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Today I'm going to talk about nonperturbative
corrections to correlation functions in
compactifications of heterotic strings.

These are described by “quantum sheaf cohomology,’
an analogue of quantum cohomology that arises in
(0,2) mirror symmetry.

As background, what's (0,2) mirror symmetry?

Quanftum cohomology?

Ordinary mirror symmetry?



Review: ordinary mirror symmetry

This is a symmetry in which 2d NLSMSs on two
(usually topologically-distinct) Calabi-Yau's
(Ricci-flat spaces with cov const spinors)

are described by the same 2d CFT.
* analogue of T-duality

* exchanges perturbative info in one NLSM,
with nonperturbative info in the other NLSM

(This means it makes predictions for curve counts --
Gromov-Witten theory.)



One property of ordinary mirror symmetry is

that it exchanges cohom’ of (p,q) differential forms
Wi e A dz2 Kov- Nl Bl dal o A dzle

with that of (n- p,q) differential Forms,
where n = cpx dim of CY.

We organize the dimensions of the cohom’ of (p,q)
forms, denoted h"?, into diamond-shaped arrays.

hO’O

Ex: space of cpx dim 2:  h*° hlsd h0:2

Mirror symmetry acts as a rotation about diagonal



Example: T

T¢ is self-mirror topologically;
cpX, Kahler structures interchanged

hO,l/ \ hl,l
1
h? s 1 |
1
Note this symmeftry is |
specific to genus 1; g g

for genus g: 1



Example: the quintic

The quintic (deg 5) hypersurface in P*
IS mirror to

(res’n of) a deg 5 hypersurface in P*/(Zs)?

Quintic Mirror
1 1
0 0 0 0
0 1 0 0 101 0
101 101 1 1 1 1 1
0 1 0 0 101 0



(0,2) mirror symmetry

IS a conjectured generalization that exchanges pairs
(Xlagl) i (X2752)

where the X; are Calabi-Yau manifolds
and the £ — X, are holomorphic vector bundles

Constraints: & stable,  cha(€) = chy(T'X)

Reduces to ordinary mirror symmetry when
& =2 TX;



(0,2) mirror symmetry

Instead of exchanging (p,q) forms,
(0,2) mirror symmetry exchanges bundle-valued
differential forms (="sheaf cohomology”):

HI(X1,N&) « H! (X, (M'&)")
Note when &; = T'X; this reduces to
HPbY(X)) o HY(X,)

(for X; Calabi-Yau)



(0,2) mirror symmetry

Some of the first evidence for (0,2) mirror symmetry
was numerical....

Horizontal: »'(€) — ' (EY)

Vertical: 7' (€) +h'(€7)

where £ is rk 4




(0,2) mirror symmetry
Overview of work done:

* an analogue of the Greene-Plesser construction
(quotients by finite groups) is known

* an analogue of Hori-Vafa

* analogue of quantum cohomology known since ‘04

* for def’s of the tangent bundle,
there now exists a (0,2) monomial-divisor mirror map

(0,2) mirrors are heating up again!



The most important aspect of mirror symmetry is the
fact that it exchanges perturbative &
nonperfurbative confributions.

Nonperturbative effects: ““worldsheet instantons”
which are minimal-area (=holomorphic) curves.

A curve and two possible

saddle-shaped film surfaces

Physically, these generate corrections to 2d OPES,
and also spacetime superpotential charged-matter
couplings.



In a heterotic compactification on a (2,2) theory,
these worldsheet instanton corrections generate
corrections to charged-matter couplings.

Ex: If we compactify on a Calabi-Yau 3-fold,
then, have 4d E¢ gauge symmetry, and these are
corrections to (27*)3 couplings
appearing in the spacetime superpotential.

For (2,2) compactification, computed by A model TFT,
which we shall review next.

For non-standard embedding, (0,2) theory, need
(0,2) version of the A model (= “A/2),
which we shall describe later.



Mathematically, the worldsheet instanton corrections
modify OPES....

Example: A model on CPN!: correl'n f'ns:
Ty by { 0 else
hence OPE z%¥ ~ q
Classical cohomology ring of CPN-: C[ZL‘]/ ($N = 0)

so we call the physical OPE ring Cl[z]/(z" — q)

quantum cohomology.



