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My talk today concerns the application of decomposition,
a new notion in quantum field theory (QFT),
to resolution of anomalies as proposed in Wang-Wen-Witten.

Briefly, decomposition is the observation that some QFTs
are secretly equivalent to
sums of other QFTs, known as ‘universes.

When this happens, we say the QF T "decomposes.
Decomposition of the QFT can be applied to give insight
INto 1tS properties.



Why are the constituent QFTs called "universes’ ?

I'm primarily interested in quantum field theories in 1+1 dimensions,
because they provide analogues of quantum mechanics for string theory.

To get real-world 4d physics from the 10d physics of string theory,
we roll up or ‘compactify’ the 10 dimensions on a compact 6d space.
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,4
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If | compactify a string on a disjoint union of 6d spaces,
or work with a stringy quantum mechanical system describing a disjoint union,
as arises in decomposition,
then at low energies, one sees multiple four-dimensional universes,
each with its own separate metric and graviton,
which are not mutually interacting.

For this reason, the summands of decomposition are called "universes.



What does it mean for one QFT to be a sum of other QFTS?

(Hellerman et al '06)

1) Existence of projection operators

The theory contains topological operators 11; such that
Correlation functions: |

<@1@m> — Z<Hz@1@m> — Z<(Hz@1>(nl@m)> — Z<51@m>l

l

2) Partition functions decompose

7 = Z exp(—pH) = ZZZ- = Z ZGXP(—ﬂHi)

states

(on a connected spacetime)

This reflects a (higher-form) symmetry....



There are lots of examples of decomposition !

Orbifolds: we’ll see many examples later today. (T Pantev, ES "05; D Robbins, ES, T Vandermeulen "21)
If K C center(I') C I' acts trivially, then [X/T] = H [X/(I'/K)],
irreps K

Gauge theories:
(Hellerman

» 2d U(1) gauge theory with nonmin’ charges = sum of U(1) theories w/ min charges .. ;¢
* 2d G gauge theory w/ center-invt matter = sum of G/Z(G) theories w/ discrete theta  (ES '14)

Ex: SU(2) theory (w/ center-invt matter) = SO(3),, H SO(3)_ (w/ same matter)

* 2d pure G Yang-Mills = sum of invertibles indexed by irreps of G (Nguyen, Tanizaki, Unsal "21)
(U@1): Cherman, Jacobson "20)

Ex: pure SU(2) = H (sigma model on pt)
irreps SU(2)
* 4d Yang-Mills w/ restriction to instantons of deg’ divisible by k (Tanizaki, Unsal '19)

= union of ordinary 4d Yang-Mills w/ different & angles

More examples ! ....



There are lots of examples of decomposition !

More examples:

TFTs: 2d unitary TFTs w/ semisimple local operator algebras decompose to invertibles
Examp]es; (Implicit in Durhuus, Jonsson '93; Moore, Segal '06)

(Also: Komargodski et al 20, Huang et al 2110.029358)

 2d abelian BF theory at level k = disjoint union of k invertibles (sigma models on pts)

o . . . . (Hellerman, ES, 1012.5990)
* 2d G/G model at level k = disjoint union of invertible theories

' (K dski et al
as many as integrable reps of the Kac-Moody algebra oA e

2008.07567)

* 2d Dijkgraaf-Witten = sum of invertible theories, as many as irreps
(In fact, is a special case of orbifolds discussed later in this talk.)

Sigma models on gerbes = disjoint union of sigma models on spaces w/ B fields

Solves tech issue w/ cluster decomposition. (T Pantev, ES “05)

What do these examples have in common?....



What do the examples have in common?
When is one QFT a sum of other QFTs ?

Answer: in d spacetime dimensions,
a theory decomposes when it has a (d — 1)-form symmetry.

(2d: Hellerman et al "06;
d>2: Tanizaki-Unsal ‘19, Cherman-Jacobson 20)

Decomposition & higher-form symmetries go hand-in-hand.

Today I'm interested in the case d = 2,
so get a decompositionifa (d — 1) = 1-form symmetry is present.

What is a 1-form symmetry?



What is a (linearly realized) one-form symmetry in 2d ?

For this talk, intuitively, this will be a "group’ that exchanges nonperturbative sectors.

Example: G gauge theory or orbifold in which matter/fields invariant under K C G

(Technically, to talk about a 1-form symmetry, we assume K abelian,
but decompositions exist more generally.)

Then, at least for K central, nonperturbative sectors are invariant under
(G — bundle) — (G — bundle) ® (K — bundle)
A— A+ A

(Technically,
IS a 2-group,
only weakly
associative.)

