GLSM's, gerbes, and Kuznetsov's homological projective duality

Eric Sharpe, Virginia Tech

Lexington, Kentucky, July 20-24, 2009

Training 1

1 Jun my

Based on work with: N Addington, M Ando, A Caldararu, J Distler, R Donagi, S Hellerman, A Henriques, T Pantev

Outline:

* noneffective group actions (gerbes)

* decomposition conjecture

 * Application of decomposition conjecture to GLSM's: physical realization of Kuznetsov's ``homological projective duality," and new string compactifications: strings on nc resolutions

Noneffective orbifolds

This talk is going to concern applications of noneffective orbifolds to physics & geometry.

What is a noneffective orbifold?

It's [X/G] where a subgroup of G, call it K, acts trivially on X. (= gerbe)

Why isn't that the same as [X / (G/K)]?

Why isn't that the same as [X / (G/K)]?

Example:

Consider $[X/D_4]$ where the center acts trivially. $1 \longrightarrow \mathbb{Z}_2 \longrightarrow D_4 \longrightarrow \mathbb{Z}_2 \times \mathbb{Z}_2 \longrightarrow 1$ (Center = \mathbb{Z}_2)

We'll show that the T² partition function of [X/D₄] is very different from the partition function of [X / Z₂ x Z₂].

Check genus one partition functions: $D_4 = \{1, z, a, b, az, bz, ab, ba = abz\}$ $\mathbf{Z}_2 \times \mathbf{Z}_2 = \{1, \overline{a}, \overline{b}, \overline{ab}\}$ $Z(D_4) = \frac{1}{|D_4|} \sum_{g,h \in D_4, gh = hg} Z_{g,h}$ g h

Each of the $Z_{g,h}$ twisted sectors that appears, is the same as a $\mathbf{Z}_2 \times \mathbf{Z}_2$ sector, appearing with multiplicity $|\mathbf{Z}_2|^2 = 4$ except for the

sectors.

Partition functions, cont'd

 $Z(D_4) = \frac{|\mathbf{Z}_2 \times \mathbf{Z}_2|}{|D_4|} |\mathbf{Z}_2|^2 \left(Z(\mathbf{Z}_2 \times \mathbf{Z}_2) - \text{(some twisted sectors)} \right)$ = $2 \left(Z(\mathbf{Z}_2 \times \mathbf{Z}_2) - \text{(some twisted sectors)} \right)$

Thus: physics knows about even trivial gp actions.

The same issue exists in 2d gauge theories, where it manifests as a question of whether e.g. an abelian gauge theory with matter of charge 2 is the same as if matter is charge 1.

> Perturbatively, the same. Nonperturbatively, different.

Example: P^{N-1} model, vs with fields of charge k

Example: Anomalous global U(1)'s $\mathbf{P}^{N-1}: U(1)_A \mapsto \mathbf{Z}_{2N}$ Here: $U(1)_A \mapsto \mathbb{Z}_{2kN}$ Example: A model correlation functions \mathbf{P}^{N-1} : $\langle X^{N(d+1)-1} \rangle = q^d$ Here: $< X^{N(kd+1)-1} > = q^d$ Example: quantum cohomology \mathbf{P}^{N-1} : $\mathbf{C}[x]/(x^N - q)$ Here: $\mathbf{C}[x]/(x^{kN} - q)$

Different physics

General argument: Compact worldsheet: To specify Higgs fields completely, need to specify what bundle they couple to.

If the gauge field $\sim L$ then Φ charge Q implies $\Phi\in \Gamma(L^{\otimes Q})$

Different bundles => different zero modes => different anomalies => different physics For noncpt worldsheets, analogous argument exists. (Distler, Plesser)

4d analogues

* SU(n) vs $SU(n)/Z_n$, Spin(n) vs SO(n) gauge theories N=1: Spin(n) gauge theory w/ massive spinors Seiberg dual to SO(n) gauge theories w/ Z_2 monopoles (M Strassler, hepth/9709081; P Pouliot, 9507018; etc) N=4: Crucial for Kapustin-Witten geom' Langlands;

work here gives a bit of insight into behavior of 2d compactification

Back to 2d.....

Decomposition conjecture

Consider [X/H] where $1 \longrightarrow G \longrightarrow H \longrightarrow K \longrightarrow 1$ and G acts trivially. Claim $\operatorname{CFT}([X/H]) = \operatorname{CFT}\left(\left|(X \times \hat{G})/K\right|\right)$ (together with some B field), where \hat{G} is the set of irreps of G

Decomposition conjecture

When K acts trivially upon \hat{G} the decomposition conjecture reduces to

 $\operatorname{CFT}([X/H]) = \operatorname{CFT}\left(\coprod_{\hat{G}}(X,B)\right)$

where the B field is determined by the image of $H^2(X, Z(G)) \xrightarrow{Z(G) \to U(1)} H^2(X, U(1))$

Checks:

* For global quotients by finite groups, can check partition f'ns exactly at arb' genus