The rest of my talk today will focus on
the (0,2) mirrors analogue of quantum cohomology,
Known as quantum sheaf cohomology,
which computes nonpert’ corrections in (0,2) theories,
generalizing quantum cohomology.

[Initially developed in '04 by S Katz, ES,
and later work by A Adams, J Distler, R Donagi,
M Ernebjerg, J Guffin, J McOrist, I Melnikoy,
S Sethi, ....]

Next: review A, A/2 models....



Review the A model:

This is a 2d TFT. 2d TFT's are generated by changing
worldsheet fermions: worldsheet spinors become
worldsheet scalars & (1-component chiral) vectors.

Concretely, if start with the NLSM
970008 + igip. D" + g Deh + R g% vhot ¢t

then deform the D7) 's by changing the spin
connection term. Since J ~ ¥, this is same as

1 |
LHL::§LUJ N Tl—>T::§aJ




Ordinary A model

970008 + igil D + igmd Db R ot diliPt

Fermions
1(z>_<) e Dl X)) et ) e B " FOX)
P (=¢%) € T(K®¢* T X) w+< g (0 T X))

optacc x*, .09 o« X'
Under the scalar YRR )

SuperCharge, 5¢; # O, 6¢Z # O

so the states are
O ~ bil---ipil---qu : qule 2 .XZP s Hp,q(X)
O = d



The A/2, B/2 models:

*(0,2) analogues of ( (2,2) ) A, B models

* No longer strictly TFT's, though become TFT's on the
(2,2) locus

* Nevertheless, some correlation functions still have a
mathematical understanding

A/2 on (X, &)
* New symmetries: same as
B/2 on (X,EY)

In more detalil....



A/2 model
9500097 + ih gAY DAY + igig Devl + F sy A2 A

Fermions:
e € T((¢*E)") ¥i € DK ® ¢*TH°X)
A e TIK@¢*E) vy € T((¢*THX)*)

Constraints:
Green-Schwarz: cha(€) = chy(T'X)

Another anomaly: A™PEY = Ky

(analogue of the CY condition in the B model)



A/2 model
9500097 + ih gAY DAY + igig Devl + F sy A2 A

Fermions:
e e T((¢*8)") ¢ € (K ®¢*THOX)
A e T (R0 8« e 6 TR ) )

Constraints: A"PE* =2 Kx, chy(€) = chy(TX)

States:
O ~ by .70y o, el SR B T \PEY)

When & = T' X, reduces to the A model,
since HI(X,AP(TX)")=HP9(X)



A model classical correlation functions

T
For X compact, have n X ; X zero modes,
plus bosonic zero modes ~ X, so

(01 Om) :/wl/\---/\wm, w; € HP%(X)
X

Selection rule from left, right U(1)rS:
sz‘ . Z%‘ ==l

)

o (O1---O) ~ / (top-form)
B



A/2 model classical correlation functions

For X compact, we have n 1’ zero modes and
r A* zero modes:

(O1:-:Op) = / i A A e e ERIEX, NPEET)
X
Selection rule: ;@i =N, ) . p;i =T

(O1++-Oyp) ~ / H P (8 PE™)
X

The constraint A°PE* =2 K
makes the integrand a top-form.



A model -- worldsheet instantons

Moduli space of bosonic zero modes
= moduli space of worldsheet instantons, M

If no ¥, wg zero modes, then

(O1 - Om) N/ W1 Ao Nl 2 hw € HPY T M)
M

More generally,

(O1 - Om) N/ (] A SRR R G O | iy, € HPY% (M)
M

In all cases: <O1 "2 Om> o / (tOP form)
M



A/2 model -- worldsheet instantons

The bundle £ on X induces
a bundle F (of )\ zero modes) on M :
where T: X x M —-M, a:XxM—-X

On the (2,2) locus, where £ = T'X, have F =T M

F=Rimo &

When no “excess zero modes,
(O1+++-Opp) ~ fM H"P(M, A*°PF™*)
Apply anomaly constraints:
NOP £ D G GRR
Chz(g) — ChQ(TX) ;

so again integrand is a fop-form.
(general case similar)

Atopf'* ~ K./\/l




To do any computations, we need explicit expressions
for the space M and bundle F.

Will use “linear sigma model’ moduli spaces.

Gauged linear sigma models are 2d gauge theories,

generalizations of the CPN model,
that RG flow in IR to NLSMs.