At least when K central, this is the action of the group’ of K-bundles.
That group is denoted BK or K1)

One-form symmetries can also be seen in algebra of topological local operators,

(Komargodski et al 20,

where they are often realized nonlinearly (eg 2d TFTS).  Huanget al2n0.02058



Decomposition # spontaneous symmetry breaking

SSB: Decomposition:

Superselection sectors: Universes:
» separated by dynamical domain walls » separated by nondynamical domain walls
. only genuinely disjoint in IR . disjoint at all energy scales
. only one overall QFT . multiple different QFTs present
Prototype: Prototype:

BROKEN SYMMETRY
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(see e.g. Tanizaki-Unsal 1912.01033)




Decomposition # spontaneous symmetry breaking

Note that they both have an order parameter, so be careful when distinguishing.

Ex: sigma model on disjoint union of n spaces (‘universes’)

Have topological projectors I1,

Have order parameter X X Z ETL, &
i=0
Vev in ith universe: ILX) = (£TL) = &
So, could be described as spontaneously broken phase
— but that clearly does not capture the physics.



Sums vs products

Note: today I'm talking about sums of QFTs, not products.

Example of product: QFT of 2 free bosons = product of QFTs of each boson separately.
— that’s not a decomposition.

Product:
States of A @ B are of the form |y,) ® |yp)

Lagrangian L(A ® B) = L(A) + L(B)
Partition function Z(A ® B) = Z(A) Z(B)

Sum / disjoint union (as in decomposition):

States of AHB = |yy) ® |yy)

Partition function Z (AHB) = Z(A) + Z(B)

(on connected spacetime)



The particular QFTs I'm interested in today, which have a decomposition,
are (1+1)-dimensional theories with global 1-form symmetries

of the following form: (Pantev, ES "05;

, o . Hellerman et al '06)
* Gauge theory or orbifold w/ trivially-acting subgroup

(<-> non-complete charge spectrum)
* Theory w/ restriction on instantons

* Sigma models on gerbes
- fiber bundles with fibers = “groups’ of 1-form symmetries G = BG

* Algebra of topological local operators
Decomposition (into ‘universes’) often relates these pictures.

Examples:

restriction on instantons = “multiverse interference effect”

1-form symmetry of QFT = translation symmetry along fibers of gerbe

trivial group action b/c BG = [point/ G}



Example: Decomposition in 2d gauge theories (Hellerman et al ’06)

Gauge theory version:

S’pose have G—gauge theory, G semisimple, with finite X C G acting trivially.

For simplicity, assume K is in the center. Has BK 1-form symmetry.

So far, this sounds like just one QFTT.

However, I'll outline how, from another perspective,
QFTs of this form are also each
a disjoint union of other QFTs;
they “decompose.”

DUCK

3
RABBIT




Example: Decomposition in 2d gauge theories (Hellerman et al "06)
Gauge theory version:
S’pose have G—gauge theory, G semisimple, with finite X C G acting trivially.

For simplicity, assume K is in the center. Has BK 1-form symmetry.

Claim this theory decomposes.
Where are the projection operators?
Math understanding:

Briefly, the projection operators (twist fields, Gukov-Witten) correspond to
elements of the center of the group algebra C[K].

Existence of those projectors (idempotents), forming a basis for the center,
is ultimately a consequence of Wedderburn’s theorem.

Universes <€ [rreducible representations of K

Partition functions & relation of decomp’ to restrictions on instantons....



Example: Decomposition in 2d gauge theories (Hellerman et al "06)
Gauge theory version:
S’pose have G—gauge theory, G semisimple, with finite X C G acting trivially.

For simplicity, assume K is in the center. Has BK 1-form symmetry.

Statement of decomposition (in this example):

QFT(G—gauge theory) = H QFT (G/K—gauge theory w/ discrete theta angles)

char’s K
Example: pure SU(2) gauge theory = sum SO(3), + SO(3)_ pure gauge theories

where = denote discrete theta angles (w,)

Perturbatively, the SU(2), SO(3) . theories are identical
— differences are all nonperturbative.



Example: Decomposition in 2d gauge theories (Hellerman et al ’06)

Gauge theory version:

S’pose have G—gauge theory, G semisimple, with finite X C G acting trivially.
For simplicity, assume K is in the center. Has BK 1-form symmetry.

Statement of decomposition (in this example):

QFT(G—gauge theory) = H QFT (G/K—gauge theory w/ discrete theta angles)

char’s K
Example: pure SU(2) gauge theory = sum SO(3), + SO(3)_ pure gauge theories

where = denote discrete theta angles (w,)

SU(2) instantons (bundles) C SO(3) instantons (bundles)

The discrete theta angles weight the non-SU(2) SO(3) instantons so as to
cancel out of the partition function of the disjoint union.

Summing over the SO(3) theories projects out some instantons, giving the SU(2) theory.



Example: Decomposition in 2d gauge theories (Hellerman et al ’06)

Gauge theory version:

S’pose have G—gauge theory, G semisimple, with finite X C G acting trivially.
For simplicity, assume K is in the center. Has BK 1-form symmetry.

Statement of decomposition (in this example):

QFT(G—gauge theory) = H QFT (G/K—gauge theory w/ discrete theta angles)

char’s K

Formally, the partition function of the disjoint union can be written icion operator

A

bc K D

Z= / (DA exp(—5S) exp |6 / wa(A)| = / DA exp(—5) [ 3 exp |6 / wy(A)

1Sjoint union 0cK -

where we have moved the summation inside the integral.

