GLSM's, gerbes, and Kuznetsov's homological projective duality

Eric Sharpe, Virginia Tech

Lexington, Kentucky,
 - July 20-24, 2009

Based on work with:
N Addington, M: Ando, A Caldararu, J Distler, R Donagi, S Hellerman, A Henriques, T Pantev

Outline:

* noneffective group actions (gerbes)

* decomposition conjecture
* Application of decomposition conjecture to GLSM's: physical realization of Kuznetsov's "homological projective duality," and new string compactifications: strings on nc resolutions

Noneffective orbifolds

This talk is going to concern applications of noneffective orbifolds to physics \& geometry.

What is a noneffective orbifold?

It's $[X / G$] where a subgroup of G, call it K, acts trivially on X.
(= gerbe)

Why isn't that the same as $[X /(G / K)]$?

Why isn't that the same as $[X /(G / K)]$?

Example:

Consider $\left[X / D_{4}\right]$ where the center acts trivially.

$$
\begin{gathered}
1 \longrightarrow \mathbf{Z}_{2} \longrightarrow D_{4} \longrightarrow \mathbf{Z}_{2} \times \mathbf{Z}_{2} \longrightarrow 1 \\
\left(\text { Center }=\mathbf{Z}_{2}\right)
\end{gathered}
$$

We'll show that the T^{2} partition function of $\left[X / D_{4}\right]$ is very different from the partition function of $\left[X / Z_{2} \times Z_{2}\right]$.

Check genus one partition functions:

$$
\begin{aligned}
D_{4}= & \{1, z, a, b, a z, b z, a b, b a=a b z\} \\
& \mathbf{Z}_{2} \times \mathbf{Z}_{2}=\{1, \bar{a}, \bar{b}, \overline{a b}\} \\
Z\left(D_{4}\right)= & \frac{1}{\left|D_{4}\right|} \sum_{g, h \in D_{4}, g h=h g} Z_{g, h} g \square_{h}
\end{aligned}
$$

Each of the $Z_{g, h}$ twisted sectors that appears, is the same as a $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ sector, appearing with multiplicity $\left|\mathbf{Z}_{2}\right|^{2}=4$ except for the

sectors.

Partition functions, cont'd

$Z\left(D_{4}\right)=\frac{\left|\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right|}{\left|D_{4}\right|}\left|\mathbf{Z}_{2}\right|^{2}\left(Z\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)-(\right.$ some twisted sectors $\left.)\right)$
$=2\left(Z\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)-(\right.$ some twisted sectors $\left.)\right)$

Discrete torsion acts as a sign on the

so we see that $Z\left(\left[X / D_{4}\right]\right)=Z\left(\left[X / Z_{2} \times \mathbf{Z}_{2}\right] \amalg\left[X / \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right]\right)$ with discrete torsion in one component.

Thus: physics knows about even trivial gp actions.

The same issue exists in 2d gauge theories, where it manifests as a question of whether
e.g. an abelian gauge theory with matter of charge 2 is the same as if matter is charge 1.

Perturbatively, the same.
Nonperturbatively, different.

Example: $\mathrm{P}^{\mathrm{N}-1}$ model, vs with fields of charge K

Example: Anomalous global $U(1)^{\prime}$ s

$$
\begin{aligned}
\mathbf{P}^{N-1}: & U(1)_{A}
\end{aligned} \mapsto_{\mathbf{Z}_{2 N}}, \mathbf{Z}_{2 k N}
$$

Example: A model correlation functions

$$
\begin{aligned}
\mathbf{P}^{N-1}: & <X^{N(d+1)-1}>=q^{d} \\
\text { Here }: & <X^{N(k d+1)-1}>=q^{d}
\end{aligned}
$$

Example: quantum cohomology

$$
\begin{aligned}
\mathbf{P}^{N-1}: & \mathbf{C}[x] /\left(x^{N}-q\right) \\
\text { Here }: & \mathbf{C}[x] /\left(x^{k N}-q\right)
\end{aligned}
$$

Different physics

General argument:

Compact worldsheet:
To specify Higgs fields completely, need to specify what bundle they couple to.

If the gauge field $\sim L$ then Φ charge Q implies

$$
\Phi \in \Gamma\left(L^{\otimes Q}\right)
$$

Different bundles => different zero modes
=> different anomalies => different physics
For noncpt worldsheets, analogous argument exists.
(Distler, Plesser)

4d analogues

* $S U(n)$ vs $S U(n) / Z_{n}, S \operatorname{Spin}(n)$ vs $S O(n)$ gauge theories
$N=1:$
Spin(n) gauge theory w/ massive spinors Seiberg dual to
SO(n) gauge theories w / Z_{2} monopoles
(M Strassler, hepth/9709081; P Pouliot, 9507018 ; etc)
$\mathrm{N}=4$:
Crucial for Kapustin-Witten geom' Langlands; work here gives a bit of insight into behavior of 2d compactification

Back to 2d.

