

Eric Sharpe Physics Dep't, Virginia Tech

w/ J Guffin, S Katz, R Donagi

Also: A Adams, A Basu, J Distler, M Ernebjerg, I Melnikov, J McOrist, S Sethi,

arXiv: 1110.3751, 1110.3752, also hep-th/0605005, 0502064, 0406226

Today I'm going to talk about nonperturbative corrections to correlation functions in compactifications of heterotic strings.

These are described by `quantum sheaf cohomology,' an analogue of quantum cohomology that arises in (0,2) mirror symmetry.

As background, what's (0,2) mirror symmetry?

Quantum cohomology?

Ordinary mirror symmetry?

Review: ordinary mirror symmetry

This is a symmetry in which 2d NLSM's on two (usually topologically-distinct) Calabi-Yau's (Ricci-flat spaces with cov const spinors) are described by the **same** 2d CFT.

* analogue of T-duality

* exchanges perturbative info in one NLSM, with nonperturbative info in the other NLSM

(This means it makes predictions for curve counts --Gromov-Witten theory.) One property of ordinary mirror symmetry is that it exchanges cohom' of (p,q) differential forms

 $\omega_{i_1 \dots i_p \overline{\imath}_1 \dots \overline{\imath}_q} dz^{i_1} \wedge \dots \wedge dz^{i_p} \wedge d\overline{z}^{\overline{\jmath}_1} \wedge \dots \wedge d\overline{z}^{\overline{\jmath}_q}$

with that of (n-p,q) differential forms, where n = cpx dim of CY.

We organize the dimensions of the cohom' of (p,q) forms, denoted $h^{p,q}$, into diamond-shaped arrays.

Ex: space of cpx dim 2: $h^{2,0}$ $h^{1,0}$ $h^{0,1}$ $h^{0,2}$ $h^{0,2}$

Mirror symmetry acts as a rotation about diagonal

Example: T²

 T^2 is self-mirror topologically; cpx, Kahler structures interchanged $h^{0,1}$ $h^{1,1}$ $h^{p,q}$'s: 1 1 1

Note this symmetry is 1 specific to genus 1; g g for genus g:

Example: the quintic

The quintic (deg 5) hypersurface in P⁴
is mirror to

(res'n of) a deg 5 hypersurface in P⁴/(Z₅)³

Quintic Mirror

is a conjectured generalization that exchanges pairs

$$(X_1, \mathcal{E}_1) \leftrightarrow (X_2, \mathcal{E}_2)$$

where the X_i are Calabi-Yau manifolds and the $\mathcal{E}_i o X_i$ are holomorphic vector bundles

Constraints: \mathcal{E} stable, $\operatorname{ch}_2(\mathcal{E}) = \operatorname{ch}_2(TX)$

Reduces to ordinary mirror symmetry when $\mathcal{E}_i \cong TX_i$

(Initial work: R Blumenhagen, '96 - '97)

Instead of exchanging (p,q) forms, (0,2) mirror symmetry exchanges bundle-valued differential forms (=``sheaf cohomology"):

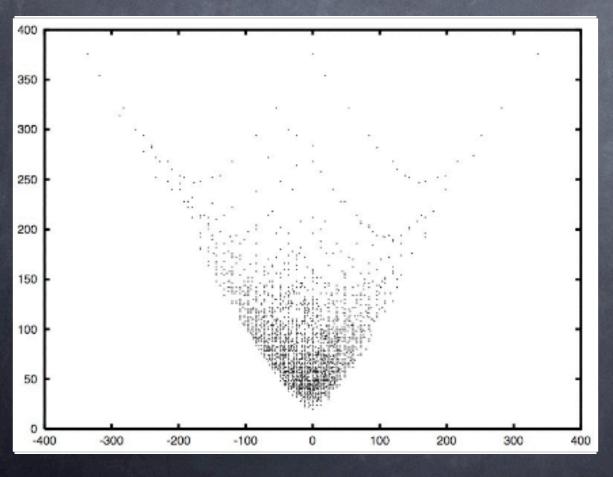
$$H^j(X_1,\Lambda^i\mathcal{E}_1) \leftrightarrow H^j(X_2,(\Lambda^i\mathcal{E}_2)^*)$$

Note when $\mathcal{E}_i \cong TX_i$ this reduces to

$$H^{n-1,1}(X_1) \leftrightarrow H^{1,1}(X_2)$$

(for X_i Calabi-Yau)

Some of the first evidence for (0,2) mirror symmetry was numerical....



Horizontal: $h^1(\mathcal{E}) - h^1(\mathcal{E}^*)$

Vertical: $h^1(\mathcal{E}) + h^1(\mathcal{E}^*)$

where \mathcal{E} is rk 4

(Blumenhagen, Schimmrigk, Wisskirchen, NPB 486 ('97) 598-628)

Overview of work done:

* an analogue of the Greene-Plesser construction (quotients by finite groups) is known

(Blumenhagen, Sethi, NPB 491 (`97) 263-278

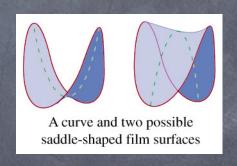
- * an analogue of Hori-Vafa (Adams, Basu, Sethi, hepth/0309226)
- * analogue of quantum cohomology known since '04 (ES, Katz, Adams, Distler, Ernebjerg, Guffin, Melnikov, McOrist,)
- * for def's of the tangent bundle, there now exists a (0,2) monomial-divisor mirror map

(Melnikov, Plesser, 1003.1303 & Strings 2010)

(0,2) mirrors are heating up again!

The most important aspect of mirror symmetry is the fact that it exchanges perturbative & nonperturbative contributions.

Nonperturbative effects: ``worldsheet instantons" which are minimal-area (=holomorphic) curves.



Physically, these generate corrections to 2d OPE's, and also spacetime superpotential charged-matter couplings.

In a heterotic compactification on a (2,2) theory, these worldsheet instanton corrections generate corrections to charged-matter couplings.

Ex: If we compactify on a Calabi-Yau 3-fold, then, have 4d E₆ gauge symmetry, and these are corrections to (27*)³ couplings appearing in the spacetime superpotential.

For (2,2) compactification, computed by A model TFT, which we shall review next.

For non-standard embedding, (0,2) theory, need (0,2) version of the A model (= `A/2'), which we shall describe later.