(“multiverse interference” cancels out some sectors)




Example: Decomposition in 2d gauge theories

2

0cK

DA exp(
D

~S)exp [0 [wn(a)

1Sjoint union

(Hellerman et al '06)

projection operator

/[DA] exp(—95) Z exp

0c K

o




Example: Decomposition in 2d gauge theories (Hellerman et al ’06)

One effect is a projection on nonperturbatlve SeCtors: projection operator

> /[DA] exp(—5) exp H/wz(A) — /[DA] exp(—S) | Y exp _H/wQ(A)_

A

veK Disjoint union PEK - )
Disjoint union of - "One’ QFT with a restriction on
several QFTs / universes nonperturbative sectors

— ‘multiverse interference’

Schematically,
two theories combine to form a distinct third:

universe universe
SO@3).) (5O(3)_)

multiverse interference effect
SU(2))



Before going on, let’s quickly check in pure nonsusy SU(2) Yang-Mills in 2d.

The partition function Z, on a Riemann surface of genus g, is

(Migdal, Rusakov)

Z(SU(2)) = ) (dim R)* 9 exp(—AC3(R)) Sum over all SU(2) reps
R

Z(SO(3)4+) = » (dimR)* 9 exp(—AC,(R)) Sum over all SO(3) reps
R

(Tachikawa '13)

Z(SO(3)_) = Z(dim R)2~29 exp(— AC,(R)) Sum over all SU(2) reps
R that are not SO(3) reps

Result: Z(SU(Q)) — Z(SO(3)+) —I—Z(SO(3)_) as expected,

Easy to generalize....



Example:

Pure nonsusy 2d G Yang-Mills, decomposed along center symmetry

More generally, it G has center K,

a pure 2d nonsusy G—gauge theory has BK symmetry,
and decomposes as

G =[] (G/K),

0cK

where the @ are discrete theta angles,

coupling to analogues of Stiefel-Whitney classes.

Hilbert spaces...



Example:

Pure nonsusy 2d G Yang-Mills, decomposed along center symmetry

Hilbert spaces:

The Hilbert space of a pure G YM theory is #Z(G) = L2 class tf'nson G

These decompose under action of center:  f(g2) = 0(2)f(g)

# ((G/IK)p) = L2 class f'ns on G such that f(gz) = 0(z)f(g)

Asaresult, #Z(G) = Z?/ ((G/K)y)

ocK

which is consistent with decomposition: G = [] (G/K),
heEK



Example:

Pure nonsusy 2d G Yang-Mills, decomposed along center symmetry

So far I've described one version of decomposition for pure nonsusy 2d Yang-Mills,
which uses center one-form symmetries.

There exists a more extreme decomposition,
into invertible field theories indexed by irreps of G

(Nguyen-Tachikawa-Unsal '21).

Schematically, 2d pure G Yang-Mills = H (sigma model on point)
irreps G



(1+1)d unitary semisimple topological & near-topological field theories

These are all the same as (decompose into) disjoint unions of invertible field theories
(= QFT(point) w/ dilaton shifts).

Formal reason: semisimplicity of the Frobenius algebra,
which implies not only that projectors exist,
but that all local operators are linear comb’s of projectors.

Ex: 2d Dijkgraaf-Witten

2d DW = [point/G] , = Hpoint (with dilaton shifts)

R

Ex: Abelian BF at level k (Hellerman, ES, 1012.5090)
Wilson lines =

Ex: G/G model (Komargodski et al 2008.07567) defects joining universes

Ex: 2d pure Yang-Mills (Nguyen, Tanizaki, Unsal 2104.01824)

All cases: (1+1)d unitary TQFT = H Inv(In(dim R)) (in top’ limit)
R



Another feature these theories all have in common:
violation of cluster decomposition

As Weinberg taught us years ago,
restricting instantons violates cluster decomposition,
and as we’ll see, instanton restriction is a common feature in these theories.

A disjoint union of QFTs also violates cluster decomposition,
but in a trivially controllable fashion.

Lesson: restricting instantons OK,
so long as one has a disjoint union.

(Hellerman, Henriques, T Pantev, ES, M Ando, hep-th/0606034)



Since 2005, decomposition has been checked in many examples in many ways. Examples:

* GLSM’s: mirrors, quantum cohomology rings (Coulomb branch)
(T Pantev, ES '05; Gu et al '18-'20)

* Orbifolds: partition f’'ns, massless spectra, elliptic genera (T Pantev, ES 'os; Robbins et al 21)
* Open strings, K theory (Hellerman et al hep-th/0606034)
* Susy gauge theories w/ localization (ES 1404.3980)

* Nonsusy pure Yang-Mills ala Migdal  (ES14; Nguyen, Tanizaki, Unsal "21)
o AdjOint QCD, (Komargodski et al 20) * Numerical checks (Honda et al "21)
* Versions in d-dim’l theories w/ (d-1)-form symmetries (Tanizaki, Unsal, '19; Cherman, Jacobson "20)

Applications include:

» Sigma models with target stacks & gerbes (T Pantev, ES "05)
* Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, etc starting '08)

* Nonperturbative constructions of geometries in GLSMs  (Caldararu et al 0709.3855, Hori 1, ...