Disadvantage: no universal instanton
a: XXM — X,
previous discussion merely formal,
need to extend induced sheaves over the
compactification divisor.



In general, build M by expanding homogeneous coord's
in a basis of zero modes on P!

Example: CPN!
Have N chiral superfields 1, -, TN, each charge 1
For degree d maps, expand:

THEE— xioud =5 mﬂud_lv e sl x@-dvd

where u, v are homog’ coords on worldsheet = P!

Take (735 ) to be homogeneous coords on M, then

MLSM il PN(d—I—l)—l



What about induced bundles  — M ?

All bundles in GLSM are built from short exact
sequences of bosons, fermions, corresponding to
line bundles.

Physics:

Expand worldsheet fermions in a basis of zero modes,

and identify each basis element with a line bundle of
same U(1) weights as the original line bundle.

Math:
Idea: lift each such line bundle to a natural line

bundle on P! x M,
then pushforward to M.



Induced bundles JF for projective spaces:

Example: completely reducible bundle

E = $,0(ng)

We expand worldsheet fermions in a basis of zero
modes, and identify each basis element with a line

bundle of same U(1) weights as the original line
bundle.

Result:
F = @.H° (P',0(n.d)) ®c O(n,)



There is also a trivial extension of this to more
general toric variefies.

Example: completely reducible bundle

¢ =4, 0fm;)
Corresponding bundle of fermi zero modes is

F = @.H (PL,0(, - d)) ©c O(71a)

We can also build a bundle of the H's:

—

Fi = @H' (P!, 0(f - d)) ®c O(7ia)

for zero modes of worldsheet vector fermions.



Because of the construction, this works for short
exact sequences in the way youd expect....

From
0 —:OF o 0 O e )

we get

0 — BFHYO)20 — &;HYOG - d)
— ofH(O)e 0 e 0 @ o0 Fy 2 0
which simplifies:
0 — of0 — CHTTIRE @IS Olg)" = 7 — 0
Fi =2 &H(0(G - d)) @ O()

Fact: if £is locally-free, then J will be also.



Check of (2,2) locus

The tangent bundle of a (cpt, smooth) toric variety
can be expressed as

0 —S.00 80 = GO e - TOR i)

Applying previous ansatz,
0 — QR (Pl,(’)(cj;--cf)) RcO(G) — F — 0
Fi 2 a:H" (P0G - d)) 90 O(&)

This F is precisely T Miswm, \/
and F; is the obs’ sheaf.



Now, let’s turn to OPE rings in these theories.

In (2,2) case, = quantum cohomology.
What about (0,2) ? Need OPE ring to close....

Ordinarily justify closure of OPE ring using (2,2) susy,
but turns out only need (0,2) sometimes:
* Adams-Basu-Sethi (‘'03’) conjectured (0,2) exs
* Katz-E.S. (‘'04) computed matching corr'n f'ns

* Adams-Distler-Ernebjerg ('05): gen’l argument
for def's of tangent bundles of CY's

(Use CFT fto tie left-, right-movers,
then use right-moving N=2 algebra.)

* Guffin, Melnikov, McOrist, Sethi, etc (contd)



Quantum sheaf cohomology

= (0,2) quantum cohomology

Example:

Consider a (0,2) theory describing P'xP!
with gauge bundle £ = def’ of tangent bundle,
expressible as a cokernel:

0 > 00 @il aced s .t

W, Axr Bz
e @RSt

A B,C,D 2 x 2 matrices, x = i :
— Q//BQ — = :’Ij2 —

=N
|
2




Example, contd

For P!xP! with bundle

0 — Q@@ O (1 g @i | -=t e )

e Ax Bz
APalt C iy

one finds (& we will show, later) that OPE ring is

det (Aw == B@) = q, det (C’@D 2 D@E) = q

where 1, zﬁ are operators generating chiral ring.



Consistency check:
det (Ay + BY) = g

det (Cw S Dzz) = )

In the special case £ = TP* x P, one should recover
the standard quantum cohomology ring.

That case corresponds to

~

and the above becomes 1&2 — (1, ¢2 = (>

Matches



Quantum sheaf cohomology

More results known:

For any toric variety, and any def’ of tangent bundle,
E

0 — 0% — ®0(G) — &€ — 0

the chiral ring is

H(det MQ)QZ =

84

where Ms are matrices of chiral operators
built from Es.