Mathematically, the worldsheet instanton corrections modify OPE's....

Example: A model on CPN-1: correl'n f'ns:

$$\langle x^k \rangle = \begin{cases} q^m & \text{if } k = mN + N - 1 \\ 0 & \text{else} \end{cases}$$

hence OPE $x^N \sim q$

Classical cohomology ring of CPN-1: $\mathbf{C}[x]/(x^N-0)$

so we call the physical OPE ring $\mathbf{C}[x]/(x^N-q)$ quantum cohomology.

The rest of my talk today will focus on the (0,2) mirrors analogue of quantum cohomology, known as quantum sheaf cohomology, which computes nonpert' corrections in (0,2) theories, generalizing quantum cohomology.

[Initially developed in '04 by S Katz, ES, 0406226 and later work by A Adams, J Distler, R Donagi, M Ernebjerg, J Guffin, J McOrist, I Melnikov, S Sethi,]

Next: review A, A/2 models....

Review the A model:

This is a 2d TFT. 2d TFT's are generated by changing worldsheet fermions: worldsheet spinors become worldsheet scalars & (1-component chiral) vectors.

Concretely, if start with the NLSM

$$g_{i\overline{\jmath}}\overline{\partial}\phi^{i}\partial\phi^{\overline{\jmath}} + ig_{i\overline{\jmath}}\psi_{-}^{\overline{\jmath}}D_{z}\psi_{-}^{i} + ig_{i\overline{\jmath}}\psi_{+}^{\overline{\jmath}}D_{\overline{z}}\psi_{+}^{i} + R_{i\overline{\jmath}k\overline{l}}\psi_{+}^{i}\psi_{+}^{\overline{\jmath}}\psi_{-}^{k}\psi_{-}^{\overline{l}}$$

then deform the $D\psi$'s by changing the spin connection term. Since $J\sim \overline{\psi}\psi$, this is same as

$$L \mapsto L \pm \frac{1}{2}\omega J \iff T \mapsto T \pm \frac{1}{2}\partial J$$

Ordinary A model

$$g_{i\overline{\jmath}}\overline{\partial}\phi^{i}\partial\phi^{\overline{\jmath}} + ig_{i\overline{\jmath}}\psi_{-}^{\overline{\jmath}}D_{z}\psi_{-}^{i} + ig_{i\overline{\jmath}}\psi_{+}^{\overline{\jmath}}D_{\overline{z}}\psi_{+}^{i} + R_{i\overline{\jmath}k\overline{l}}\psi_{+}^{i}\psi_{+}^{\overline{\jmath}}\psi_{-}^{k}\psi_{-}^{\overline{l}}$$

Fermions:

$$\psi_{-}^{i}(\equiv \chi^{i}) \in \overline{\Gamma}((\phi^{*}T^{0,1}X)^{*}) \qquad \psi_{+}^{i}(\equiv \psi_{z}^{i}) \in \Gamma(K \otimes \phi^{*}T^{1,0}X)$$
$$\psi_{-}^{\overline{\imath}}(\equiv \psi_{\overline{z}}^{\overline{\imath}}) \in \overline{\Gamma}(\overline{K} \otimes \phi^{*}T^{0,1}X) \qquad \psi_{+}^{\overline{\imath}}(\equiv \chi^{\overline{\imath}}) \in \Gamma((\phi^{*}T^{1,0}X)^{*})$$

Under the scalar supercharge,

$$\delta\phi^{i} \propto \chi^{i}, \quad \delta\phi^{\overline{\imath}} \propto \chi^{\overline{\imath}}
\delta\chi^{i} = 0, \quad \delta\chi^{\overline{\imath}} = 0
\delta\psi^{i}_{z} \neq 0, \quad \delta\psi^{\overline{\imath}}_{\overline{z}} \neq 0$$

so the states are

$$\mathcal{O} \sim b_{i_1 \cdots i_p \overline{\imath}_1 \cdots \overline{\imath}_q} \chi^{\overline{\imath}_1} \cdots \chi^{\overline{\imath}_q} \chi^{i_1} \cdots \chi^{i_p} \quad \leftrightarrow \quad H^{p,q}(X)$$

$$Q \quad \leftrightarrow \quad d$$

The A/2, B/2 models:

- * (0,2) analogues of ((2,2)) A, B models
- * No longer strictly TFT's, though become TFT's on the (2,2) locus
- * Nevertheless, some correlation functions still have a mathematical understanding

* New symmetries:

A/2 on
$$(X,\mathcal{E})$$
 same as B/2 on (X,\mathcal{E}^{\vee})

In more detail....

A/2 model

$$g_{i\overline{\jmath}}\overline{\partial}\phi^{i}\partial\phi^{\overline{\jmath}} + ih_{a\overline{b}}\lambda_{-}^{\overline{b}}D_{z}\lambda_{-}^{a} + ig_{i\overline{\jmath}}\psi_{+}^{\overline{\jmath}}D_{\overline{z}}\psi_{+}^{i} + F_{i\overline{\jmath}}a\overline{b}\psi_{+}^{i}\psi_{+}^{\overline{\jmath}}\lambda_{-}^{a}\lambda_{-}^{\overline{b}}$$

Fermions:

$$\lambda_{-}^{a} \in \overline{\Gamma}((\phi^{*}\overline{\mathcal{E}})^{*}) \qquad \psi_{+}^{i} \in \Gamma(K \otimes \phi^{*}T^{1,0}X)$$
$$\lambda_{-}^{\overline{b}} \in \overline{\Gamma}(\overline{K} \otimes \phi^{*}\overline{\mathcal{E}}) \qquad \psi_{+}^{\overline{i}} \in \Gamma((\phi^{*}T^{1,0}X)^{*})$$

Constraints:

Green-Schwarz: $\operatorname{ch}_2(\mathcal{E}) = \operatorname{ch}_2(TX)$

Another anomaly: $\Lambda^{\mathrm{top}}\mathcal{E}^ee\cong K_X$

(analogue of the CY condition in the B model)