* Elliptic genera (Eager et al 20) * Anomalies in orbifolds (Robbins et al "21) -~ Romo et al 21

Next, I'll look at application to anomalies....



Fun features of decomposition:

Multiverse interference effects

Ex: 2d SU(2) gauge theory w/ center-invariant matter = SO(3), + SO(3)_

Summing over the two universes (SO(3) gauge theories)
cancels out SO(3) bundles which don’t arise from SU(2).

Wilson lines = defects between universes

WP
Ex: 2d abelian BF theory at level k
1 k—1 . m m +p
Projectors: 11, = —Z c"o, & = exp(2zi/k)
k n=0
Clock-shift commutation relations: O W, = ¢ W 0, <« 1,W, = W,II,., 104«
Wormbholes between universes (GLSMs: Caldararu et al, 0709.3855)

Ex: U(1) susy gauge theory in 2d: 2 chirals p charge 2, 4 chirals ¢ charge -1, W = Z ¢i¢jA"j(p)

-
Describes double cover of P! (sheets are universes), linked over locus where ¢ massless — Euclidean wormhole



Let’s switch gears now.

So far, I've given a broad overview of decomposition.

Next, I'm going to discuss a specific application in orbifolds,
namely to Wang-Wen-Witten’s work on anomaly resolution.

Not only will this be an excellent example of a use of decomposition,
but we’ll also see explicitly in concrete examples how decomposition works.



My goal for the rest of this talk is to apply decomposition
to an anomaly resolution procedure in orbifolds (Wang-Wen-Witten '17).

Briefly, the idea of www is that if a given orbifold [ X/G] is ill-defined because
of an anomaly (which obstructs the gauging),

then replace G with a larger group I whose action is anomaly-free.

] — K — 1 — G — 1

The larger group I has a subgroup K C I that acts trivially on X,
and G =1/K.

However, orbifolds with trivially-acting subgroups are standard examples in which
decomposition arises (in 1+1 dimensions), so one expects decomposition is relevant here.

(Hellerman et al '06)



Plan for the remainder of the talk:

* Describe decomposition in orbifolds with trivially-acting subgroups,

o Add a new modular invariant phase: “quantum symmetry,” in H'(G, H'(K, U(1))),

» Review the anomaly-resolution procedure of (Wang-Wen-Witten '17),

* and apply decomposition to that procedure.

What we’ll find is that, in (1+1)-dimensions,

QFT(“[X/G])"=1X/T']3) = QFT(copies and covers of [ X/(nonanomalous subgp of G] )

as a consequence of decomposition.
This gives a simple understanding of why the www procedure works,
as well as of the result.



Decomposition in orbifolds in (1+1) dimensions

Let’s begin by discussing ordinary orbifolds w/o extra phases.
(We’ll need a more complicated version for anomaly resolution,
but let’s start here, and build up.)

Consider an orbifold [ X/I'], where K C I acts trivially.
]l - K—T — G — 1 (K, I, G finite)

For simplicity, assume K central.

Decomposition implies (Hellerman et al '06)

QFT ([X/T]) = QFT(H [X/G]é))
R

K = set of iso classes of irreps of K

@ = phases called “discrete torsion”.
= Image (H*(G, K) =5 HX(G, U(1)))



Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I '], where K C I acts trivially.

] — K— T — G — 1 (assume K central)

Decomposition implies

Ve

(Hellerman et al '06)
K )

QFT ([X/T]) = QFT(H X/G] .

A\

K = set of iso classes of irreps of K

Projectors: For R &€ I%, we have the projector

dim R ,
1, = Z : Z )(Ri(k_l)fk (Wedderburn’s theorem for

i | K| ox center of group algebra)

R




Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I '], where K C I acts trivially.

] — K— T — G — 1 (assume K central)

Decomposition implies

QFT ([X/T]) = QFT(H X/G] .

A

) (Hellerman et al '06)
K

A\

K = set of iso classes of irreps of K

Boundaries also decompose:

The boundary can have e.g. fermions on which I acts.

Although K C I acts trivially on the bulk d.o.f.,
it can act nontrivially on boundary d.o.f.

To compute which universe a given boundary lies in,
restrict the I action to K, at which point it becomes a representation of K.



To make this more concrete, let’s walk through an example,
where everything can be made completely explicit.

Example: Orbifold [X/D4| in which the Z, center acts trivially.

