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An Introduction to 
Quantum

Sheaf Cohomology



Today I’m going to talk about nonperturbative 
corrections to correlation functions in
compactifications of heterotic strings. 

These are described by `quantum sheaf cohomology,’ 
an analogue of quantum cohomology that arises in 

(0,2) mirror symmetry.

I’ve been told that we may have an extremely broad
audience here today, so let me begin with some 

basics....



String theories naturally live in 10d;
to describe 4d world, we typically

`compactify’ the string, meaning we make the ansatz

10d spacetime = R4 x M

M must satisfy Einstein’s equations for GR in vacuum 
(ie, Ricci-flat), as well as other properties for 

supersymmetry;
result is that we typically take M to be a complex 

Kahler manifold with K trivial, ``Calabi-Yau.’’

where R4 is our observed world
and M is some small compact 6d space



For some string theories (eg type II), we merely need 
to specify a Calabi-Yau manifold.

For others (eg heterotic), we must also specify a 
nonabelian gauge field (bundle) over that same 

Calabi-Yau manifold.

Today I’m going to discuss nonperturbative 
corrections to heterotic string compactifications

(defined by space + bundle), 
which generalize corrections to type II 

compactifications arising in a duality known as
``mirror symmetry’’ ....



Mirror symmetry

= a duality between 2d QFT’s,
first worked out in early ‘90s

Pairs of (usually topologically distinct)
Calabi-Yau manifolds are described by 

same string theory -- strings cannot distinguish.



h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

Ex: space of cpx dim 2:

We organize the dimensions of the cohom’ of (p,q) 
forms, denoted      , into diamond-shaped arrays.h

p,q

One property of ordinary mirror symmetry is
that it exchanges cohom’ of (p,q) differential forms 

with that of (n-p,q) differential forms, 
where n = cpx dim of CY.

ωi1···ipı1···ıq
dz

i1 ∧ · · · ∧ dz
ip ∧ dz

1 ∧ · · · ∧ dz

q

Mirror symmetry acts as a rotation about diagonal



T2 is self-mirror topologically;
cpx, Kahler structures interchanged

1

1 1

1

Note this symmetry is 
specific to genus 1;

for genus g:

1

g g

1

h
0,1

h
1,1

Example:  T2

h
p,q ‘s:



K3 is self-mirror topologically;
cpx, Kahler structures interchanged 

(

x2 + y2 + z2
− aw2

)2
−

(

3a−1

3−a

)

pqts = 0

p = w − z −

√

2x

q = w − z +
√

2x

t = w + z +
√

2y

s = w + z −

√

2y

a = 1.5

Kummer surface

1

0 0

1 20 1

0 0

1

(known as K3 mflds)

h
1,1

h
1,1

Example:  quartics in P3

h
p,q ‘s:



The quintic (deg 5) hypersurface in P4 
is mirror to

(res’n of) a deg 5 hypersurface in P4/(Z5)3

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

1

0 0

0 101 0

1 1 1 1

0 101 0

0 0

1

Quintic Mirror

Example:  the quintic



Aside on lingo:

The worldsheet theory for a heterotic string with a 
more general gauge field has (0,2) susy,

hence ``(0,2) model’’

The worldsheet theory for a type II string, or 
heterotic string with the ``standard embedding’’ 

(gauge bundle     = tangent bundle      )
has (2,2) susy in 2d, 
hence ``(2,2) model’’

E TX

In mirror symmetry, two Calabi-Yau’s are described 
by the same (2,2) susy SCFT.



(0,2) mirror symmetry
So far, I’ve discussed symmetry properties of 2d (2,2) 

susy CFT’s -- specified by a (Calabi-Yau) space.

``(0,2) mirror symmetry’’ is a symmetry property of 
2d (0,2) susy CFT’s & heterotic strings.  

To specify one of these, need space plus also
 bundle/gauge field over that space.

