C Y$
Also: * novel realization of geometry * nonbirational * Kuznetsov's h.p.d.

Further nonabelian examples: Donagi, ES, 0704.1761

So far we have discussed several GLSM's s.t.:

* the LG point realizes geometry in an unusual way
* the geometric phases are not birational
* instead, related by Kuznetsov's homological projective duality

Conjecture: all phases of GLSM's are related by Kuznetsov's h.p.d.

Another direction:

Heterotic Landau-Ginzburg models

We'll begin with heterotic nonlinear sigma models....

Heterotic nonlinear sigma models:

Let X be a complex manifold,
$\mathcal{E} \longrightarrow X$ a holomorphic vector bundle such that $\operatorname{ch}_{2}(\mathcal{E})=\operatorname{ch}_{2}(T X)$

Action:

$$
\begin{gathered}
S=\int_{\Sigma} d^{2} x\left(g_{\bar{\imath} \jmath} \partial \phi^{i} \bar{\partial} \phi^{\jmath}+i g_{i \bar{\jmath}} \psi_{+}^{\jmath} D_{\bar{z}} \psi_{+}^{i}+i h_{a \bar{b}} \lambda_{-}^{\bar{b}} D_{z} \lambda_{-}^{a}+\cdots\right. \\
\phi, \psi_{+} \text {as before } \quad \lambda_{-}^{a} \in \Gamma\left(\mathcal{E} \otimes \sqrt{K_{\Sigma}}\right)
\end{gathered}
$$

Reduces to ordinary NLSM when $\mathcal{E}=T X$

Heterotic Landau-Ginzburg model:

$$
\begin{aligned}
S=\int_{\Sigma} d^{2} x & \left(g_{i \bar{\jmath}} \partial \phi^{i} \bar{\partial} \phi^{\jmath}+i g_{i \bar{\jmath}} \psi_{+}^{\jmath} D_{\bar{z}} \psi_{+}^{i}+i h_{a \bar{b}} \lambda_{-}^{\bar{b}} D_{z} \lambda_{-}^{a}+\cdots\right. \\
& +h^{a \bar{b}} F_{a} \bar{F}_{\bar{b}}+\psi_{+}^{i} \lambda_{-}^{a} D_{i} F_{a}+\text { c.c. } \\
& \left.+h_{a \bar{b}} E^{a} \bar{E}^{\bar{b}}+\psi_{+}^{i} \lambda_{-}^{\bar{a}} D_{i} E^{b} h_{\bar{a} b}+\text { c.c. }\right)
\end{aligned}
$$

Has two superpotential-like pieces of data

$$
E^{a} \in \Gamma(\mathcal{E}), \quad F_{a} \in \Gamma\left(\mathcal{E}^{\vee}\right)
$$

such that

$$
\sum_{a} E^{a} F_{a}=0
$$

Heterotic LG models are related to heterotic NLSM's via renormalization group flow.

Example:
A heterotic LG model on $X=\operatorname{Tot}\left(\mathcal{F}_{1} \xrightarrow{\pi} B\right)$
with $\mathcal{E}^{\prime}=\pi^{*} \mathcal{F}_{2} \quad \& \quad F_{a} \equiv 0, \quad E^{a} \neq 0$

Renormalization

 groupA heterotic NLSM on B

$$
\text { with } \mathcal{E}=\operatorname{coker}\left(\mathcal{F}_{1} \longrightarrow \mathcal{F}_{2}\right)
$$

Summary:

* A, B topological twists of Landau-Ginzburg models on nontrivial spaces
* Stacks in physics: how to build the QFT, puzzles and problems w/ new string compactifications
* Strings on gerbes: decomposition conjecture * Application of decomposition conj' to LG \& GLSM's: physical realization of Kuznetsov's homological projective duality,
GLSM's for K's noncommutative resolutions
* Heterotic LG models

Mathematics

Physics

Geometry:

Gromov-Witten
Donaldson-Thomas quantum cohomology etc

Homotopy, categories: derived categories, stacks, etc.

Renormalization group
Supersymmetric field theories