T Pantev, ES’
— has BZ, (1-form) symmetry (T Pantev, ES o5)

Dy/Zy = Zy X Zo so this is closely related to a Z, x Z, orbifold

Decomposition predicts

QFT (IX/D,]) = QFT (IX/ZyX Zylyq0) | | QFT (X125 % Z514,.)

Let’s check this explicitly....



Example, contd
QFT (IX/D,]) = QFT ([X/ZyX Zylyo40) | | QFT (1X/Z, % Z,14,.)

At the level of operators, one reason for this is that the theory admits projection operators:

Let Z denote the (dim 0) twist field associated to the trivially-acting Z,:
Z obeys 2% = 1.

Using that relation, we form projection operators:

[I, = —(1x7%) ( = specialization of formula
N 2 given earlier)

13 =11, [,I_=0 M, +11_=1

-+ —_—

Next: compare partition functions....



Example, contd

o o o X D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Take the (1+1)-dim’l spacetime to be 72,

The partition function of any orbifold [X/T"] on T7 is

1
o ([X/T]) = T Z Lo where Z,, = (g . —> X)
h

gh=hg

(“twisted sectors”)

(Think of Z, ; as sigma model to X with branch cuts g, .)

We're going to see that

Zr (IXID)]) = Zp (X1 Zy X Z,]) + Zpa2 ([X/Zy X Z,]4, )



Example, contd

" - X/D
Compute the partition function of [X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

|
Zp: (IX/D,]) = 2 Zu  where Z,, = (9 N — X
| Dy | 5
g.heD,, gh=hg ,

Since z acts trivially,

Z 4.1 is symmetric under multiplication by z

2=/l ~ -l - M -~
Z h

‘1 hz ‘I hz

<

This is the BZ5 1-form symmetry.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
Zp: (IX/D,]) = 2 Zu  where Z,, = (9 N — X
| D, | &>
g,heD,, gh=hg ,

Each D, twisted sector (£, ;) that appears is the same asa D,/ Z, = Z, X Z, twisted sector,

appearing with multiplicity | Z, |* = 4,
except for the sectors @ . a . 2 . which do not appear.
b ab Py

Restriction on nonperturbative sectors



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp ([X/1Z,x Z,]) — (some twisted sectors))

Different theory than Z, X Z, orbifold

Physics knows when we gauge even a trivially-acting group!



Example, contd

o - X/D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Zr ([X/ID,]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp (X/Z, % Z,]) — (some twisted sectors))

1
Fact: given any one partition function  Zp ([X/G]) = Yl Z 29
gh=hg

we can multiply in SL(2,Z)-invariant phases €(g, h)

to get another consistent partition function (for a different theory)

|
7 = Yl D e(g.h)Z,,

gh=hg

There is a universal choice of such phases, determined by elements of H*(G, U(1))

This is called “discrete torsion.”



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp ([X/1Z,x Z,]) — (some twisted sectors))

Ina Z, X Z, orbifold, discrete torsion € H*(Z, X Z,, U(1)) =

and the nontrivial element acts as a sign on the twisted sectors

. . . the same sectors which

were omitted above.

Zr: ([XIDy]) = Zp ([X/sz 2o wioar) + Zr ([X1Zy X Z5)4, )

Adding the universes projects out some sectors — interference effect.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

2 (Z2 ([X/1Z, % Z,]) — (some twisted sectors))

Discrete torsion is H=(Zo x Zo,U(1)) = Zs,

and acts as a sign on the twisted sectors

- . = . A . which were omitted above.
b ab ab

Zr (IXIDy)) = Zp ([XIZy X Zy)wpoar) + Zp2 ([X1Zy X Z5]4, )

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/Z,x Z,)\s0a.) | | QFT (IX/2,% Z,1,,)



Example, contd
Zr ([XIDg]) = Zpo ([X1Zy X Zylgjoar) + Zi2 ([X1Zy X Z5)4, )

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/Z;X Z)lysoa) | | QFT (IX/Z,x 2,14,

The computation above demonstrated that the partition function on 72
has the form predicted by decomposition.
The same is also true of partition functions at higher genus
— just more combinatorics.
(see hep-th/0606034, section 5.2 for details)

Only slightly novel aspect: in gen’l, one finds dilaton shifts,
which mostly I'll suppress in this talk.



Example, contd

Massless states of [ X/D,] for X = T0 (T Panteyv, ES "03)

Massless states of [T°/D,]  If we didn’t know about decomposition,

5 2 5 the 2’s in the corners would be a problem...
O 54 O A big problem!
2 54 54 2 . o
O 54 O They signal a violation of
O O cluster decomposition,
2 . .
the same axiom that’s violated
/ by restricting instantons.

Signals mult’ components / C . " -
- " Ordinarily, I'd assume that the computation st

cluster decomp’ violation was wrong.

However, if you don’t include them, violate multiloop factorization (target unitarity). Fix?
(T Pantey, ES "05)



Example, contd

Massless states of [ X/D,] for X = T0 (T Panteyv, ES "03)

Massless states of [T°/D,]

2
O O
O 54 O A big problem!
2 54 54 2 | o
O 54 O They signal a violation of
0O 0 cluster decomposition,
2 . .
the same axiom that’s violated
/ by restricting instantons.