Not any space/bundle pair will do; there are
constraints: [Tr F ∧ F ] = [Tr R ∧ R] ch2(E) = ch2(TX)( )



is a conjectured generalization that exchanges pairs

(0,2) mirror symmetry

(X1, E1) ↔ (X2, E2)

where the    are Calabi-Yau manifolds
and the           are holomorphic vector bundles

Xi

Ei → Xi

Reduces to ordinary mirror symmetry when
Ei

∼
= TXi

Same (0,2) SCFT



(0,2) mirror symmetry
Instead of exchanging (p,q) forms,

(0,2) mirror symmetry exchanges bundle-valued 
differential forms (=``sheaf cohomology’’):

Note when Ei
∼
= TXi this reduces to

(for Xi Calabi-Yau)

Hj(X1, Λ
i
E1) ↔ Hj(X2, (Λ

i
E2)

∗)

H
n−1,1(X1) ↔ H

1,1(X2)



(0,2) mirror symmetry

Horizontal:

Vertical:

where E is rk 4

(Blumenhagen, Schimmrigk, Wisskirchen, 
NPB 486 (‘97) 598-628)

h
1(E) − h

1(E∗)

h
1(E) + h

1(E∗)

Some of the first evidence for (0,2) mirror symmetry 
was numerical....



(0,2) mirror symmetry
Overview of work done:
* an analogue of the Greene-Plesser construction

(quotients by finite groups) is known
(Blumenhagen, Sethi, NPB 491 (‘97) 263-278)

* for def’s of the tangent bundle, 
there now exists a (0,2) monomial-divisor mirror map 

(Melnikov, Plesser, 1003.1303 & Strings 2010)

* an analogue of Hori-Vafa (Adams, Basu, Sethi, hepth/0309226)

(0,2) mirrors are heating up !

* analogue of quantum cohomology known since ‘04
(ES, Katz, Adams, Distler, Ernebjerg, Guffin, Melnikov, McOrist, ....)



Most of this talk will focus on nonperturbative 
effects, so, next let’s discuss those in the

context of mirror symmetry....



The most important aspect of mirror symmetry is the 
fact that it exchanges perturbative & 

nonperturbative contributions.

Nonperturbative effects:  ``worldsheet instantons’’
which are minimal-area (=holomorphic) curves.

Physically, these generate corrections to 2d OPE’s,
and also spacetime superpotential charged-matter

couplings.
The impact on mathematics was impressive....



Deg k nk

1 2875
2 609250
3 317206375

These three degrees were the state-of-the-art
before mirror symmetry

 (deg 2 in ‘86, deg 3 in ‘91)

Then, after mirror symmetry ~ ‘92,
the list expanded...

Shown: numbers of minimal S2’s in one particular 
Calabi-Yau (the quintic in P4),

of fixed degree.



Deg k nk

1 2875
2 609250
3 317206375
4 242467530000
5 229305888887625
6 248249742118022000
7 295091050570845659250
8 375632160937476603550000
9 503840510416985243645106250
10 704288164978454686113488249750 
... ...



In a heterotic compactification on a (2,2) theory,
these worldsheet instanton corrections generate 

corrections to charged-matter couplings.

Ex:  If we compactify on a Calabi-Yau 3-fold,
then, have 4d E6 gauge symmetry, and these are 

corrections to (27*)3 couplings
appearing in the spacetime superpotential.

For (2,2) compactification, computed by A model TFT,
which we shall review next.

For non-standard embedding, (0,2) theory, need
(0,2) version of the A model (= `A/2’),

which we shall describe later.



Example:  A model on CPN-1: correl’n f’ns:

〈xk〉 =

{

qm if k = mN + N − 1

0 else

hence OPE x
N

∼ q

Classical cohomology ring of CPN-1: C[x]/(xN
− 0)

C[x]/(xN
− q)so we call the physical OPE ring

Mathematically, the worldsheet instanton corrections 
modify OPE’s....

quantum cohomology.



We shall see that we have operators    H∗(X, Λ∗
E
∗)

and a wedge/cup product

plus a trace operation Htop(X, Λtop
E
∗) −→ C

Hp(X, Λq
E
∗) × Hp

′

(X, Λq
′

E
∗) −→ Hp+p

′

(X, Λq+q
′

E
∗)

In heterotic strings & (0,2) mirrors, 
there is a close analogue:

which we will use to build a quantum-corrected ring,
quantum sheaf cohomology.