A/2 model

$$g_{i\overline{\jmath}}\overline{\partial}\phi^{i}\partial\phi^{\overline{\jmath}} + ih_{a\overline{b}}\lambda^{\overline{b}}_{-}D_{z}\lambda^{a}_{-} + ig_{i\overline{\jmath}}\psi^{\overline{\jmath}}_{+}D_{\overline{z}}\psi^{i}_{+} + F_{i\overline{\jmath}}a_{\overline{b}}\psi^{i}_{+}\psi^{\overline{\jmath}}_{+}\lambda^{a}_{-}\lambda^{\overline{b}}_{-}$$

Fermions:

$$\lambda_{-}^{a} \in \overline{\Gamma}((\phi^{*}\overline{\mathcal{E}})^{*}) \qquad \psi_{+}^{i} \in \Gamma(K \otimes \phi^{*}T^{1,0}X)$$
$$\lambda_{-}^{\overline{b}} \in \overline{\Gamma}(\overline{K} \otimes \phi^{*}\overline{\mathcal{E}}) \qquad \psi_{+}^{\overline{\imath}} \in \Gamma((\phi^{*}T^{1,0}X)^{*})$$

Constraints: $\Lambda^{top}\mathcal{E}^*\cong K_X, \ \operatorname{ch}_2(\mathcal{E})=\operatorname{ch}_2(TX)$

States:

$$\mathcal{O} \sim b_{\overline{\imath}_1 \dots \overline{\imath}_n a_1 \dots a_p} \psi_+^{\overline{\imath}_1} \dots \psi_+^{\overline{\imath}_n} \lambda_-^{a_1} \dots \lambda_-^{a_p} \leftrightarrow H^n(X, \Lambda^p \mathcal{E}^*)$$

When $\mathcal{E}=TX$, reduces to the A model, since $H^q(X,\Lambda^p(TX)^*)=H^{p,q}(X)$

A model classical correlation functions

For X compact, have n $\chi^i, \chi^{\overline{\imath}}$ zero modes, plus bosonic zero modes $\sim X$, so

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_m \rangle = \int_X \omega_1 \wedge \cdots \wedge \omega_m, \quad \omega_i \in H^{p_i, q_i}(X)$$

Selection rule from left, right U(1)_R's:

$$\sum_{i} p_i = \sum_{i} q_i = n$$

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_m \rangle \sim \int_X (\text{top-form})$$

A/2 model classical correlation functions

For X compact, we have n $\psi_+^{\overline{\imath}}$ zero modes and r λ^a zero modes:

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_m \rangle = \int_X \omega_1 \wedge \cdots \wedge \omega_m, \quad \omega_i \in H^{q_i}(X, \Lambda^{p_i} \mathcal{E}^*)$$

Selection rule: $\sum_i q_i = n, \sum_i p_i = r$

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_m \rangle \sim \int_X H^{top}(X, \Lambda^{top} \mathcal{E}^*)$$

The constraint $\Lambda^{top}\mathcal{E}^*\cong K_X$ makes the integrand a top-form.

A model -- worldsheet instantons

Moduli space of bosonic zero modes = moduli space of worldsheet instantons, \mathcal{M}

If no $\psi_z^i, \psi_{\overline{z}}^{\overline{\imath}}$ zero modes, then

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_m \rangle \sim \int_{\mathcal{M}} \omega_1 \wedge \cdots \wedge \omega_m, \quad \omega_i \in H^{p_i, q_i}(\mathcal{M})$$

More generally,

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_m \rangle \sim \int_{\mathcal{M}} \omega_1 \wedge \cdots \wedge \omega_m \wedge c_{top}(\mathrm{Obs}), \quad \omega_i \in H^{p_i, q_i}(\mathcal{M})$$

In all cases: $\langle \mathcal{O}_1 \cdots \mathcal{O}_m
angle \sim \int_{\mathcal{M}} (ext{top form})$

A/2 model -- worldsheet instantons

The bundle $\mathcal E$ on X induces a bundle $\mathcal F$ (of λ zero modes) on $\mathcal M$: $\mathcal F\equiv R^0\pi_*\alpha^*\mathcal E$

where
$$\pi: \Sigma \times \mathcal{M} \to \mathcal{M}, \quad \alpha: \Sigma \times \mathcal{M} \to X$$

On the (2,2) locus, where $\mathcal{E}=TX$, have $\mathcal{F}=T\mathcal{M}$

When no 'excess' zero modes,

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_m \rangle \sim \int_{\mathcal{M}} H^{top}(\mathcal{M}, \Lambda^{top}\mathcal{F}^*)$$

Apply anomaly constraints:

$$\left\{ \begin{array}{c} \Lambda^{top} \mathcal{E}^* \cong K_X \\ \operatorname{ch}_2(\mathcal{E}) = \operatorname{ch}_2(TX) \end{array} \right\} \stackrel{GRR}{\Longrightarrow} \Lambda^{top} \mathcal{F}^* \cong K_{\mathcal{M}}$$

so again integrand is a top-form. (general case similar)

To do any computations, we need explicit expressions for the space $\mathcal M$ and bundle $\mathcal F.$

Will use `linear sigma model' moduli spaces.

Gauged linear sigma models are 2d gauge theories, generalizations of the CPN model, that RG flow in IR to NLSM's.

Disadvantage: no universal instanton

$$\alpha: \Sigma \times \mathcal{M} \to X,$$

previous discussion merely formal, need to extend induced sheaves over the compactification divisor.

In general, build $\mathcal M$ by expanding homogeneous coord's in a basis of zero modes on $\mathbf P^1$

Example: CPN-1

Have N chiral superfields x_1, \dots, x_N , each charge 1 For degree d maps, expand:

$$x_i = x_{i0}u^d + x_{i1}u^{d-1}v + \cdots + x_{id}v^d$$

where u, v are homog' coord's on worldsheet = P^1

Take (x_{ij}) to be homogeneous coord's on \mathcal{M} , then

$$\mathcal{M}_{\mathrm{LSM}} = \mathbf{P}^{N(d+1)-1}$$

What about induced bundles $\mathcal{F} o \mathcal{M}$?

All bundles in GLSM are built from short exact sequences of bosons, fermions, corresponding to line bundles.

Physics:

Expand worldsheet fermions in a basis of zero modes, and identify each basis element with a line bundle of same U(1) weights as the original line bundle.

Math:

Idea: lift each such line bundle to a natural line bundle on $\mathbf{P}^1 \times \mathcal{M}$, then pushforward to \mathcal{M} .

