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In this talk, I’m going to describe how some examples 
of Kuznetov’s homological projective duality (hpd) 

(for complete intersections of quadrics)
are realized physically, as phases of abelian GLSM’s.

WARNING:  physics talk

GLSM = `gauged linear sigma model’
These are the bread-and-butter tools used by 

physicists to describe families of spaces and related 
aspects of string compactifications.

Hpd taught us a great deal about GLSM’s and other 
physics, and that’s what I’ll discuss today.



What did hpd teach us?

Prior to ~ 2006, it was (falsely) believed that:

* GLSM’s could only describe global complete intersections, 

* which could only arise physically as critical locus of a 
superpotential, and

* GLSM Kahler `phases’ are all birational to one another

The papers
Hori-Tong hep-th/0609032, Donagi-ES 0704.1761, Caldararu et al 0709.3855 

provided counterexamples to each statement above, 
all special cases of hpd.



I won’t describe homological projective duality itself, 
instead I’m going to focus on physics examples.

Prototype:
A complete intersection of k quadrics in Pn,

is hpd to
a (nc resolution of a) branched double cover of Pk-1,

branched over the locus

{Q1 = · · · = Qk = 0}

{detA = 0}
∑

a

paQa(φ) =
∑

i,j

φiA
ij(p)φjwhere



We’ll see how examples of this form,
(CI quadrics    vs    branched double covers),

are realized physically as phases of abelian GLSM’s.

To understand those GLSM’s, we’ll detour through 
the physics of stacks & Z2 gerbes.

We’ll begin with easy examples,
and get into more interesting cases,

for example in which nc resolutions arise physically.



GLSM’s are families of 2d gauge theories
that RG flow to families of CFT’s.

In this case:

one-parameter
Kahler moduli space

NLSM on
P3[2,2]

LG
point

= branched 
double 
cover

We’ll begin with the GLSM for P3[2,2] (=T2):

r

r ! 0 r ! 0



GLSM for P3[2,2] (=T2):

Briefly, the GLSM consists of:

Φi = (φi, ψi, Fi)* 4 chiral superfields                        ,
one for each homogeneous coordinate on P3,

each of charge 1 w.r.t. a gauged U(1)

Pa = (pa, ψpa, Fpa)
{Qa = 0}

* 2 chiral superfields                          ,
(one for each of the              ),

each of charge -2

* a superpotential
W =

∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj

-- Kentaro’s language:  matter C(1)4 ⊕ C(−2)2



The other limit is more interesting....

r ! 0 : φi not all zero

NLSM on CY CI = P3[2,2] = T2

pa = Qa = 0

∑

i

|φi|
2 − 2

∑

a

|pa|
2

= r

The GLSM describes a symplectic quotient:

Moment map (D term):

Critical locus of superpotential                      isW =
∑

a

paQa(φ)



r ! 0 : pa not all zero

NLSM on P1 ????

W =
∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj

∑

i

|φi|
2 − 2

∑

a

|pa|
2

= r

Moment map (D term):

φi massive (since deg 2)implies that

That can’t be right, since other phase is CY.



The correct analysis of the         limit is more subtle.r ! 0

One subtlety is that the    are not massive 
everywhere.

φi

Write

then they are only massive away from the locus

But that just makes things more confusing....

{detA = 0} ⊂ P
1

W =
∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj



A more important subtlety is the fact that the p’s 
have nonminimal charge,

so over most of the P1 of p vevs,
we have a nonminimally-charged abelian gauge 

theory,
meaning massless fields have charge -2,

instead of 1 or -1.

Mathematically, this is a string on a Z2 gerbe.

Let’s briefly review gerbes, to understand implications.



How to define the QFT for a string on a stack?

Every* (smooth, Deligne-Mumford) stack can be 
presented as a global quotient         ,[X/G]

for    a space and    a group.X G

To such a presentation, 
associate a G-gauged sigma model on X.

(* with minor caveats)

Use RG flow in 2d to wash out presentation-
dependence.  (Now thoroughly checked in 2d.)

A gerbe is defined by a quotient         ,
in which a subgroup of    acts trivially on    . 

[X/G]
G X



For the special case of stacks that are gerbes,
there are further issues.

Physically, why is such a gauge theory
any different at all

from a gauge theory in which one quotients by
the effectively-acting coset?