Decomposition conjecture

Consider $[X / H]$ where

$$
1 \longrightarrow G \longrightarrow H \longrightarrow K \longrightarrow 1
$$

and G acts trivially.
Claim
$\operatorname{CFT}([X / H])=\operatorname{CFT}([(X \times \hat{G}) / K])$
(together with some B field), where
\hat{G} is the set of irreps of G

Decomposition conjecture

When K acts trivially upon \hat{G}

 the decomposition conjecture reduces to$$
\operatorname{CFT}([X / H])=\operatorname{CFT}\left(\coprod_{\hat{G}}(X, B)\right)
$$

where the B field is determined by the image of

$$
H^{2}(X, Z(G)) \xrightarrow{Z(G) \rightarrow U(1)} H^{2}(X, U(1))
$$

Checks:

* For global quotients by finite groups, can check partition f'ns exactly at arb' genus
* Implies $K_{H}(X)=$ twisted $K_{K}(X \times \hat{G})$ which can be checked independently
* Consistent with results on sheaves on gerbes
* Implications for Gromov-Witten theory
(Andreini, Jiang, Tseng, 0812.4477,0905.2258,0907.2087, and to appear)
* Toda mirrors to Fano toric stacks computed (same results independently obtained later by E Mann)

Apply to GLSM's: Describe P ${ }^{\top}[2,2,2,2]$

* 8 chiral superfields ϕ_{i}, charge 1 (homog' coord's P')
* 4 chiral superfields p_{a} of charge -2

$$
W=\sum_{a} p_{a} G_{a}(\phi)
$$

D-terms:

$$
\left.\left|\sum_{i}\right| \phi_{i}\right|^{2}-2 \sum_{a}\left|p_{a}\right|^{2}-\left.r\right|^{2}
$$

ϕ_{i} not all zero

$$
p_{a}=G_{a}=0
$$

The other limit is more interesting....

NLSM on CY CI

D-terms: $\left.\quad\left|\sum_{i}\right| \phi_{i}\right|^{2}-2 \sum_{a}\left|p_{a}\right|^{2}-\left.r\right|^{2}$

$$
W=\sum_{a} p_{a} G_{a}(\phi)=\sum_{i j} \phi_{i} A^{i j}(p) \phi_{j}
$$

$$
r \ll 0:
$$

p_{a} not all zero
ϕ_{i} massive (since deg 2)
NLSM on P^{3} ????

The correct analysis of the $r \ll 0$ limit is more subtle.

One subtlety is that the ϕ_{i} are not massive everywhere.
Write $\quad W=\sum_{a} p_{a} G_{a}(\phi)=\sum_{i j} \phi_{i} A^{i j}(p) \phi_{j}$
then they are only massive away from the locus

$$
\{\operatorname{det} A=0\} \subset \mathbf{P}^{3}
$$

But that just makes things more confusing....

A more important subtlety is the fact that the p's have nonminimal charge,
so over most of the P^{3} of p vevs, we have a nonminimally-charged abelian gauge theory,
meaning massless fields have charge -2 , instead of 1 or -1 .
-- local noneffective \mathbf{Z}_{2} orbifold (\mathbf{Z}_{2} gerbe)

The Landau-Ginzburg model:

Because we have a Z_{2} gerbe over P^{3} - det....

The Landau-Ginzburg point:

Double cover
p^{3}
$\{\operatorname{det}=0\}$

The Landau-Ginzburg point:

Double cover

Berry phase

Result: branched double cover of p^{3}

The LG realizes:

branched double cover of P^{3}

(Clemens' octic double solid)

realized via

local Z_{2} gerbe structure + Berry phase.
(S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, '06; R Donagi, ES, 'O7;
A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., '07)

Unusual physical realization of geometry
Non-birational: violates GLSM lore

Puzzle:

the branched double cover will be singular, but the physics behaves as if smooth at those singularities.
Solution?....

We believe the LG is actually describing a 'noncommutative resolution' of the branched double cover worked out by Kuznetsov.

Check that we are seeing K's noncomm' resolution:

K (+Kontsevich, Kapranov, Costello, van den Bergh...) define a 'noncommutative space' via its sheaves

Here, K 's noncomm' res' $n=\left(P^{3}, B\right)$
where B is the sheaf of even parts of Clifford algebras associated with the universal quadric over P^{3} defined by the LG superpotential.
B ~ structure sheaf; other sheaves ~ B-modules.

Physics:

Claim: D-branes ("matrix factorizations") in LG = Kuznetsov's B-modules

K has a rigorous proof of this; D-branes $=$ Kuznetsov's nc res'n sheaves.

Local picture:

Matrix factorization for a quadratic superpotential: even though the bulk theory is massive, one still has D0-branes with a Clifford algebra structure.

Here: a LG model fibered over P3,
gives sheaves of Clifford algebras (determined by the universal quadric / superpotential) and modules thereof.

So: D-branes duplicate Kuznetsov's def'n.

Summary so far:

The LG realizes:

nc res'n of branched double cover

 of P^{3}realized via
local Z_{2} gerbe structure + Berry phase.
(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., '07)

Unusual physical realization of geometry
Non-birational: violates GLSM lore

+ physical realization of nc res'n

Topology change:

The GLSM links P ${ }^{7}[2,2,2,2]$
to nc res'n of a branched double cover
-- Kuznetsov's "homological projective duality"
Many more examples exist, all also h.p.d.

We conjecture all GLSM phases are related by h.p.d.

D-brane moduli spaces:

The moduli space of D-branes propagating on this nc resolution,
is a non-Kahler small resolution of the singular space.

(N Addington ' O g \& work in progress)

-- non-Kahler OK b/c it's open string moduli space, not where closed strings propagate.

Another example where closed string target different from open string space: orbifolds. (D-branes see res'n, closed strings see quot' stack)

Outline:

* noneffective group actions (gerbes)

* decomposition conjecture
* Application of decomposition conjecture to GLSM's: physical realization of Kuznetsov's homological projective duality, and strings on nc resolutions

Mathematics

Physics

Geometry:

Gromov-Witten
Donaldson-Thomas quantum cohomology etc

Homotopy, categories: derived categories, stacks, etc.

Renormalization group
Supersymmetric field theories