Induced bundles ${\mathcal F}$ for projective spaces:

Example: completely reducible bundle

$$\mathcal{E} = \bigoplus_a \mathcal{O}(n_a)$$

We expand worldsheet fermions in a basis of zero modes, and identify each basis element with a line bundle of same U(1) weights as the original line bundle.

Result:

$$\mathcal{F} = \bigoplus_a H^0\left(\mathbf{P}^1, \mathcal{O}(n_a d)\right) \otimes_{\mathbf{C}} \mathcal{O}(n_a)$$

There is also a trivial extension of this to more general toric varieties.

Example: completely reducible bundle

$$\mathcal{E} = \bigoplus_a \mathcal{O}(\vec{n}_a)$$

Corresponding bundle of fermi zero modes is

$$\mathcal{F} = \bigoplus_a H^0\left(\mathbf{P}^1, \mathcal{O}(\vec{n}_a \cdot \vec{d})\right) \otimes_{\mathbf{C}} \mathcal{O}(\vec{n}_a)$$

We can also build a bundle of the H1's:

$$\mathcal{F}_1 = \bigoplus_a H^1\left(\mathbf{P}^1, \mathcal{O}(\vec{n}_a \cdot \vec{d})\right) \otimes_{\mathbf{C}} \mathcal{O}(\vec{n}_a)$$

for zero modes of worldsheet vector fermions.

Because of the construction, this works for short exact sequences in the way you'd expect....

From

$$0 \longrightarrow \mathcal{O}^{\oplus k} \longrightarrow \oplus_i \mathcal{O}(\vec{q_i}) \longrightarrow \mathcal{E} \longrightarrow 0$$

we get

$$0 \longrightarrow \bigoplus_{1}^{k} H^{0}(\mathcal{O}) \otimes \mathcal{O} \longrightarrow \bigoplus_{i} H^{0}(\mathcal{O}(\vec{q}_{i} \cdot \vec{d})) \otimes \mathcal{O}(\vec{q}_{i}) \longrightarrow \mathcal{F}$$

$$\longrightarrow \bigoplus_{1}^{k} H^{1}(\mathcal{O}) \otimes \mathcal{O} \longrightarrow \bigoplus_{i} H^{1}(\mathcal{O}(\vec{q}_{i} \cdot \vec{d})) \otimes \mathcal{O}(\vec{q}_{i}) \longrightarrow \mathcal{F}_{1} \longrightarrow 0$$

which simplifies:

$$0 \longrightarrow \bigoplus_{1}^{k} \mathcal{O} \longrightarrow \bigoplus_{i} H^{0}(\mathcal{O}(\vec{q}_{i} \cdot \vec{d})) \otimes \mathcal{O}(\vec{q}_{i}) \longrightarrow \mathcal{F} \longrightarrow 0$$
$$\mathcal{F}_{1} \cong \bigoplus_{i} H^{1}(\mathcal{O}(\vec{q}_{i} \cdot \vec{d})) \otimes \mathcal{O}(\vec{q}_{i})$$

Fact: if $\mathcal E$ is locally-free, then $\mathcal F$ will be also.

Check of (2,2) locus

The tangent bundle of a (cpt, smooth) toric variety can be expressed as

$$0 \longrightarrow \mathcal{O}^{\oplus k} \longrightarrow \oplus_i \mathcal{O}(\vec{q_i}) \longrightarrow TX \longrightarrow 0$$

Applying previous ansatz,

$$0 \longrightarrow \mathcal{O}^{\oplus k} \longrightarrow \oplus_{i} H^{0}\left(\mathbf{P}^{1}, \mathcal{O}(\vec{q_{i}} \cdot \vec{d})\right) \otimes_{\mathbf{C}} \mathcal{O}(\vec{q_{i}}) \longrightarrow \mathcal{F} \longrightarrow 0$$
$$\mathcal{F}_{1} \cong \oplus_{i} H^{1}\left(\mathbf{P}^{1}, \mathcal{O}(\vec{q_{i}} \cdot \vec{d})\right) \otimes_{\mathbf{C}} \mathcal{O}(\vec{q_{i}})$$

This ${\cal F}$ is precisely $T{\cal M}_{\rm LSM}$, and ${\cal F}_1$ is the obs' sheaf.


```
Now, let's turn to OPE rings in these theories.
In (2,2) case, = quantum cohomology.
What about (0,2)? Need OPE ring to close....
```

- Ordinarily justify closure of OPE ring using (2,2) susy, but turns out only need (0,2) sometimes:
 - * Adams-Basu-Sethi ('03') conjectured (0,2) exs
 - * Katz-E.S. ('04) computed matching corr'n f'ns
 - * Adams-Distler-Ernebjerg ('05): gen'l argument for def's of tangent bundles of CY's

(Use CFT to tie left-, right-movers, then use right-moving N=2 algebra.)

* Guffin, Melnikov, McOrist, Sethi, etc (cont'd)

Quantum sheaf cohomology

= (0,2) quantum cohomology

Example:

Consider a (0,2) theory describing P^1xP^1 with gauge bundle $\mathcal{E} = \text{def}'$ of tangent bundle, expressible as a cokernel:

$$0 \longrightarrow \mathcal{O} \oplus \mathcal{O} \stackrel{*}{\longrightarrow} \mathcal{O}(1,0)^2 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathcal{E} \longrightarrow 0$$

$$* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix}$$

$$A, B, C, D$$
 2×2 matrices, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\tilde{x} = \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$

Example, cont'd

For P1xP1 with bundle

$$0 \longrightarrow \mathcal{O} \oplus \mathcal{O} \stackrel{*}{\longrightarrow} \mathcal{O}(1,0)^2 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathcal{E} \longrightarrow 0$$

$$* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix}$$

one finds (& we will show, later) that OPE ring is

$$\det\left(A\psi \,+\, B\tilde{\psi}\right) \,=\, q\,,\,\, \det\left(C\psi \,+\, D\tilde{\psi}\right) \,=\, \tilde{q}$$

where $\psi, \tilde{\psi}$ are operators generating chiral ring.

Consistency check:

$$\det (A\psi + B\tilde{\psi}) = q_1$$
$$\det (C\psi + D\tilde{\psi}) = q_2$$

In the special case $\mathcal{E}=T\mathbf{P}^1\times\mathbf{P}^1$, one should recover the standard quantum cohomology ring.