Answer:  nonperturbative effects

First issue:

A gerbe is defined by a G-gauge theory in which a 
subgroup of G acts trivially.



P
N−1 : U(1)A !→ Z2N

Here : U(1)A !→ Z2kN

Example:  Anomalous global U(1)’s

P
N−1

: < XN(d+1)−1 > = qd

Here : < XN(kd+1)−1 > = qd

Example:  A model correlation functions

Example:  quantum cohomology
P

N−1 : C[x]/(xN
− q)

Here : C[x]/(xkN
− q)

Different
physics

To illustrate, imagine an analogue of the CPN-1 model
but in which all chiral superfields have charge k 

instead of charge 1.



General argument:

Compact worldsheet:
To specify Higgs fields completely, need to specify 

what bundle they couple to.  

If the gauge field     
then    charge    implies 

  

Different bundles => different zero modes 
=> different anomalies => different physics 

∼ L

Φ Q

Φ ∈ Γ(L⊗Q)

For noncpt worldsheets, analogous argument exists.
(Distler, Plesser, Aspen 2004 & hepth/05......; Seiberg, Banks-Seiberg 2010)



Strings on gerbes, cont’d

So far, we’ve outlined how physics sees ineffective 
group actions (via nonperturbative effects)

-- so physics distinguishes gerbes from spaces.

Second issue:
The resulting theories violate `cluster decomposition’,

one of the foundational axioms of QFT.
How is that consistent?

Answer:
strings on gerbes = strings on disjoint 

unions of spaces



General decomposition 
conjecture

Consider [X/H ] where

1 −→ G −→ H −→ K −→ 1

and G acts trivially.

We now believe, for (2,2) CFT’s,

(together with some B field), where
Ĝ is the set of irreps of G

CFT([X/H ]) = CFT
([

(X × Ĝ)/K
])

stack
disjoint
union of
spaces



Decomposition 
conjecture

For banded gerbes, K acts trivially upon Ĝ

so the decomposition conjecture reduces to

where the B field is determined by the image of

CFT(G − gerbe on Y ) = CFT





∐

Ĝ

(Y, B)





H2(Y, Z(G))
Z(G)→U(1)

−→ H2(Y, U(1))

(Y = [X/K])



Basic point:
Maps into Zk gerbe over X

= maps into X of degree divisible by k

Path integral into disjoint union of k copies of X,
with variable B fields:

* if degree not divisible by k,
then proportional to sum over kth roots of unity

= 0   -- cancel out
* if degree is divisible by k,

then add instead of cancelling out

Result is same as path integral on gerbe.



A sheaf on a banded G-gerbe
is the same thing as

a twisted sheaf on the underlying space,
twisted by image of an element of H2(X,Z(G))

Quick consistency check:

This implies a decomposition of D-branes (~ sheaves),
which is precisely consistent with the decomposition 

conjecture.



Gromov-Witten prediction

Notice that there is a prediction here for Gromov-
Witten theory of gerbes:

GW of [X/H ]

should match

GW of
[

(X × Ĝ)/K
]

Checked by H-H Tseng, Y Jiang, et al in
0812.4477, 0905.2258, 0907.2087, 0912.3580, 1001.0435, 1004.1376, ....



GLSM’s

Example:  CP3[2,2]

Superpotential:

* mass terms for the    , away from locus             .φi {detA = 0}

* leaves just the p fields, of charge -2

* Z2 gerbe, hence double cover

Let’s now return to our analysis of GLSM’s.

r ! 0 :

∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj



The Landau-Ginzburg point:

{ det = 0 }CP1

Because we have a Z2 gerbe over CP1....

(r ! 0)



The Landau-Ginzburg point:

Double 
cover

{ det = 0 }CP1 Berry phase

Result:  branched double cover of CP1

(r ! 0)



where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, ‘06; R Donagi, ES, ‘07;
A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

So far:

The GLSM realizes:

CP3[2,2]
branched double cover

of CP1
Kahler

* novel realization of geometry
(as something other than CI)



Branched double cover of CP1 over deg 4 locus

XX

XX

XX

XX

So our GLSM for CP3[2,2] relates

T2 T2Kahler (no surprise)

CP1 CP1= T2



Next simplest example:

GLSM for CP5[2,2,2] = K3

At LG point, have a branched double cover of CP2,
branched over a degree 6 locus

 --- another K3

K3 K3Kahler

(no surprise)



So far:

* easy low-dimensional examples of hpd

* geometry realized at LG, 
but not as the critical locus of a superpotential.