The cleanest descriptions appear as OPE’s in
2d TFT’s, so, next:  review A, A/2 models....



A model:

This is a 2d TFT.  2d TFT’s are generated by changing 
worldsheet fermions:  worldsheet spinors become 
worldsheet scalars & (1-component chiral) vectors.

Concretely, if start with the NLSM
gi∂φi∂φ

+ igiψ

−

Dzψ
i
−

+ igiψ

+Dzψ

i
+ + R

ikl
ψi

+ψ
+ψk

−
ψl
−

then deform the       ‘s by changing the spin 
connection term.   

Dψ

Part of original susy becomes nilpotent scalar 
operator, the `BRST’ operator, denoted   .Q



Ordinary A model

gi∂φi∂φ
+ igiψ


−

Dzψ
i
−

+ igiψ

+Dzψ

i
+ + R

ikl
ψi

+ψ
+ψk

−
ψl
−

δφi ∝ χi, δφı ∝ χı

δχi = 0, δχı = 0

δψi
z "= 0, δψı

z
"= 0

Under the scalar 
supercharge,

O ∼ bi1···ipı1···ıq
χı1 · · ·χıqχi1 · · ·χip ↔ Hp,q(X)

Q ↔ d

so the states are

Fermions:
ψi
−

(≡ χi) ∈ Γ((φ∗T 0,1X)∗) ψi
+(≡ ψi

z) ∈ Γ(K ⊗ φ∗T 1,0X)
ψı
−

(≡ ψı
z) ∈ Γ(K ⊗ φ∗T 0,1X) ψı

+(≡ χı) ∈ Γ((φ∗T 1,0X)∗)



The A model is, first and foremost, still a QFT.

But, if only consider correlation functions of Q-
invariant states, then the corr’ f’ns reduce to purely 
zero-mode computations -- (usually) no meaningful 

contribution from Feynman propagators or loops, and 
the correlators are independent of insertion positions.

A model:

As a result, can get exact answers, 
instead of asymptotic series expansions.



* No longer strictly TFT, though becomes TFT on the 
(2,2) locus

The A/2 model:

* (0,2) analogues of ( (2,2) ) A model;
(0,2) analogue of B model also exists

* Nevertheless, some correlation functions still have a 
mathematical understanding

In more detail...

* A/2 computes `quantum sheaf cohomology’

* New symmetries:  
(X, E)

(X, E∨)

A/2 on
same as

B/2 on



A/2 model

gi∂φi∂φ
+ ih

ab
λb
−

Dzλ
a
−

+ igiψ

+Dzψ

i
+ + F

iab
ψi

+ψ
+λa

−
λb
−

Fermions:

Constraints:
ch2(E) = ch2(TX)Green-Schwarz:

Λ
top

E
∨ ∼= KXAnother anomaly:

(analogue of the CY condition in the B model)

λa
−

∈ Γ((φ∗E)∗) ψi
+ ∈ Γ(K ⊗ φ∗T 1,0X)

λb
−

∈ Γ(K ⊗ φ∗E) ψı
+ ∈ Γ((φ∗T 1,0X)∗)



A/2 model

gi∂φi∂φ
+ ih

ab
λb
−

Dzλ
a
−

+ igiψ

+Dzψ

i
+ + F

iab
ψi

+ψ
+λa

−
λb
−

Fermions:

When E = TX, reduces to the A model,
since Hq(X, Λp(TX)∗) = Hp,q(X)

States:
O ∼ bı1···ına1···ap

ψı1
+ · · ·ψın

+ λa1

−
· · ·λ

ap

−
↔ Hn(X, Λp

E
∗)

Constraints: Λtop
E
∗ ∼= KX , ch2(E) = ch2(TX)

λa
−

∈ Γ((φ∗E)∗) ψi
+ ∈ Γ(K ⊗ φ∗T 1,0X)

λb
−

∈ Γ(K ⊗ φ∗E) ψı
+ ∈ Γ((φ∗T 1,0X)∗)



A model classical correlation functions

For    compact, have n        zero modes,
plus bosonic zero modes      , so
X

∼ X

χ
i
, χ

ı

Selection rule from left, right U(1)R’s:
∑

i

pi =

∑

i

qi = n

Thus:
〈O1 · · ·Om〉 ∼

∫
X

(top-form)

〈O1 · · ·Om〉 =

∫
X

ω1 ∧ · · · ∧ ωm, ωi ∈ Hpi,qi(X)



A/2 model classical correlation functions
For    compact, we have n     zero modes and

r     zero modes:
X ψı

+

λ
a

Selection rule:
∑

i
qi = n,

∑
i
pi = r

The constraint
makes the integrand a top-form.