That case corresponds to

$$A = D = I_{2 \times 2}, B = C = 0$$

and the above becomes $\;\psi^2=q_1,\;\; ilde{\psi}^2=q_2$

Quantum sheaf cohomology

More results known:

For any toric variety, and any def' of tangent bundle,

$$0 \longrightarrow \mathcal{O}^{\oplus r} \stackrel{E}{\longrightarrow} \oplus \mathcal{O}(\vec{q_i}) \longrightarrow \mathcal{E} \longrightarrow 0$$

the chiral ring is

$$\prod_{\alpha} (\det M_{\alpha})^{Q_{\alpha}^{a}} = q_{a}$$

where M's are matrices of chiral operators built from E's.

(McOrist-Melnikov 0712.3272; R Donagi, J Guffin, S Katz, ES, 1110.3751, 1110.3752)

Quantum sheaf cohomology

Next, I'll outline some of the mathematical details of the computations that go into these rings.

The rest of the talk will, unavoidably, be somewhat technical, but in principle, I'm just describing a computation of nonperturbative corrections to some correlation functions in 2d QFT's.

Set up notation:

1st, write tangent bundle of toric variety X as

$$0 \longrightarrow W^* \otimes \mathcal{O} \longrightarrow \oplus_i \mathcal{O}(\vec{q_i}) \longrightarrow TX \longrightarrow 0$$
 where W is a vector space.

Write a deformation \mathcal{E} of TX as

$$0 \longrightarrow W^* \otimes \mathcal{O} \stackrel{*}{\longrightarrow} Z^* \longrightarrow \mathcal{E} \longrightarrow 0$$
 where $Z^* \equiv \oplus_i \mathcal{O}(ec{q}_i)$

Handy to dualize:

$$0 \longrightarrow \mathcal{E}^* \longrightarrow Z \longrightarrow W \otimes \mathcal{O} \longrightarrow 0$$

Correlators are elements of $H^1(\mathcal{E}^*)$

Compute:

$$H^0(Z) \longrightarrow H^0(W \otimes \mathcal{O}) \longrightarrow H^1(\mathcal{E}^*) \longrightarrow H^1(Z)$$

Can show
$$H^1(Z)=H^0(Z)=0$$

thus,

Correlators are elements of $H^1(\mathcal{E}^*) \,=\, H^0(W\otimes \mathcal{O})$

On an n-dim'l toric variety X, correlation functions $\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle$ are maps

$$\operatorname{Sym}^n H^1(\mathcal{E}^*) \longrightarrow H^n(\Lambda^n \mathcal{E}^*) \cong \mathbf{C}$$

but because $H^1(\mathcal{E}^*)=H^0(W\otimes\mathcal{O})=W$

we can think of correlation functions as maps

$$H^{0}\left(\operatorname{Sym}^{n}W\otimes\mathcal{O}\right)\ (=\operatorname{Sym}^{n}H^{0}(W\otimes\mathcal{O}),\operatorname{Sym}^{n}W)$$
 $\longrightarrow H^{n}(\Lambda^{n}\mathcal{E}^{*})\cong\mathbf{C}$

and it's this latter form that will be useful.

So far:

$$0 \longrightarrow \mathcal{E}^* \longrightarrow Z \longrightarrow W \otimes \mathcal{O} \longrightarrow 0$$

and correlation functions are maps

$$H^0\left(\operatorname{Sym}^n W\otimes \mathcal{O}\right)\longrightarrow H^n(\Lambda^n\mathcal{E}^*)\cong \mathbf{C}$$

How to compute? Use the 'Koszul resolution'

$$0 \longrightarrow \Lambda^n \mathcal{E}^* \longrightarrow \Lambda^n Z \longrightarrow \Lambda^{n-1} Z \otimes W$$
$$\longrightarrow \cdots \longrightarrow \operatorname{Sym}^n W \otimes \mathcal{O} \longrightarrow 0$$

which relates $\Lambda^n \mathcal{E}^*$ and $\operatorname{Sym}^n W \otimes \mathcal{O}$.

So far:

Plan to compute correlation functions

 $H^0\left(\mathrm{Sym}^nW\otimes\mathcal{O}\right)\longrightarrow H^n(\Lambda^n\mathcal{E}^*)\cong\mathbf{C}$ using the Koszul resolution of $\Lambda^n\mathcal{E}^*$.

In fact, instead of computing the entire map, it suffices to compute just the kernel of that map, which is what we do.

Here's a sample of how that works....

Example:

Consider a (0,2) theory describing $P^1 \times P^1$ with gauge bundle $\mathcal{E} = \text{def}'$ of tangent bundle, expressible as a cokernel:

$$0 \longrightarrow \mathcal{O} \oplus \mathcal{O} \stackrel{*}{\longrightarrow} \mathcal{O}(1,0)^2 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathcal{E} \longrightarrow 0$$

$$* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix}$$

$$A, B, C, D$$
 2×2 matrices, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\tilde{x} = \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix}$

Dualize:

$$0 \longrightarrow \mathcal{E}^* \longrightarrow \underbrace{\mathcal{O}(-1,0)^2 \oplus \mathcal{O}(0,-1)^2}_{Z} \stackrel{*}{\longrightarrow} W \otimes \mathcal{O} \longrightarrow 0$$

Classical correlation functions are a map

$$\operatorname{Sym}^2 W = H^0(\operatorname{Sym}^2 W \otimes \mathcal{O}) \longrightarrow H^2(\Lambda^2 \mathcal{E}^*) = \mathbf{C}$$

To build this map, we begin with

$$0 \longrightarrow \mathcal{E}^* \longrightarrow Z \stackrel{*}{\longrightarrow} W \otimes \mathcal{O} \longrightarrow 0$$

and take the Koszul resolution

$$0 \longrightarrow \Lambda^2 \mathcal{E}^* \longrightarrow \Lambda^2 Z \longrightarrow Z \otimes W \longrightarrow \operatorname{Sym}^2 W \otimes \mathcal{O} \longrightarrow 0$$

which will determine a map between cohomology groups above.

Let's build the map between cohomology groups.