Quantum sheaf cohomology

Next, I’ll outline some of the mathematical details of
the computations that go into these rings.

The rest of the talk will, unavoidably, be somewhat
technical, but in principle, I'm just describing
a computation of nonperturbative corrections to
some correlation functions in 2d QFTS.



Quantum sheaf cohomology

Set up notation:

Ist, write tangent bundle of foric variety X as
0 — W0 — ,0(q;) — TX — 0

where W is a vector space.

Write a deformation € of TX as
0i— WO e ST, ()

where Z° = ®;0(q;)



Quantum sheaf cohomology

Handy to dualize:
0 — & — 7 —Wx0 — 0

Correlators are elements of H'(£*)

Compute:
HYZy — HE(W g = e = s (7))

Can show H'(Z) = H°(Z) = 0
thus,
Correlators are elements of H'(£*) = H*(W ® O)



Quantum sheaf cohomology

On an n-dim’l toric variety X,
correlation functions (07 ---O,) are maps

Syin" e —— HENTE )2 C
but because H'(E*) = HOW R 0O) = W
we can think of correlation functions as maps
H? (Sym™W ® O) (= Sym"H*(W ® O), Sym" W)
— H"(A"E*) =2 C

and it's this latter form that will be useful.



Quantum sheaf cohomology

So far:

0 — & —Z W0 — 0
and correlation functions are maps
O (Sym™ W 2 0), — ¢ HEEREE). =~ C
How to compute? Use the ‘Koszul resolution’

0 — A"E* — A"Z — A" ' ZoW
— s — SymMIV 0O — 0

which relates A"E* and Sym™ W ® O .



Quantum sheaf cohomology

So far:

Plan to compute correlation functions
H° (SymPW o O S HY(A"E = G

using the Koszul resolution of A"E™.

In fact, instead of computing the entire map,
it suffices to compute just the kernel of that map,
which is what we do.

Here's a sample of how that works....



Quantum sheaf cohomology
Example:
Consider a (0,2) theory describing P'xP!
with gauge bundle £ = def’ of tangent bundle,
expressible as a cokernel:

0 — 0@l Ot iedaele . £ - 50

i Axr Bx
GO Iy

: ; L1 .

A B, C,D 2 XZImaee s — ,

o aj2 - L ZEQ =

=N
|
2

Dualize:
0 — & 5 @[ N0 o i s ()

TN -

Z




Classical correlation functions are a map

Sym*W. =& (Sym W ¢ =N )G

To build this map, we begin with
0> 2l 7 () s ()
and take the Koszul resolution

0 — A28 — S AeZ o s 00— 0

which will determine a map between cohomology
groups above.



Let’s build the map between cohomology groups.

Take the long exact sequence

0 — A28 W T, 70 Vie — obvtilall 00— 0
and break it up info short exacts:
0 — AE T N7 - I
0'—5 @ Sl = s eIV ()= ()

Second gives a map H' (Sym*W ® O) — H'(Q)
First gives a map Hi(O) e s H2(A%E™)

& the composition computes corr’ functions.



Let’s work out those maps.

Take
0 — Qs Z W =S8 Gl 0 ) — 1)

The associated long exact sequence gives
HYZeoW) — HYSym*’W ® 0) — HY(Q) — HY(ZoW)
but since Z is a sum of O(—1,0), O(0, —1)",
HO(Z®W) — il — Hl(Z®W)
so we see that

H(Sym*W @ 0) — H'(Q)



Next, take
0. =, A28 — 5 B ) — ()

The associated long exact sequence gives
HY A%z S~ B e T (\"7)
Here, H*(A*Z) = 0

but H'(A*Z) = H' (P' x P',0(-2,0) ® O(0, -2))
= CosC

and so the map H'(Q) — H*(A*E")

has a two-dim’l kernel.



So far, we have computed the 2 pieces of classical
correlation functions:

Sym*W =, HiSym Tas(h = C= 1 (Rl FIaihe: )

What we really want are the relations,
the kernel of the map above.

Since the first map is an isomorphism,
the kernel is determined by the second map.

To get the classical sheaf cohomology ring,
we just need the kernel of the second map....



It can be shown that the kernel of the second map,
HY(Q) — H2(A2E")
IS generated by
det()A + B), det(yC + D)

Thus, we have classical ring rel’ns:

det (wA . @ZB) RS (wc L. @ZD)

and the classical sheaf cohomology ring is

Cly, 9]/ (det(vA + $B), det(¢:C + D))



Quantum sheaf cohomology

What about nonperturbative sectors?