For physics, this is already neat, but there are much 
more interesting examples yet....



The next example in the pattern is more interesting.

GLSM for CP7[2,2,2,2]    = CY 3-fold
At LG point,

naively, same analysis says
get branched double cover of CP3,

branched over degree 8 locus.

-- another CY
(Clemens’ octic double solid)

Here, different CY’s;
not even birational



However, the analysis that worked well in lower 
dimensions, hits a snag here:

The branched double cover is singular, 
but the GLSM is smooth at those singularities.

Hence, we’re not precisely getting a branched double 
cover; instead, we’re getting something slightly 

different.

We believe the GLSM is actually describing
a `noncommutative resolution’ of the branched double 

cover, as hpd implies in this case.



Check that we are seeing K’s noncomm’ resolution:

Here, K’s noncomm’ res’n is defined by (P3,B)
where B is the sheaf of even parts of Clifford 

algebras associated with the universal quadric over P3 
defined by the GLSM superpotential.

B is analogous to the structure sheaf; 
other sheaves are B-modules.

Physics?......



Physics picture of K’s noncomm’ space:

Matrix factorization for a quadratic superpotential: 
even though the bulk theory is massive, one still has 

D0-branes with a Clifford algebra structure.

Here: a `hybrid LG model’ fibered over P3,
gives sheaves of Clifford algebras (determined by the 

universal quadric / GLSM superpotential)
and modules thereof. 

So:  open string sector duplicates Kuznetsov’s def’n.

(Kapustin, Li)



This GLSM realizes:

CP7[2,2,2,2]
nc res’n of

branched double cover
of CP3

where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

Non-birational twisted derived equivalence

Summary so far:

Kahler

Physical realization of a nc resolution

Geometry realized differently than critical locus



More examples:

CI of
n quadrics in P2n-1

(possible nc res’n of) 
branched double 
cover of Pn-1,

branched over deg 2n 
locus 

Both sides CY

Kahler



More examples:

CI of 2 quadrics in the total space of

branched double cover of P1xP1xP1,
branched over deg (4,4,4) locus

* In fact, the GLSM has 8 Kahler phases,
4 of each of the above.

P
(

O(−1, 0)⊕2 ⊕O(0,−1)⊕2
)

−→ P
1 × P

1

Kahler



A non-CY example:

CI 2 quadrics
in P2g+1

branched double 
cover of P1,

over deg 2g+2
(= genus g curve) 

Here, r flows -- not a parameter.
Semiclassically, Kahler moduli space falls apart

into 2 chunks.
Positively
curved

Negatively
curved

r flows:

Homologically projective dual.

Kahler



Based on both these examples of abelian GLSM’s, 
realizing examples of hpd,

and also nonabelian GLSM’s realizing other examples 
of hpd,

it’s natural to conjecture that phases of GLSM’s are 
related by hpd (replacing `birational’).

This seems to be borne out by recent work, eg:
Ballard, Favero, Katzarkov, 1203.6643



D-brane probes of nc resolutions

Let’s now return to the branched double covers and 
nc resolutions thereof.

I’ll outline next some work-in-progress on D-brane 
probes of those nc resolutions.

(w/ N Addington, E Segal)

Idea:  `D-brane probe’ = roving skyscraper sheaf;
by studying spaces of such, can sometimes gain

insight into certain abstract CFT’s.



Setup:

To study D-brane probes at the LG points,
we’ll RG flow the GLSM a little bit,

to build an `intermediate’ Landau-Ginzburg model.
(D-brane probes = certain matrix fact’ns in LG)

Pn[2,2,..,2] (k intersections) is hpd to

LG on 

with superpotential

Tot
(

O(−1/2)n+1
−→ P

k−1
[2,2,···,2]

)

W =
∑

a

paQa(φ) =
∑

i,j

φiA
ij(p)φj



Our D-brane probes of this Landau-Ginzburg theory 
will consist of (sheafy) matrix factorizations:

E0

P

!!
E1

Q

""

In a NLSM, a D-brane probe is a skyscraper sheaf.
Here in LG, idea is that we want MF’s that RG flow to 

skyscraper sheaves.

That said, we want to probe nc res’ns (abstract CFT’s), 
for which this description is a bit too simple.