Take the long exact sequence

$$0 \longrightarrow \Lambda^2 \mathcal{E}^* \longrightarrow \Lambda^2 Z \longrightarrow Z \otimes W \longrightarrow \operatorname{Sym}^2 W \otimes \mathcal{O} \longrightarrow 0$$

and break it up into short exacts:

$$0 \longrightarrow \Lambda^2 \mathcal{E}^* \longrightarrow \Lambda^2 Z \longrightarrow Q \longrightarrow 0$$
$$0 \longrightarrow Q \longrightarrow Z \otimes W \longrightarrow \operatorname{Sym}^2 W \otimes \mathcal{O} \longrightarrow 0$$

Second gives a map $H^0\left(\mathrm{Sym}^2W\otimes\mathcal{O}\right)\longrightarrow H^1(Q)$ First gives a map $H^1(Q)\longrightarrow H^2(\Lambda^2\mathcal{E}^*)$

& the composition computes corr' functions.

Let's work out those maps.

Take

$$0 \longrightarrow Q \longrightarrow Z \otimes W \longrightarrow \operatorname{Sym}^2 W \otimes \mathcal{O} \longrightarrow 0$$

The associated long exact sequence gives

$$H^0(Z \otimes W) \longrightarrow H^0(\operatorname{Sym}^2 W \otimes \mathcal{O}) \longrightarrow H^1(Q) \longrightarrow H^1(Z \otimes W)$$

but since Z is a sum of $\mathcal{O}(-1,0)$, $\mathcal{O}(0,-1)$'s,

$$H^0(Z\otimes W) = 0 = H^1(Z\otimes W)$$

so we see that

$$H^0(\operatorname{Sym}^2 W \otimes \mathcal{O}) \xrightarrow{\sim} H^1(Q)$$

Next, take

$$0 \longrightarrow \Lambda^2 \mathcal{E}^* \longrightarrow \Lambda^2 Z \longrightarrow Q \longrightarrow 0$$

The associated long exact sequence gives

$$H^1(\Lambda^2 Z) \longrightarrow H^1(Q) \longrightarrow H^2(\Lambda^2 \mathcal{E}^*) \longrightarrow H^2(\Lambda^2 Z)$$

Here,
$$H^2(\Lambda^2 Z) = 0$$

but
$$H^1(\Lambda^2 Z) = H^1(\mathbf{P}^1 \times \mathbf{P}^1, \mathcal{O}(-2, 0) \oplus \mathcal{O}(0, -2))$$

= $\mathbf{C} \oplus \mathbf{C}$

and so the map $H^1(Q) \longrightarrow H^2(\Lambda^2 \mathcal{E}^*)$ has a two-dim'l kernel.

So far, we have computed the 2 pieces of classical correlation functions:

$$\operatorname{Sym}^2 W = H^0(\operatorname{Sym}^2 W \otimes \mathcal{O}) \xrightarrow{\sim} H^1(Q) \longrightarrow H^2(\Lambda^2 \mathcal{E}^*)$$

What we really want are the relations, the kernel of the map above.

Since the first map is an isomorphism, the kernel is determined by the second map.

To get the classical sheaf cohomology ring, we just need the kernel of the second map....

It can be shown that the kernel of the second map,

$$H^1(Q) \longrightarrow H^2(\Lambda^2 \mathcal{E}^*)$$

is generated by

$$\det(\psi A + \tilde{\psi}B), \ \det(\psi C + \tilde{\psi}D)$$

Thus, we have classical ring rel'ns:

$$\det\left(\psi A + \tilde{\psi}B\right) = 0 = \det\left(\psi C + \tilde{\psi}D\right)$$

and the classical sheaf cohomology ring is

$$\mathbf{C}[\psi, \tilde{\psi}] / \left(\det(\psi A + \tilde{\psi} B), \det(\psi C + \tilde{\psi} D) \right)$$

What about nonperturbative sectors?

We can do exactly the same thing.

 \mathcal{M} = moduli space of instantons

 \mathcal{F} = induced bundle on the moduli space

If $\mathcal E$ is a deformation of TX, then $\mathcal F$ is a deformation of $T\mathcal M$.

So: apply the same analysis as the classical case.

Example: def' of T P1xP1

$$0 \longrightarrow W^* \otimes \mathcal{O} \stackrel{*}{\longrightarrow} \mathcal{O}(1,0)^2 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathcal{E} \longrightarrow 0$$

$$* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix}$$

Work in degree (d,e). $\mathcal{M} = \mathbf{P}^{2d+1} imes \mathbf{P}^{2e+1}$

$$0 \longrightarrow \mathcal{O}^{\oplus 2} \longrightarrow \bigoplus_{1}^{2d+2} \mathcal{O}(1,0) \oplus \bigoplus_{1}^{2e+2} \mathcal{O}(0,1) \longrightarrow \mathcal{F} \longrightarrow 0$$

which we shall write as

$$0 \longrightarrow W \otimes \mathcal{O} \longrightarrow Z^* \longrightarrow \mathcal{F} \longrightarrow 0$$

(defining W, Z appropriately)

Correlation functions are linear maps

$$\operatorname{Sym}^{2d+2e+2}\left(H^{1}(\mathcal{F}^{*})\right)\left(=\operatorname{Sym}^{2d+2e+2}W\right) \longrightarrow H^{2d+2e+2}(\Lambda^{\operatorname{top}}\mathcal{F}^{*}) = \mathbf{C}$$

We compute using the Koszul resolution of $\Lambda^{\mathrm{top}}\mathcal{F}^*$:

$$0 \to \Lambda^{\text{top}} \mathcal{F}^* \to \Lambda^{2d+2e+2} Z \to \Lambda^{2d+2e+1} Z \otimes W \to \Lambda^{2d+2e} Z \otimes \text{Sym}^2 W$$
$$\cdots \to Z \otimes \text{Sym}^{2d+2e+1} W \to \text{Sym}^{2d+2e+2} W \otimes \mathcal{O}_{\mathcal{M}} \to 0$$

(cont'd)

Briefly, the (long exact) Koszul resolution factors into a sequence of short exact sequences of the form

$$0 \longrightarrow S_i \longrightarrow \Lambda^i Z \otimes \operatorname{Sym}^{2d+2e+2-i} W \longrightarrow S_{i-1} \longrightarrow 0$$

and the coboundary maps $\delta: H^i(S_i) \longrightarrow H^{i+1}(S_{i+1})$ factor the map determining the correlation functions:

$$H^{0}\left(\operatorname{Sym}^{2d+2e+2}W\otimes\mathcal{O}_{\mathcal{M}}\right)\to H^{1}(S_{1})\stackrel{\delta}{\to}H^{2}(S_{2})\stackrel{\delta}{\to}$$

$$\cdots\stackrel{\delta}{\to}H^{2d+2e+1}\left(S_{2d+2e+1}\right)\stackrel{\delta}{\to}H^{2d+2e+2}\left(\Lambda^{\operatorname{top}}\mathcal{F}^{*}\right)$$

So, to evaluate corr' f'n, compute coboundary maps. (cont'd)

Need to compute coboundary maps.