ΛtopE∗ ∼= KX

〈O1 · · ·Om〉 =

∫
X

ω1 ∧ · · · ∧ ωm, ωi ∈ Hqi(X, ΛpiE∗)

〈O1 · · ·Om〉 ∼

∫
X

Htop(X, ΛtopE∗)



A model -- worldsheet instantons

Moduli space of bosonic zero modes
            = moduli space of worldsheet instantons, M

If no          zero modes, thenψi
z , ψ

ı

z

〈O1 · · ·Om〉 ∼

∫
M

ω1 ∧ · · · ∧ ωm, ωi ∈ Hpi,qi(M)

More generally,

〈O1 · · ·Om〉 ∼

∫
M

ω1 ∧ · · · ∧ ωm ∧ ctop(Obs), ωi ∈ Hpi,qi(M)

In all cases: 〈O1 · · ·Om〉 ∼

∫
M

(top form)



A/2 model -- worldsheet instantons

The bundle   on    induces 
a bundle     (of   zero modes) on     : 

E X

F λ M
F ≡ R0π∗α

∗E

π : Σ ×M → M, α : Σ ×M → Xwhere

E = TX F = TMOn the (2,2) locus, where           , have

When no `excess’ zero modes,
〈O1 · · ·Om〉 ∼

∫
M

Htop(M, ΛtopF∗)

so again integrand is a top-form.

Apply anomaly constraints:

(general case similar)

ΛtopE∗ ∼= KX

ch2(E) = ch2(TX)

}

GRR
=⇒ ΛtopF∗ ∼= KM



Gauged linear sigma models are 2d gauge theories, 
generalizations of the CPN model, 

that RG flow in IR to NLSM’s.

The 2d gauge instantons of the UV gauge theory
= worldsheet instantons in IR NLSM

`Linear sigma model moduli spaces’ are therefore 
moduli spaces of 2d gauge instantons.

So, review linear sigma model (LSM) moduli spaces....

To do any computations, we need explicit expressions 
for the space     and bundle    .M F



Example:  CPN-1

Have N chiral superfields              , each charge 1x1, · · · , xN

For degree d maps, expand:

xi = xi0u
d

+ xi1u
d−1

v + · · · + xidv
d

u, vwhere      are homog’ coord’s on worldsheet = P1

Take       to be homogeneous coord’s on    , then(xij) M

MLSM = P
N(d+1)−1

In general, build    by expanding homogeneous coord’s
in a basis of zero modes on P1

M



What about induced bundles            ?F → M

All bundles in GLSM are built from short exact 
sequences of bosons, fermions, corresponding to

line bundles.

Idea:  lift each such line bundle to a natural line 
bundle on            ,

then pushforward to     .
P

1
×M

M

Expand worldsheet fermions in a basis of zero modes,
and identify each basis element with a line bundle of

same U(1) weights as the original line bundle.

Physics:

Math:



Induced bundles     for projective spaces:F

Example:  completely reducible bundle

E = ⊕aO(na)

F = ⊕aH0
(

P
1,O(nad)

)

⊗C O(na)

We expand worldsheet fermions in a basis of zero 
modes, and identify each basis element with a line 
bundle of same U(1) weights as the original line 

bundle.

Result:



There is also a trivial extension of this to more 
general toric varieties.

Example:  completely reducible bundle
E = ⊕aO(!na)

F = ⊕aH0

(

P
1,O(!na · !d)

)

⊗C O(!na)

Corresponding bundle of fermi zero modes is

We can also build a bundle of the H1’s:

F1 = ⊕aH1

(

P
1,O(!na · !d)

)

⊗C O(!na)

for zero modes of worldsheet vector fermions.