We can do exactly the same thing.

M = moduli space of instantons
JF = induced bundle on the moduli space

If £ is a deformation of TX,
then F is a deformation of 1T'M..

So: apply the same analysis as the classical case.



Quantum sheaf cohomology

Example: def’ of T P'xP!
0 —W"®0 — 01,08 0(0,1)? — & — 0
By b
ik [ Ci Di ]
Work in degree (d,e). M = P2l x p2etl
2d+2 2e+2

0 — 0% — Ho@a,0e 00,1 — F — 0

1 1

which we shall write as
0 =" W odlh — 7 =, ()

(defining W, Z appropriately)



(contd)
Correlation functions are linear maps

Sym2d+2€—|—2 <H1(f*)) (: Smed—l—Qe—l—Qw) Lot H2d—|—26—|—2 (Atopf*) 250

We compute using the Koszul resolution of A®P F*:

s Atopf* i A2d—|—2€—|—22 £ A2d—|—2€—|—1Z ® W — AQd—I—QeZ R SmeW

¥ Z ® Sym2d+26—|—1W e Smed—I—Ze—I—ZW ® OM S O

(contd)



(contd)

Briefly, the (long exact) Koszul resolution factors into
a sequence of short exact sequences of the form

0 — S5, — AiZ®Sym2d+2e+2_iW — 5,1 — 0

and the coboundary maps ¢ : H'(S;) — H'"'(Sit1)
factor the map determining the correlation functions:

HO (SymZd—l—Ze—l—ZW@ O./\/l) B Hl(Sl) g HQ(SQ) g
ekl 2d+2e+1 (o ey 0 Fr2d+2e+2 (AtOp]_—*)

So, to evaluate corr’ f'n, compute coboundary maps.
(contd)



(contd)
Need to compute coboundary maps.

Recall def'n

0 — S5, — AiZ®Sym2d+2e+2_iW — 5,1 — 0

Can show the A*Z only have nonzero cohomology
In degrees 2d+2, 2e+2

Thus, the coboundary maps 6 : H'(S;) — H*"(Si41)

are mostly isomorphisms; the rest have
computable kernels.

(contd)



(contd) Summary so far:

The correlation function factorizes:

770 (Sym2d+2e+2W®(’)) 50 Hl(Sl) o HQ(SQ) e
e H2d—|—2€—|—2 (Atopf\/)

and one can read off the kernel.

Result:
For fixed (d,e), sheaf cohomology lives in

Sym*W/(Q%, Q°)
where ? e L B%)
O = det(Cy + DY)




Quantum sheaf cohomology
Example: def’ of T P'xP!
0 — Wil - @ie U0 T a1

Sk Axr Bz
e O D

Consider d=(1,0) maps. M = P> x P!
0 — W*®0 200 a0 & 7 < 0

el A B0
W G *0 B |7

Cz Dzx

Kernel generated by

det(wlgl 21] +&[lg g]) = det(yA + ¥ B)?, det(;bCJr&D)



Quantum sheaf cohomology

So far I've discussed corr’ f'ns in sectors of fixed
instanton number (O1 - - - On>g as maps

HY (SymWiw Ol HI A" ), = C
whose Kernels are computable.

Where do OPE's come from?

OPE's emerge when we consider the relations between
*different™ instanton sectors.



Quantum sheaf cohomology
Example: def’ of T P'xP!
Define () = det()A + ¢B)
Q = det(yvC + ¥D)

I have stated (O;---0,)¢ € Sym"W/(Q, Q)

& more gen'ly,

(Or-+:Oniap) & Dy (55>, (")

OPESs relate corr’ f'ns in different instanton degrees,
and so, should map ideals to ideals.



Quantum sheaf cohomology

Existence of OPE's implies rel'ns of form

<O>a,b X <0Ra,b,a’,b’ >a’,b’

for some [2a,b,a’,b* which must map kernels -> kernels.

We're calling the Rs “exchange rates,”
and they determine OPES.