Recall def'n

$$0 \longrightarrow S_i \longrightarrow \Lambda^i Z \otimes \operatorname{Sym}^{2d+2e+2-i} W \longrightarrow S_{i-1} \longrightarrow 0$$

Can show the $\Lambda^i Z$ only have nonzero cohomology in degrees 2d+2, 2e+2

Thus, the coboundary maps $\delta: H^i(S_i) \longrightarrow H^{i+1}(S_{i+1})$ are mostly isomorphisms; the rest have computable kernels.

(cont'd)

Summary so far:

The correlation function factorizes:

$$H^0\left(\operatorname{Sym}^{2d+2e+2}W\otimes\mathcal{O}\right)\stackrel{\delta}{\longrightarrow} H^1(S_1)\stackrel{\delta}{\longrightarrow} H^2(S_2)\longrightarrow \cdots\longrightarrow H^{2d+2e+2}\left(\Lambda^{\operatorname{top}}\mathcal{F}^{\vee}\right)$$

and one can read off the kernel.

Result:

For fixed (d,e), sheaf cohomology lives in

$$\operatorname{Sym}^* W/(Q^d, \tilde{Q}^e)$$

where
$$\begin{array}{ccc} Q = \det(A\psi \, + \, B\tilde{\psi}) \\ \tilde{Q} = \det(C\psi \, + \, D\tilde{\psi}) \end{array}$$

Example: def' of T P1xP1

$$0 \longrightarrow W^* \otimes \mathcal{O} \stackrel{*}{\longrightarrow} \mathcal{O}(1,0)^2 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathcal{E} \longrightarrow 0$$

$$* = \begin{bmatrix} Ax & Bx \\ C\tilde{x} & D\tilde{x} \end{bmatrix}$$

Consider d=(1,0) maps. $\mathcal{M}=\mathbf{P}^3 imes\mathbf{P}^1$

$$0 \longrightarrow W^* \otimes \mathcal{O} \stackrel{*'}{\longrightarrow} \mathcal{O}(1,0)^4 \oplus \mathcal{O}(0,1)^2 \longrightarrow \mathcal{F} \longrightarrow 0$$
$$*' = \begin{bmatrix} \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix} y & \begin{bmatrix} B & 0 \\ 0 & B \end{bmatrix} y \\ C\tilde{x} \end{bmatrix}$$

Kernel generated by

$$\det\left(\psi\begin{bmatrix}A & 0\\ 0 & A\end{bmatrix} + \tilde{\psi}\begin{bmatrix}B & 0\\ 0 & B\end{bmatrix}\right) = \det(\psi A + \tilde{\psi} B)^2, \quad \det\left(\psi C + \tilde{\psi} D\right)$$

So far I've discussed corr' f'ns in sectors of fixed instanton number $\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle_{\vec{d}}$ as maps

$$H^0\left(\operatorname{Sym}^n W\otimes\mathcal{O}\right)\longrightarrow H^n(\Lambda^n\mathcal{F}^*)\cong\mathbf{C}$$

whose kernels are computable.

Where do OPE's come from?

OPE's emerge when we consider the relations between *different* instanton sectors.

Example: def' of T P1xP1

Define
$$Q = \det(\psi A + \tilde{\psi} B)$$
 $\tilde{Q} = \det(\psi C + \tilde{\psi} D)$

I have stated
$$\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle_0 \in \operatorname{Sym}^n W/(Q, \tilde{Q})$$

& more gen'ly,

$$\langle \mathcal{O}_1 \cdots \mathcal{O}_n \rangle_{(a,b)} \in \operatorname{Sym}^n W / (Q^{a+1}, \tilde{Q}^{b+1})$$

OPE's relate corr' f'ns in different instanton degrees, and so, should map ideals to ideals.

Existence of OPE's implies rel'ns of form

$$\langle \mathcal{O} \rangle_{a,b} \propto \langle \mathcal{O} R_{a,b,a',b'} \rangle_{a',b'}$$

for some $R_{a,b,a^\prime,b^\prime}$ which must map kernels -> kernels.

We're calling the R's "exchange rates," and they determine OPE's.

exchange

Derive OPE ring for $P^1 \times P^1$ example:

Existence of OPE's implies rel'ns of form

$$\langle \mathcal{O} \rangle_{a,b} \propto \langle \mathcal{O} R_{a,b,a',b'} \rangle_{a',b'}$$

In order to be compatible with kernels, need

$$\langle \mathcal{O} \rangle_{a,b} \propto \langle \mathcal{O} Q^{a'-a} \tilde{Q}^{b'-b} \rangle_{a',b'}$$

Assume proportionality constant is

$$\langle \mathcal{O} \rangle_{a,b} = q^{a'-a} \tilde{q}^{b'-b} \langle \mathcal{O} Q^{a'-a} \tilde{Q}^{b'-b} \rangle_{a',b'}$$

then have OPE's: $Q=q, \;\; Q= ilde{q}$

Summary of P^1xP^1 example:

$$Q = \det \left(A\psi + B\tilde{\psi} \right) = q$$
$$\tilde{Q} = \det \left(C\psi + D\tilde{\psi} \right) = \tilde{q}$$

- * This is the result of our math analysis.
- * Also was derived from GLSM's by McOrist-Melnikov (along with lin' def's in other GLSM's)

Program so far:

* For each fixed instanton degree, compute the kernels of corr' f'ns in that degree.

* To derive OPE's,
compute ``exchange rates" relating corr' f'ns
of different instanton degrees.
Required to map kernels --> kernels.

What about 4-fermi terms?