Because of the construction, this works for short 
exact sequences in the way you’d expect....

0 −→ O⊕k −→ ⊕iO(!qi) −→ E −→ 0
From

we get
0 −→ ⊕k

1H
0(O) ⊗O −→ ⊕iH

0(O(!qi · !d)) ⊗O(!qi) −→ F

−→ ⊕k
1H

1(O) ⊗O −→ ⊕iH
1(O(!qi · !d)) ⊗O(!qi) −→ F1 −→ 0

which simplifies:
0 −→ ⊕k

1O −→ ⊕iH
0(O(!qi · !d)) ⊗O(!qi) −→ F −→ 0

F1
∼= ⊕iH

1(O(!qi · !d)) ⊗O(!qi)

Fact:  if   is locally-free, then    will be also.E F



Check of (2,2) locus

The tangent bundle of a (cpt, smooth) toric variety 
can be expressed as

0 −→ O⊕k −→ ⊕iO(!qi) −→ TX −→ 0

Applying previous ansatz,

0 −→ O⊕k −→ ⊕iH
0

(

P
1,O(!qi · !d)

)

⊗C O(!qi) −→ F −→ 0

F1
∼= ⊕iH

1

(

P
1,O(!qi · !d)

)

⊗C O(!qi)

This    is precisely            , 
and     is the obs’ sheaf.
F

F1

TMLSM



Now, let’s turn to OPE rings in these theories.
In (2,2) case, = quantum cohomology.

What about (0,2) ?

In this fashion, we can identify OPE’s in the A model
with quantum-corrected sheaf cohomology,

or quantum sheaf cohomology.

We have operators    H∗(X, Λ∗
E
∗)

and a wedge/cup product

plus a trace operation Htop(X, Λtop
E
∗) −→ C

Hp(X, Λq
E
∗) × Hp

′

(X, Λq
′

E
∗) −→ Hp+p

′

(X, Λq+q
′

E
∗)



Consider a (0,2) theory describing P1xP1

with gauge bundle    = def’ of tangent bundle,
expressible as a cokernel:

E

0 −→ O ⊕O
∗

−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0

Example:

∗ =

[

Ax Bx

Cx̃ Dx̃

]

A, B, C, D 2 × 2 matrices, x =

[

x1

x2

]

, x̃ =

[

x̃1

x̃2

]

Quantum sheaf cohomology
= (0,2) quantum cohomology



Example, cont’d

For P1xP1 with bundle

0 −→ O ⊕O
∗

−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0

∗ =

[

Ax Bx

Cx̃ Dx̃

]

det

(

Aψ + Bψ̃
)

= q det

(

Cψ + Dψ̃
)

= q̃,

where ψ, ψ̃ are operators generating chiral ring.

one finds (& we will show, later) that OPE ring is 
poly’s in two variables      , modulo the relationsψ, ψ̃



Consistency check:

det

(

Aψ + Bψ̃
)

= q1

det

(

Cψ + Dψ̃
)

= q2

In the special case                  , one should recover
the standard quantum cohomology ring.

E = TP
1
× P

1

That case corresponds to
A = D = I2×2, B = C = 0

and the above becomes ψ2
= q1, ψ̃2

= q2

Matches



Quantum sheaf cohomology

∏

α

(det Mα)Qa

α = qa

(McOrist-Melnikov 0712.3272;
R Donagi, J Guffin, S Katz, ES, 1110.3751, 1110.3752) 

More results known:

For any toric variety, and any def’ of tangent bundle,

0 −→ O⊕r E
−→ ⊕O(!qi) −→ E −→ 0

the chiral ring is

where M’s are matrices of chiral operators 
built from E’s.



Quantum sheaf cohomology

Next, I’ll outline some of the mathematical details of 
the computations that go into these rings.

The rest of the talk will, unavoidably, be somewhat 
technical, but in principle, I’m just describing 

a computation of nonperturbative corrections to
some correlation functions in 2d QFT’s.



Quantum sheaf cohomology
Set up notation:

1st, write tangent bundle of toric variety X as

where W is a vector space.