Quantum sheaf cohomology

Derive OPE ring for P'xP! example:

Existence of OPE's implies rel’ns of form
O v o KOR 8857, 5
In order to be compatible with kernels, need
(O)ap x (0Q74Q" *)ary
Assume proportionality constant is

<O>a,b i qa’—a ~b’ —b< Qa —aQb —b> ' b

~

then have OPEs: () =¢q, Q) =g



Summary of P'xP' example:

Q:det(Aw—l—B@Z) =

Q = det (Cy + DP) =

MK

* This is the result of our math analysis.

* Also was derived from GLSMSs by McOrist-Melnikov
(along with lin" def's in other GLSM )



Quantum sheaf cohomology

Program so far:

* For each fixed instanton degree,
compute the kernels of corr’ f'ns in that degree.

* To derive OPES,
compute “exchange rates” relating corr’ f'ns
of different instanton degrees.
Required to map kernels --> kernels.

What about 4-fermi terms?



Quantum sheaf cohomology

In (0,2) theories, 4-fermi terms are of the form
e b
Fz’jang— w-l- AN
& can be used to soak up ‘excess’ zero modes,
ie, zero modes of worldsheet vectors.

Formally, each 4-fermi insertion ought to be
identified with an insertion of

H' (M, F' ® F1 ® Obs")

On (2,2) locus, this becomes Atiyah class of Obs,
and reproduces old Aspinwall-Morrison story.



Quantum sheaf cohomology

4-fermi terms:

Unfortunately, we do not yet have a complete
derivation from first-principles of the effects of
4-fermi terms in our computations.

However, the GLSM suggests an ansatz:

write x: 7 — W ®0O as A;Yq
where (¥4) a basis for W,

then insert H (G}ejt @’A?%) in corr’ f'ns.

(c runs over lin" equiv’ classes.)
-- can show result is ind’ of nonlinear def’s !



Final result for quantum sheaf cohomology:

for deformations of tangent bundles of toric varieties,

Qo
H (%gt(azAﬁlba)) — {a

C
Qs
generalizing Batyrev's ring H (Z Qﬁ?wb) = (q
') b

Linear case: McOrist-Melnikov 0712.3272

Here: generalized to all deformations,
trivially: does *not™ depend on nonlinear defs.

(See papers for details.)



QSC for Grassmannians

Next, let us outline the fundamentals of
g.s.c. for Grassmannians G(k,n) of

k-planes in C".

The GLSM is a U(k) gauge theory
with n fundamentals.

Now, bundles are no longer defined by
line bundles, but rather by vector bundles
associated to products of reps of U(K).



All the heterotic bundles will be built from
(co)kernels of short exact sequences in which all the
other elements are bundles defined by reps of U(k).

EX:
n k+1 k—1
0 — & — POk PAL*Ok) — P Sym’O(k) — 0

O(k) is bundle associated to fund’ rep’ of U(k)



What is the LSM moduli space M ?

As usual, expand GLSM fields in zero modes,
but now, end up quotienting by nonreductive gps.

Result is a “Quot scheme.”

Specifically, the LSM moduli space of degree d maps

P! -5 G(k,n) = G(n-k,n)
is the Quot scheme

QUOtpl (On, k, _d)

of rk n-k subsheaves of O%" of degree d, over P.



What about induced bundles  — M ?

The program is as before:

Given a short exact sequence of
(fermions in GLSM),
lift to natural sheaves on P! x M,
then pushforward to M.

(just as for toric varieties)

Lift to nat’l sheaves on P! x M,
pushforward to M.

(& similarly for toric varieties)



Corresponding to O(k) is .
rk k ‘universal subbundle’Son P! x M.

Lift all others so as to be a U(k)-rep’ homomorphism

EX:
Ok) — S°

Ok)OKk) — S*®S
ALt"O(k) — AIt™S”

Then pushforward to LSM moduli space, and compute.



Ex: n k-+1 S|
0 — & — Pok P AL*Ok) — P Sym*Ok) — 0

O(k) is bundle associated to fund’ rep’ of U(K)

The bundle above, over G(k,n), naturally lifts to
0 — Fyp —dis o AlfiSF s Sl v S —— (
over P! x M

Pushforward to M:
0 — F ==V (@”S* Gl s AltzS*) i it (@k_lsym28*)
— R (@”8* G AltzS*) R (@k_lSymZS*) — 0

& then compute! Details will appear elsewhere....



Summary:

-- overview of progress towards (0,2) mirrors;
starting to heat up!

-- outline of quantum sheaf cohomology
(part of (0,2) mirrors story)