In (0,2) theories, 4-fermi terms are of the form

$$F_{i\overline{\jmath}a\overline{b}}\psi^{i}_{+}\psi^{\overline{\jmath}}_{+}\lambda^{a}\lambda^{\overline{b}}$$

& can be used to soak up `excess' zero modes, ie, zero modes of worldsheet vectors.

Formally, each 4-fermi insertion ought to be identified with an insertion of

$$H^1(\mathcal{M}, \mathcal{F}^{\vee} \otimes \mathcal{F}_1 \otimes \mathrm{Obs}^{\vee})$$

On (2,2) locus, this becomes Atiyah class of Obs, and reproduces old Aspinwall-Morrison story.

4-fermi terms:

Unfortunately, we do not yet have a complete derivation from first-principles of the effects of 4-fermi terms in our computations.

However, the GLSM suggests an ansatz:

write
$$*:Z\longrightarrow W\otimes \mathcal{O}$$
 as $A_i^a\psi_a$

where (ψ_a) a basis for W,

then insert
$$\prod_c \left(\det_{i,j} \partial_i A^a_j \psi_a \right)^{n_c}$$
 in corr' f'ns.

(c runs over lin' equiv' classes.)

-- can show result is ind' of nonlinear def's!

Final result for quantum sheaf cohomology:

for deformations of tangent bundles of toric varieties,

$$\prod_{c} \left(\det_{i,j} (\partial_i A_j^a \psi_a) \right)^{Q_c^a} = q_a$$

generalizing Batyrev's ring
$$\prod_i \left(\sum_b Q_i^b \psi_b
ight)^{Q_i^a} = q_a$$

Linear case: McOrist-Melnikov 0712.3272

Here: generalized to all deformations, trivially: does *not* depend on nonlinear def's.

(See papers for details.)

QSC for Grassmannians

Next, let us outline the fundamentals of q.s.c. for Grassmannians G(k,n) of k-planes in C^n .

The GLSM is a U(k) gauge theory with n fundamentals.

Now, bundles are no longer defined by line bundles, but rather by vector bundles associated to products of rep's of U(k).

All the heterotic bundles will be built from (co)kernels of short exact sequences in which all the other elements are bundles defined by reps of U(k).

Ex:

$$0 \longrightarrow \mathcal{E} \longrightarrow \bigoplus^{n} \mathcal{O}(\mathbf{k}) \bigoplus^{k+1} \mathrm{Alt}^{2} \mathcal{O}(\mathbf{k}) \longrightarrow \bigoplus^{k-1} \mathrm{Sym}^{2} \mathcal{O}(\mathbf{k}) \longrightarrow 0$$

 $\mathcal{O}(\mathbf{k})$ is bundle associated to fund rep of U(k)

What is the LSM moduli space \mathcal{M} ?

As usual, expand GLSM fields in zero modes, but now, end up quotienting by nonreductive gps.

Result is a "Quot scheme."

Specifically, the LSM moduli space of degree d maps P^1 --> G(k,n) = G(n-k,n) is the Quot scheme

$$\operatorname{Quot}_{\mathbf{P}^1}(\mathcal{O}^n, k, -d)$$

of rk n-k subsheaves of $\mathcal{O}^{\oplus n}$ of degree d, over \mathbf{P}^1 .

What about induced bundles $\mathcal{F} o \mathcal{M}$?

The program is as before:

Given a short exact sequence of (fermions in GLSM), lift to natural sheaves on $\mathbf{P}^1 \times \mathcal{M}$, then pushforward to \mathcal{M} . (just as for toric varieties)

Lift to nat'l sheaves on ${f P}^1 imes {\cal M}$, pushforward to ${\cal M}$.

(& similarly for toric varieties)

Corresponding to $\mathcal{O}(\overline{k})$ is a rk k 'universal subbundle' $\mathcal S$ on $P^1 imes \mathcal M$.

Lift all others so as to be a U(k)-rep' homomorphism

Ex:

$$\mathcal{O}(\mathbf{k}) \mapsto \mathcal{S}^*$$
 $\mathcal{O}(\mathbf{k}) \otimes \mathcal{O}(\overline{\mathbf{k}}) \mapsto \mathcal{S}^* \otimes \mathcal{S}$
 $\mathrm{Alt}^m \mathcal{O}(\mathbf{k}) \mapsto \mathrm{Alt}^m \mathcal{S}^*$

Then pushforward to LSM moduli space, and compute.

Ex:

$$0 \longrightarrow \mathcal{E} \longrightarrow \bigoplus^{n} \mathcal{O}(\mathbf{k}) \bigoplus^{k+1} \mathrm{Alt}^{2} \mathcal{O}(\mathbf{k}) \longrightarrow \bigoplus^{k-1} \mathrm{Sym}^{2} \mathcal{O}(\mathbf{k}) \longrightarrow 0$$

 $\mathcal{O}(\mathbf{k})$ is bundle associated to fund rep of U(k)

The bundle above, over G(k,n), naturally lifts to

$$0 \longrightarrow \mathcal{F}_0 \longrightarrow \oplus^n \mathcal{S}^* \oplus^{k+1} \operatorname{Alt}^2 \mathcal{S}^* \longrightarrow \oplus^{k-1} \operatorname{Sym}^2 \mathcal{S}^* \longrightarrow 0$$
 over $\mathbf{P}^1 \times \mathcal{M}$

Pushforward to \mathcal{M} :

$$0 \longrightarrow \mathcal{F} \longrightarrow R^0 \pi_* \left(\oplus^n \mathcal{S}^* \oplus^{k+1} \operatorname{Alt}^2 \mathcal{S}^* \right) \longrightarrow R^0 \pi_* \left(\oplus^{k-1} \operatorname{Sym}^2 \mathcal{S}^* \right)$$

$$\longrightarrow \mathcal{F}_1 \longrightarrow R^1 \pi_* \left(\oplus^n \mathcal{S}^* \oplus^{k+1} \operatorname{Alt}^2 \mathcal{S}^* \right) \longrightarrow R^1 \pi_* \left(\oplus^{k-1} \operatorname{Sym}^2 \mathcal{S}^* \right) \longrightarrow 0$$

& then compute! Details will appear elsewhere....

Summary:

-- overview of progress towards (0,2) mirrors; starting to heat up!

-- outline of quantum sheaf cohomology (part of (0,2) mirrors story)