0 −→ W
∗ ⊗O

∗

−→ Z
∗ −→ E −→ 0

0 −→ W ∗ ⊗O −→ ⊕iO(!qi) −→ TX −→ 0

Write a deformation    of TX asE

Z∗ ≡ ⊕iO(!qi)where



Quantum sheaf cohomology
Handy to dualize:

Correlators are elements of H
1(E∗) = H

0(W ⊗O)

0 −→ E∗ −→ Z −→ W ⊗O −→ 0

H
1(E∗)Correlators are elements of

Compute:
H

0(Z) −→ H
0(W ⊗O) −→ H

1(E∗) −→ H
1(Z)

H
1(Z) = H

0(Z) = 0Can show

thus,



Quantum sheaf cohomology

Symn
H

1(E∗) −→ H
n(Λn

E
∗) ∼= C

we can think of correlation functions as maps

and it’s this latter form that will be useful.

On an n-dim’l toric variety X,
correlation functions                  are maps〈O1 · · ·On〉

but because H
1(E∗) = H

0(W ⊗O) = W

H0 (SymnW ⊗O) ( = SymnH0(W ⊗O), SymnW )

−→ H
n(Λn

E
∗) ∼= C



Quantum sheaf cohomology
So far:

0 −→ E∗ −→ Z −→ W ⊗O −→ 0

and correlation functions are maps

H
0 (Symn

W ⊗O) −→ H
n(ΛnE∗) ∼= C

How to compute? Use the `Koszul resolution’

0 −→ Λ
nE∗ −→ Λ

n
Z −→ Λ

n−1
Z ⊗ W

−→ · · · −→ Symn
W ⊗O −→ 0

which relates         and                  .Λ
n
E
∗ Symn

W ⊗O



Quantum sheaf cohomology
So far:

H
0 (Symn

W ⊗O) −→ H
n(ΛnE∗) ∼= C

Plan to compute correlation functions

using the Koszul resolution of         .Λ
n
E
∗

In fact, instead of computing the entire map,
it suffices to compute just the kernel of that map,

which is what we do.

Here’s a sample of how that works....



Consider a (0,2) theory describing P1xP1

with gauge bundle    = def’ of tangent bundle,
expressible as a cokernel:

E

0 −→ O ⊕O
∗

−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0

Example:

∗ =

[

Ax Bx

Cx̃ Dx̃

]

A, B, C, D 2 × 2 matrices, x =

[

x1

x2

]

, x̃ =

[

x̃1

x̃2

]

Quantum sheaf cohomology

Dualize:
0 −→ E∗ −→ O(−1, 0)2 ⊕ O(0,−1)2

︸ ︷︷ ︸

Z

∗

−→ W ⊗O −→ 0



Classical correlation functions are a map

Sym2
W = H

0(Sym2
W ⊗O) −→ H

2(Λ2E∗) = C

To build this map, we begin with

0 −→ E∗ −→ Z
∗

−→ W ⊗O −→ 0

and take the Koszul resolution

0 −→ Λ2E∗ −→ Λ2
Z −→ Z ⊗ W −→ Sym2

W ⊗O −→ 0

which will determine a map between cohomology 
groups above.



Let’s build the map between cohomology groups.

Take the long exact sequence

0 −→ Λ2E∗ −→ Λ2
Z −→ Z ⊗ W −→ Sym2

W ⊗O −→ 0

and break it up into short exacts:

0 −→ Λ
2
E
∗
−→ Λ

2Z −→ Q −→ 0

0 −→ Q −→ Z ⊗ W −→ Sym2W ⊗O −→ 0

Second gives a map H0
(

Sym2W ⊗O
)

−→ H1(Q)

H1(Q) −→ H2(Λ2
E
∗)First gives a map

& the composition computes corr’ functions.



0 −→ Q −→ Z ⊗ W −→ Sym2W ⊗O −→ 0

Take
Let’s work out those maps.