Signals mult’ components / D . e -
) " Ordinarily, I'd assume that the computation F st

cluster decomp’ violation was wrong.

Decomposition saves the day....



Example, contd

Massless states of [ X/D,] for X = T0 (T Panteyv, ES "03)

Massless states of [T°/D,]

2 1 1
O O O O O O
O 54 O O 5§51 O O 3 O
2 54 54 2 = 1 3 3 1 + 1 5§51 51 1
O 54 O O 51 O O 3 O
O O O O O O
2 1 1
/ spectrum of Zy x Zy orb’ spectrum of Zy x Zy orb’
Signals mult’ components / w/o d.t w/ d.t

cluster decomp’ violation
matching the prediction of decomposition

CFT ([X/D4]) = CFT ([X/Zs X Zslw/oas.) || CFT ([X/Zs x Zs]as.)



This computation was not a one-off, but in fact verifies a prediction in Hellerman et al '06
regarding QFTs in (1+1)-dims with 1-form symmetry.

Another example: Triv’ly acting subgroup not in center

For this, we need to use a more general statement of decomposition.

Consider an orbifold [ X/I'], where K C I acts trivially.

]l — K —1 — G —1 (Kneednotbecentral) (K, I, G finite)
Decomposition implies

[Xxk
QFT ([X/T]) = QFT

G

] (Hellerman et al '06)
a)

A\

K = set of iso classes of irreps of K
G acts on K: p(k) — p(hkh™") forh eTaliftofg € G

@ = discrete torsion



This computation was not a one-off, but in fact verifies a prediction in Hellerman et al '06
regarding QFTs in (1+1)-dims with 1-form symmetry.

Another example: Triv’ly acting subgroup not in center

Consider [X/H], H = eight-element gp of unit quaternions,
where (i) = Z, C H acts trivially.

Decomposition predicts (Hellerman et al '06)
QFT ([X/T']) = QFT [X . K] where K = irreps of K
G - @ = discrete torsion

on universes

Here, G = H/(i) = Z, acts nontriv’ly on K = Z,, interchanging 2 elements,

so  QFT([X/H]) = QFT (XH[X/ZZ] H[X/Zz])

(Hellerman et al,
hep-th/0606034,
— different universes; X # [X/Z,] sect. 5.4)

— easily checked



Another example: Triv’ly acting subgroup not in center
Consider [ X/H], H = eight-element gp of unit quaternions,
where (i) = Z, C H acts trivially.

(Hellerman et al '06)
Decomposition predicts

QFT ([X/H]) = QFT (XH[X/Zz] H[X/Zz])
Write = {x1,xixj, £k}

Dimension-zero twist fields: 1, o_;, of;

obeying 031 = 1, 0_101;1 = Oy U[zi] — (1/2)<1 +6—1)

Projectors: 1 1
I = 4 (140, %20p), II, = 2 (1=0m)
(project onto [X/Z,]) (projects onto X)

which are easily checked to be idempotents.  Partition functions....



Another example: Triv’ly acting subgroup not in center

Consider [ X/H], H = eight-element gp of unit quaternions,
where (i) = Z, C H acts trivially.

(Hellerman et al '06)
Decomposition predicts

QFT ([X/H]) = QFT (X H x/2,1 [ ] [X/Zz])

Write = {xl,xi,£j, £k}

. . D
Partition function on 7~: Denote generator of H/(i) = Z, by &

Zr: ([X/H]) = Z Lop = “]:” ((16) 1. + (8) 1. + (3) 4’. )
1 3 S

gh hg

= 2712 ([X/Z,)) + Zp2(X) Works!

Higher genus partition functions also work (w/ dilaton shifts), see hep-th/0606034 sect 5.4.



Another example: Triv’ly acting subgroup not in center

Consider [ X/H], H = eight-element gp of unit quaternions,
where (i) = Z, C H acts trivially.

(Hellerman et al '06)
Decomposition predicts

QFT ([X/H]) = QFT (X [Txiza ] [X/Zz])

One-form symmetries:

Recall this theory has dimension-zero twist fields: 1, o_;, of;
obeying 0%1 = 1, o_j017 = op5 0[21.] = (1/2)(1 + 0_1)
This describes a noninvertible one-form symmetry,
which includes a BZ, as a subset: 6=, = 1.



Let’s get back on track.

My goal today is to talk about anomaly resolution in 1+1 dimensions.

Decomposition will play a vital role in understanding how the anomalies are resolved.

Recall the idea of www is that given an anomalous (ill-defined) [ X/ G],
replace G by a larger finite group I obeying certain properties,

] — K — 1 — G — 1,

and add phases.

Because I has a subgroup K that acts trivially,
orbifolds [ X/I'] will decompose,
into copies & covers of [ X/G].

However, just getting copies of [ X/G] won't help.
We also need to add certain new phases, which I will start to describe next....