- * Implies $K_H(X) = \text{twisted } K_K(X \times \hat{G})$ which can be checked independently
- * Consistent with results on sheaves on gerbes
- * Implications for Gromov-Witten theory (Andreini, Jiang, Tseng, 0812.4477, 0905.2258, 0907.2087, and to appear)

* Toda mirrors to Fano toric stacks computed (same results independently obtained later by E Mann)

Apply to GLSM's: Describe P⁷[2,2,2,2] * 8 chiral superfields ϕ_i , charge 1 (homog' coord's P⁷) * 4 chiral superfields p_a of charge -2 $W = \sum p_a G_a(\phi)$ D-terms: $\sum_{i} |\phi_i|^2 - 2\sum_{a} |p_a|^2 - r$ $r \gg 0$: ϕ_i not all zero The other limit is $p_a = G_a = 0$ more interesting....

NLSM on CY CI

D-terms: $\sum_{i} |\phi_i|^2 - 2 \sum_{a} |p_a|^2 - r$

 $W = \sum_{a} p_a G_a(\phi) = \sum_{ij} \phi_i A^{ij}(p) \phi_j$

 $r \ll 0$:

 p_a not all zero ϕ_i massive (since deg 2) NLSM on P³ ????

The correct analysis of the $r \ll 0$ limit is more subtle.

One subtlety is that the ϕ_i are not massive everywhere.

Write $W = \sum_{a} p_a G_a(\phi) = \sum_{ij} \phi_i A^{ij}(p) \phi_j$ then they are only massive away from the locus $\{\det A = 0\} \subset \mathbf{P}^3$

But that just makes things more confusing....

A more important subtlety is the fact that the p's have nonminimal charge, so over most of the **P**³ of p vevs, we have a nonminimally-charged abelian gauge theory, meaning massless fields have charge -2, instead of 1 or -1.

> -- local noneffective Z₂ orbifold (Z₂ gerbe)

The Landau-Ginzburg model:

$\mathbf{P}^3 \qquad \{ \det = 0 \}$

Because we have a Z_2 gerbe over P^3 – det....

The Landau-Ginzburg point:

Double cover

P3

The Landau-Ginzburg point:

Berry phase

Result: branched double cover of P^3

So far:

The LG realizes: branched double cover of **P**³

(Clemens' octic double solid)

realized via local **Z**₂ gerbe structure + Berry phase.

> (S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, '06; R Donagi, ES, '07; A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., '07)

Unusual physical realization of geometry Non-birational: violates GLSM lore

Puzzle:

the branched double cover will be singular, but the physics behaves as if smooth at those singularities.

Solution?....

We believe the LG is actually describing a `noncommutative resolution' of the branched double cover worked out by Kuznetsov.

Check that we are seeing K's noncomm' resolution:

K (+Kontsevich, Kapranov, Costello, van den Bergh,..) define a `noncommutative space' via its sheaves

Here, K's noncomm' res'n = (P³,B) where B is the sheaf of even parts of Clifford algebras associated with the universal quadric over P³ defined by the LG superpotential.

B ~ structure sheaf; other sheaves ~ B-modules.

Physics?.....

Physics:

Claim: D-branes (``matrix factorizations") in LG = Kuznetsov's B-modules

K has a rigorous proof of this; D-branes = Kuznetsov's nc res'n sheaves.

Intuition....

Matrix factorization for a quadratic superpotential: even though the bulk theory is massive, one still has DO-branes with a Clifford algebra structure. (Kapustin, Li)

Here: a LG model fibered over P³, gives sheaves of Clifford algebras (determined by the universal quadric / superpotential) and modules thereof.

So: D-branes duplicate Kuznetsov's def'n.

Summary so far: The LG realizes: nc res'n of branched double cover of \mathbf{P}^3 realized via local Z_2 gerbe structure + Berry phase. (A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., '07)

Unusual physical realization of geometry Non-birational: violates GLSM lore + physical realization of nc res'n

Topology change:

The GLSM links P⁷[2,2,2,2] to nc res'n of a branched double cover -- Kuznetsov's ``homological projective duality"

Many more examples exist, all also h.p.d.

We conjecture all GLSM phases are related by h.p.d.

D-brane moduli spaces:

The moduli space of D-branes propagating on this nc resolution, is a non-Kahler small resolution of the singular space. (N Addington '09 & work in progress) -- non-Kahler OK b/c it's open string moduli space, not where closed strings propagate.

Another example where closed string target different from open string space: orbifolds. (D-branes see res'n, closed strings see quot' stack)

Outline:

* noneffective group actions (gerbes)

* decomposition conjecture

* Application of decomposition conjecture to GLSM's: physical realization of Kuznetsov's homological projective duality, and strings on nc resolutions

Mathematics

Gromov-Witten Donaldson-Thomas quantum cohomology etc

Physics

Supersymmetric field theories

Homotopy, categories: derived categories, stacks, etc.

Renormalization group