The associated long exact sequence gives

H0(Z ⊗ W ) −→ H0(Sym2W ⊗O) −→ H1(Q) −→ H1(Z ⊗ W )

but since Z is a sum of            ,            ‘s, O(−1, 0) O(0,−1)

H
0(Z ⊗ W ) = 0 = H

1(Z ⊗ W )

so we see that

H0(Sym2W ⊗O)
∼

−→ H1(Q)



0 −→ Λ
2
E
∗
−→ Λ

2Z −→ Q −→ 0

Next, take

The associated long exact sequence gives
H1(Λ2Z) −→ H1(Q) −→ H2(Λ2

E
∗) −→ H2(Λ2Z)

Here, H
2(Λ2

Z) = 0

but

and so the map H1(Q) −→ H2(Λ2
E
∗)

has a two-dim’l kernel.

= C⊕ C

H1(Λ2Z) = H1
(

P
1
× P

1,O(−2, 0) ⊕O(0,−2)
)



So far, we have computed the 2 pieces of classical 
correlation functions:

Sym2W = H0(Sym2W ⊗O)
∼

−→ H1(Q) −→ H2(Λ2E∗)

What we really want are the relations,
the kernel of the map above.

Since the first map is an isomorphism,
the kernel is determined by the second map.

To get the classical sheaf cohomology ring,
we just need the kernel of the second map....



It can be shown that the kernel of the second map,  

H1(Q) −→ H2(Λ2
E
∗)

Thus, we have classical ring rel’ns:
det

(

ψA + ψ̃B
)

= 0 = det

(

ψC + ψ̃D
)

is generated by

det(ψA + ψ̃B), det(ψC + ψ̃D)

C[ψ, ψ̃]/
(

det(ψA + ψ̃B), det(ψC + ψ̃D)
)

and the classical sheaf cohomology ring is



Quantum sheaf cohomology

What about nonperturbative sectors?

We can do exactly the same thing.

M = moduli space of instantons
F = induced bundle on the moduli space

If    is a deformation of TX,
then    is a deformation of       .F

E

TM

So:  apply the same analysis as the classical case.



Quantum sheaf cohomology
Example:  def’ of T P1xP1

∗ =

[

Ax Bx

Cx̃ Dx̃

]

0 −→ W ∗ ⊗O
∗

−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0

Work in degree (d,e). M = P
2d+1

× P
2e+1

0 −→ O⊕2 −→

2d+2⊕

1

O(1, 0) ⊕
2e+2⊕

1

O(0, 1) −→ F −→ 0

which we shall write as
0 −→ W ⊗O −→ Z

∗ −→ F −→ 0

(defining W, Z appropriately)



Correlation functions are linear maps

(cont’d)

Sym2d+2e+2
(

H
1(F∗)

)

(= Sym2d+2e+2
W ) −→ H

2d+2e+2(Λtop
F

∗) = C

0 → ΛtopF∗ → Λ2d+2e+2
Z → Λ2d+2e+1

Z ⊗ W → Λ2d+2e
Z ⊗ Sym2

W

We compute using the Koszul resolution of Λ
top

F
∗:

(cont’d)

· · · → Z ⊗ Sym2d+2e+1
W → Sym2d+2e+2

W ⊗OM → 0



(cont’d)

Briefly, the (long exact) Koszul resolution factors into 
a sequence of short exact sequences of the form

0 −→ Si −→ Λi
Z ⊗ Sym2d+2e+2−i

W −→ Si−1 −→ 0

and the coboundary maps δ : H
i(Si) −→ H

i+1(Si+1)

factor the map determining the correlation functions:

So, to evaluate corr’ f’n, compute coboundary maps.
(cont’d)

H
0
(

Sym2d+2e+2
W ⊗OM

)

→ H
1(S1)

δ
→ H

2(S2)
δ
→

· · ·
δ
→ H

2d+2e+1 (S2d+2e+1)
δ
→ H

2d+2e+2
(

Λtop
F

∗
)



(cont’d)

Recall def’n

Thus, the coboundary maps
are mostly isomorphisms; the rest have 

computable kernels.

δ : H
i(Si) −→ H

i+1(Si+1)

Need to compute coboundary maps.

0 −→ Si −→ Λi
Z ⊗ Sym2d+2e+2−i

W −→ Si−1 −→ 0

Can show the only have nonzero cohomology
in degrees 2d+2, 2e+2

Λ
i
Z

(cont’d)



(cont’d)

The correlation function factorizes:

and one can read off the kernel.