P ◦ Q, Q ◦ P = W End

where

up to a constant shift

(equivariant w.r.t. C*R)



Ox

!!
0

""

where x is any point.

Since W|x is constant, 0 = W|x up to a const shift,
hence skyscraper sheaves define MF’s. 

First pass at a possible D-brane probe:
(wrong, but usefully wrong)

This has the right `flavor’ to be pointlike, 
but we’re going to need a more systematic def’n....



When is a matrix factorization `pointlike’?

One necessary condition:  
contractible off a pointlike locus.

Example: X = C2

{x != 0}Sim’ly, contractible on

W = xy

O

x

!!
O

y

""
s, tThere exist maps      s.t. 1 = ys + tx

is contractible on             :{y != 0}

hence support lies on {x = y = 0}

t = 0namely s = y
−1,



When is a matrix factorization `pointlike’?

Demanding contractible off a point, 
gives set-theoretic pointlike support, 

but to distinguish fat points, need more.

To do this, compute Ext groups.
Say a matrix factorization is `homologically pointlike’ 

if has same Ext groups as a skyscraper sheaf:

dimExtk

MF(E , E) =

(

n

k

)



We’re interested in Landau-Ginzburg models on

Tot
(

O(−1/2)n+1
−→ P

k−1
[2,2,···,2]

)

W =
∑

a

paQa(φ) =
∑

i,j

φiA
ij(p)φjwith superpotential

For these theories, it can be shown that the
`pointlike’ matrix factorizations are of the form

OU

!!
0

""

where U is an isotropic subspace of a single fiber.



Let’s look at some examples, fiberwise, to understand 
what sorts of results these D-brane probes will give.

Example: Fiber [C2/Z2] W |F = xy,

Two distinct matrix factorizations:

D-brane probes see 2 pts over base => double cover

O{y=0}

!!
0

""
∼ O

x

##
O(1/2)

y

$$

and

O{x=0}

!!
0

""
∼ O

y

##
O(1/2)

x

$$



Example: Family [C2/Z2]x,y × Cα

W = x2
− α2y2

A =

[

1 0

0 −α2

]

detA = −α
2

Find branch locus:

α != 0When
there are 2 distinct matrix factorizations:

,

(O{x=αy} ⇀↽ 0) (O{x=−αy} ⇀↽ 0),

Over the branch locus           ,{α = 0} there is only one.

=> branched double cover



Global issues:

Over each point of the base, we’ve picked an isotropic 
subspace U of the fibers, to define our ptlike MF’s.

These choices can only be glued together up to an 
overall C* automorphism,

so globally there is a C* gerbe.

Physically this ambiguity corresponds to gauge 
transformation of the B field;

hence, characteristic class of the B field
should match that of the C* gerbe.



So far:

When the LG model flows in the IR to a smooth 
branched double cover,

D-brane probes see that branched double cover
(and even the cohomology class of the B field).



Case of an nc resolution:

Toy model: [C2/Z2]x,y × C
3

a,b,c

W = ax2
+ bxy + cy2

A =

[

a b/2

b/2 c

]

Branch locus:
detA ∝ b

2
− 4ac ≡ ∆

Generically on C3, have 2 MF’s, quasi-iso to
OF

2ax+by+
√

∆y

!!
OF (1/2)

2ax+by−
√

∆y

"" OF

2ax+by−
√

∆y

!!
OF (1/2)

2ax+by+
√

∆y

""

,

Gen’ly on branch locus, become a single MF,
but something special happens at                   ....{a = b = c = 0}



Case of an nc resolution, cont’d:

Toy model: [C2/Z2]x,y × C
3

a,b,c

W = ax2
+ bxy + cy2

{a = b = c = 0}At the point

OF

0

!!
OF (1/2)

φ

"" OF

φ

!!
OF (1/2)

0

""

there are 2 families of ptlike MF’s:

where    is any linear comb’ of x, y (up to scale)φ

* 2 small resolutions (stability picks one)



I’m glossing over details,
but the take-away point is that for

nc resolutions 
(naively, singular branched double covers),

D-brane probes see small resolutions.

Often these small resolutions will be non-Kahler,
and hence not Calabi-Yau.

(closed string geometry    probe geometry;
also true in eg orbifolds)

!=



Summary:

* physical realization of hpd

CI quadrics (nc res’n of) 
branched double cover

as phases of abelian GLSM

* detour through physics of gerbes

* D-brane probes