Decomposition in orbifolds in (1+1)-dims with discrete torsion
(Robbins et al '21)

Consider [ X/I'] , where K C I" acts trivially, ® € H*(T, U(1)), and define G = T'/K.
l — K—T - G — 1 (assume central)

H*(G, U(1)) =5 (Ker* ¢ HXT, U(1))) £ H'(G,H'(K, U(1)))

Cases: - Hom @)
1) If i*w # 0, X x K
QFT ([X/T'],) = QFT [ G w]
K ) — Sy
2) If *w =0 and f(w) # 0, X x Coker B(w)
QFT ([X/T1],) = QFT Ker f(w)

3 It *w = 0and f(w) = 0, then w = 7*w forw € H*(G, U(1)) and

QFT ([X/T1,) = QFT[[XZK] ]

Projectors....



Decomposition in orbifolds in (1+1)-dims with discrete torsion
(Robbins et al '21)

Consider [ X/I'] , where K C I" acts trivially, ® € H*(T, U(1)), and define G = T'/K.
l — K—T - G — 1 (assume central)

H*(G, U(1)) =5 (Ker* ¢ HXT, U(1))) £ H'(G,H'(K, U(1)))

Projectors:

ForR = @, R, R, € K related by the action of G, we have

dim R. )(R.(k_l)
H — l l
R =2 K] 2 ok, k1) ¢

l kekK




Decomposition in orbifolds in (1+1)-dims with discrete torsion

An important special case: [point/G]

Decomposition implies QFT([point/G]a)) = HQFT(point)

(as many copies as w-proj’ irreps of G)

up to overall dilaton shifts.

In math, this is a gen’l property of the center of the (twisted) group algebra C[G]
it has a basis corresponding to twist fields,
and another basis of projectors.

QFT(point) is an example of an “invertible’ field theory.

This is also two-dimensional Dijkgraaf-Witten theory, a 2d unitary TQFT....



Decomposition in orbifolds in (1+1)-dims with discrete torsion

An important special case: [point/G], = (1i+1)d Dijkgraat-Witten TQFT

Decomposition implies QFT([point/G]a)) = HQFT(point)

On a genus g Riemann surface,

1 -1
\G\g Zé(alblal b la,b,- dy by )eg(ai,bl-)

>2—2g

/

(as many copies as w-proj’ irreps of G)

As a consistency check, consider the partition function.

2

dim R

V|G|

= theory of as many points as (w-proj’) irreps,

each with dilaton = In(dim R/4/ | G| )

Works!



To understand Wang-Wen-Witten, we need a different set of phases,
called “quantum symmetries,”
which are analogous to, but distinct from, discrete torsion.



New modular invariant phases: quantum symmetries (Tachikawa "17;
Robbins et al "21)

A quantum symmetry is a modular-invariant phase in orbifolds
in which a subgroup K acts trivially.

Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

[t acts on twisted sector states by phases. Schematically:
where

<[ - s (<D

n ’ B € H(G,H\(K, U(1)))

These generalize the old notion of "quantum symmetries’ in the orbifolds literature;
those old quantum symmetries were determined by discrete torsion,
but the ones we need for anomaly resolution, aren't....



New modular invariant phases: quantum symmetries

These are modular invariant — analogous to (but different from) discrete torsion.

Work on T?. Geometrically, this admits ‘Dehn twists’

Under such a twist,

S
chd - -
Discrete torsion: e(g°h®, g°h?) = e(g, h)

Quantum symmetry: ) e(g°k{h’ky, gkihks) = ) e(gky. hky)
klakQEK kl,kZEK



New modular invariant phases: quantum symmetries (Tachikawa 17

Robbins et al '21)
A quantum symmetry is a modular-invariant phase in orbifolds

in which a subgroup K acts trivially.
Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

Those quantum symmetries in the image of f are equivalent to discrete torsion:

(Kerl* c HA(T, U(l))) ﬁ> HYG,H (K, U(1))) i H3(G, U(l)) (Hochschild '77)

Example: old-fashioned quantum symmetry in orbifolds: B = f(discrete torsion)
For purposes of resolving anomalies,
we need B € H'(G, H'(K, U(1))) such that d,B # 0.
These cases are not in im f3, so not determined by discrete torsion @ € H* (", U(1)).

They’re also of independent interest, beyond anomaly resolution.

How does decomposition work with such phases?....



Decomposition in the presence of a quantum symmetry

Decomposition:

QFT ([X/T'l;) = QFT[[XXCOkerB]] = QFT| [ [X/KerB]

Ker B

A

Coker B
where B € H'(G,H' (K, U(1))) = Hom(G, K)

This is more or less uniquely determined by consistency with previous results.
Recall for discrete torsion @ € Ker 1* ¢ H*([I, U(1)), with B(w) # 0,

QFT(IXIT1,) = QFT [Xx Cokerﬁ(a))]

Ker f(w)

The result at top needs to include this as a special case, and it does.