· · · −→ H
2d+2e+2

(

Λ
top

F
∨
)

H
0
(

Sym2d+2e+2
W ⊗O

)

δ
−→ H

1(S1)
δ

−→ H
2(S2) −→

Summary so far:

Result:
For fixed (d,e), sheaf cohomology lives in

Sym∗W/(Qd, Q̃e)

Q = det(Aψ + Bψ̃)

Q̃ = det(Cψ + Dψ̃)
where



Quantum sheaf cohomology
Example:  def’ of T P1xP1

∗ =

[

Ax Bx

Cx̃ Dx̃

]

0 −→ W ∗ ⊗O
∗

−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0

Consider d=(1,0) maps. M = P
3
× P

1

0 −→ W ∗ ⊗O
∗
′

−→ O(1, 0)4 ⊕O(0, 1)2 −→ F −→ 0

∗
′

=





[

A 0

0 A

]

y

[

B 0

0 B

]

y

Cx̃ Dx̃





Kernel generated by

det

(

ψ

[

A 0
0 A

]

+ ψ̃

[

B 0
0 B

])

= det(ψA + ψ̃B)2, det
(

ψC + ψ̃D
)



Quantum sheaf cohomology

whose kernels are computable.

So far I’ve discussed corr’ f’ns in sectors of fixed
instanton number                  as maps〈O1 · · ·On〉!d

H
0 (Symn

W ⊗O) −→ H
n(ΛnF∗) ∼= C

Where do OPE’s come from?

OPE’s emerge when we consider the relations between
*different* instanton sectors.



Quantum sheaf cohomology
Example:  def’ of T P1xP1

Define Q = det(ψA + ψ̃B)

Q̃ = det(ψC + ψ̃D)

I have stated 〈O1 · · ·On〉0 ∈ SymnW/(Q, Q̃)

& more gen’ly,

OPE’s relate corr’ f’ns in different instanton degrees,
and so, should map ideals to ideals.

〈O1 · · ·On〉(a,b) ∈ SymnW/(Qa+1, Q̃b+1)



Existence of OPE’s implies rel’ns of form

〈O〉a,b ∝ 〈ORa,b,a′,b′〉a′,b′

Quantum sheaf cohomology

for some            which must map kernels -> kernels.Ra,b,a′,b′

We’re calling the R’s ``exchange rates,’’
and they determine OPE’s.



Derive OPE ring for P1xP1 example:

Existence of OPE’s implies rel’ns of form

In order to be compatible with kernels, need

Assume proportionality constant is

then have OPE’s: Q = q, Q̃ = q̃

〈O〉a,b ∝ 〈ORa,b,a′,b′〉a′,b′

〈O〉a,b ∝ 〈OQa′
−aQ̃b′−b〉a′,b′

〈O〉a,b = qa′
−aq̃b′−b〈OQa′

−aQ̃b′−b〉a′,b′

Quantum sheaf cohomology
``exchange

 rate’’



Summary of P1xP1 example:

Q = det

(

Aψ + Bψ̃
)

= q

Q̃ = det

(

Cψ + Dψ̃
)

= q̃

* Also was derived from GLSM’s by McOrist-Melnikov
(along with lin’ def’s in other GLSM’s)

* This is the result of our math analysis.



Quantum sheaf cohomology
Program so far:

* For each fixed instanton degree,
compute the kernels of corr’ f’ns in that degree.

* To derive OPE’s,
compute ``exchange rates’’ relating corr’ f’ns

of different instanton degrees.
Required to map kernels --> kernels.



for deformations of tangent bundles of toric varieties,

Final result for quantum sheaf cohomology:

∏

c

(

det
i,j

(∂iA
a
j ψa)

)Qa

c

= qa

∏

c

generalizing Batyrev’s ring
∏

i

(

∑

b

Qb
iψb

)Qa

i

= qa

∏

i

Linear case:  McOrist-Melnikov 0712.3272

Here: generalized to all deformations,
trivially:  does *not* depend on nonlinear def’s.

(See papers for details.)



Summary:

-- overview of progress towards (0,2) mirrors;
starting to heat up!

-- outline of quantum sheaf cohomology
(part of (0,2) mirrors story)