Also, checked in (lots of) examples. Let’s move on....



How do www relate quantum symmetries to anomalies?

Fact: anomalies in a finite G gauge theory in (n + 1) dimensions
are classified by H" (G, U(1)).

(Reasoning from topological defect lines’)

We're going to pick a quantum symmetry B such that d,B = anomaly:

(Kerl* c H(T, U(l))) ﬁ) HYG,H (K, U(1))) 2 H(G, U(1)) (Hochschild '77)

Now we're ready to walk through the www anomaly resolution procedure....



Application to anomalies

Suppose we have an orbifold [ X/G] in 1+1d which is anomalous,
anomaly ae H 3(G, U (1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K — I’ — G —— 1 (assumed central)

where [ is chosen so that 7*a € H>(T, U(1)) is trivial.

The idea is then to replace [ X/G] with [ X/17],
but, need to describe how I acts on X.

If K acts triv’ly on X, and we do nothing else,
then we have accomplished nothing:

decomposition = QFT ([X/I']) = HQFT ([ X/G)) — still anomalous
K

Fix by adding quantum symmetry....



Application to anomalies

Suppose we have an orbifold [ X/G] in 1+1d which is anomalous,
anomaly ae H 3(G, U (1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K — I’ — G —— 1 (assumed central)

2) Turn on quantum symmetry B € H'(G, H'(K, U(1)))
chosen so that d,B = a. This implies 7*a € H (T, U(1)) is trivial.
2 p 1 1 d 3 SR
(Kerl* C H-T, U(l))) — H'(G,H' (K,U(1)) — H(G,U(1)) (Hochschild '77)

K acts trivially on X, but nontrivially on twisted sector states via B

These two together — extension I plus B — resolve anomaly.
Decomposition explains how....



Application to anomaly resolution

Procedure: replace anomalous [ X/G]| with non-anomalous [ X/1],
whered,B = a € H (G, U(1)), the anomaly of the G orbifold.

Decomposition: — using earlier results for
QFT ([X/T'lg) = QFT H [X/Ker B| decomp’ in orb
oo ! w/ quantum symmetry

Coker B

Note that since d,B = «, =0

a ‘KerB

So, Ker B C G is automatically anomaly-free!

Summary: [X/I'|; = copies of orbifold by anomaly-free subgroup.

Let’s see this in examples....



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

Extension 1: Define I' = D,, | — 2, — D, — Z, X2, —> 1

Quantum symmetry B determined by image on {a, b}

Results: B(a) | B(b) d-z(B)I \ w/o d.t. in D4 w/ d.t.in D4 Get only
{anomaly anomaly-free
| 1 - | xG1] |G, [X/(b)) subgroups,
1 i _ [X/(b)] x/G1] | x/G1,, varying
A ) X/{a) X/{ab) WB.
d d (b) [X/{ab)] [X/{a)]

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Extension 2: Define I' = H,

Results:

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

| — 24, — H—> 2, X2Z,— 1

Quantum symmetry B determined by image on {a, b}

B(a) B(b) ( d_2(B)I Result
anomaly)
| | gl pdar
1 1 (a), {ab) [ X/{D)]
1A (Baby| [XKa)]
1 ] (a), {b) [ X/{ab)]

Get only
anomaly-free
subgroups,
varying
w/ B.

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

Extension 3: Define I' = Z, X Z,, | — 2, — 2, X2y — 2y X Z, —> 1

Quantum symmetry B determined by image on {a, b}

Results: B(a) | B(b) d-z(B)I w/o d.t.in Z2 x Z4 w/ d.t.inZ2 x Z4 Get only
{anomaly) anomaly-free
| 1 - G| x/G1 | xiGl [ [ X/Gly | subgroups,
1 1 {ab) [X/{D)] [X/{D)] varying
U )| XK X/{a) W B,
1 1 (b) [ X/{ab)] [ X/{ab)]

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}
Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

In the examples so far, we picked a "'minimal’ resolutionI".

If we pick larger K, we get copies.

Extension 4: Definel =2, xH, 1 — 24, X2, — Z, XH — Z, X2, — 1

B(a) | B(b) ( a:ﬁf]z)ly) Result Get copies of
orb’s w/
Results: 1 1 — ]EI <[X/G]H [X/G]dt> anomaly-free
} 1 (a), (ab) NC subgroups.
2
1 1| (b),{ab) [ tx/¢an
: Works!

1 1 (a), (b) ]J[X/«zbﬂ




Summary
Decomposition: one’ QFT is secretly several

Decomposition appears in (n + 1)—dimensional theories
with n—form symmetries.

(I've focused on examples in 1+1d,
but examples exist in other dim’s too.)

Can be used to understand anomaly-resolution procedure of www:

replace anomalous [ X/G] with non-anomalous [ X/I],
but decomposition implies

QFT ([X/T'lg) = copies of QFT ([X/Ker B C GJ),
which is explicitly non-anomalous.

Thank you for your time!



