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Let's review.
In 10d, a heterotic string describes metric & gauge field.

To compactity, must specifty not only a space X,
but also a holomorphic vector bundle £ on that space,
satistying consistency conditions

[tI‘F/\F: — [tI‘R/\R] Chg(g) :ChQ(TX)

Described on worldsheet by 2d (0,2) susy theory.

Simplest case: & =TX, corresponding to (2,2) susy.
“‘embed the spin connection in gauge connection”

Massless states/chiral primaries...



What are the massless states/chiral primaries?

(2,2) locus: NLSM, target X Kahler

Massless states are counted by ordinary cohomology
HO,Q(X)
olus moduli = HY(T) @ H'(T*) ® H* (End T)

(0,2): X Kahler, £ — X hol’ v.b.

Massless states are counted by sheat cohomology
H®*(X,N°E7), H*(X,A*E)

(Distler-Greene '88)

olus moduli € HYT) @ H(T*) ® H*(End £)

Examples....



Examples of massless states in heterotic compactifications

Let X be Calabi-Yau 3-tfold, for simplicity.
Let & denote the gauge bundle.

(Distler-Greene '88)

Rank 3 bundle: low-energy Eg x Eg

27 ~ HY (X, &) 27 ~ H'(X,E)
(2,2): ~ H'Y(X,T*X) Kihler ~ HYX,TX) complex
Rank 4 bundle: low-energy Spin(10) x Ejg

16 ~ H'(X,E) 10 ~ H'(X,A%E)
Rank 5 bundle: low-energy SU(5) x Eg

10 ~ H'(X,E) 5 ~ H'(X,NE)

What are the Yukawa couplings”



What are the Yukawa couplings”

Suppose bundle is rank 3, for simplicity,
so that we have low-energy Eg X L3

27 :/ w1 N\ wa N\ wg + O(C]) where wiEHl(X,S*)
X

No perturbative loop corrections, but there are nonperturbative corrections.
(Dine-Seiberg-Wen-Witten '86)

Example' (2 2) C]UintiC (Candelas, de la Ossa,
3 1 Green, Parkes, '91)
— nik>q
27" = 5+Z — 5+ 2875¢ 4 4876875 ¢% + - -
. | / \ .
InNtersection number nonperturbative Nk = Gromov-Witten
(Strominger '85) contributions iInvariants

The purpose of today'’s talk is to discuss (0,2) analogues.



The purpose of today’s talk is to discuss (0,2) analogues.

Schematically, Yukawa couplings have the form:
=3

27" = (classical cohomology product) + O(q)
(e.g. Blesneag, Buchbinder, Candelas, Lukas,
1512.05322) nonperturbative

contributions

where the classical cohomology product is of the form

/wl /\CUQ /\wg

How to compute nonperturbative corrections in (0,2) cases?

They're not merely Gromov-Witten invariants in general,
so what to do?



How to compute nonperturbative corrections in (0,2) cases?

Historically, on the (2,2) locus,
used mirror symmetry.

For (0,2), would need a generalization called
(0,2) mirror symmetry.

Some results do exist — state of the art is a version of
Batyrev's mirror map due to Melnikov-Plesser '10 — but we
have not yet worked out analogue of flat coordinates or how to
compute nonperturbative corrections using (0,2) mirrors alone.

We'll do this directly instead....



How to compute nonperturbative corrections in (0,2) cases?

lt's convenient to work in an analogue of a TFT.

On (2,2) locus,
273 _ <Vf16‘/blovf16>phys _ <V3>B TET

& the TFT expressions are convenient for computations.

There are analogues for more general (0,2) theories;
these are A/2, B/2 pseudo-TFT’s, which also have the property

—=3
27— <Vf16‘/blovf16>phys _ <V3>A/2 T
273 _ <Vf16‘/'b1()vf16>phys _ <V3>B/2 T



So: 4d Yukawa couplings are 3-pt functions in
A/2, B/2 theories,
(0,2) versions of the A, B model TFT’s.

For the rest of today'’s talk,
I'm going to focus on the A/2 and B/2 theories,
and their correlation functions,
whose OPE’s form a generalization of guantum cohomology,
called quantum sheaf cohomology.

First, let me remind everyone,
what are the A/2, B/2 theories ?



The A/2, B/2 pseudo-TFT’s

These (0,2) NLSM’s have two anomalous global U(1)’s:
* aright-moving U(1)r

e a canonical left-moving U(1),
rotating the phase of all left fermions,
which becomes U(1)L on (2,2) locus

f det E¥1 =~ K, then a nonanomalous U(1) exists
along which we can twist right & left moving fermions.

There are two distinct possibllities,
which on (2,2) locus become the A, B model TFT’s,
and are called the A/2, B/2 models.



A little more explicitly:
(0,2) NLSM has Lagrangian density
L = 900709 + igiz0) D_p’ + ih AP DA )
+ Fo gy v AT A
vy ~ TX A~ &

subject to Green-Schwarz condition: cha(7TX) = cha(€)

A/2 twist: take ¥, A to be scalars

B/2 twist: take ' ,A% to be scalars

SO we get a scalar half of susy — but this BRST operator is
purely right-moving, so this not a standard TFT.

In order for this twist to be anomaly-free, there are constraints..



A/2 model: Exists when (det&) ' = Ky

(on (2,2) locus, always possible; reduces to A model)

States: H® (X, A\*E*)

B/2 model: Exists when det& = Kx

(on (2,2) locus, requires K% = Ox; reduces to B model)
States: H°® (X,A°E)

Exchanging £ < £ swaps the A/2, B/2 models.

(Physically, just a complex conjugation of left movers.)



What do the A, A/2 model correlation functions look like”?

Classical contributions, schematically:

A model: Classical contribution:
(O1---0,p) = / Wi A AWy = / (top — form)
X X
W; € Hpi’q'i(X)
A/2 model: Classical contribution:
0,0, = / OLA - Awn wi € HY (X, APEY)
X

Now, wiA--Aw, € H"P(X, A°PE*) = H*P(X, Kx)
using the anomaly constraint det £* = Kx

Again, a top form, so get a number.



What do the A, A/2 model correlation functions look like”?
Instanton sectors, schematically:

A model:

(O1---0,p) = / Wi N ANwy = / (top — form)
M M w; € HP»9 (M)
where M is moduli space of worldsheet instantons.

A/2 model:
M
where F Is sheaf on M induced by €.

Now,  wiA---Aw, € HP(M,AP°PF*)
SO need to explain how to get top-form etc....



What do the A, A/2 model correlation functions look like”?

To actually define A model correlation functions,
need to compactity M.

To actually define A/2 model corre
need to not only compac

consistent with symmet

Then, tormally, get a top-form so long

AOPE* =2 K i
Chz (5) — Chg (TX)

ation functions,

ify M,
but also extend F over compactifi

cation divisor,
'|es.

as Nno anomalies:

} AP Fr o [

: : ) (Katz-ES hepth/0406226, ....,
All of this has been done for toric vars., . &inkames 1110751 5752

Resulting corr’ t'ns encoded in guantum

(sheaf) cohomology



We'll be interested in computing correlation functions
and OPE’s = quantum sheaf cohomology
in the A/2 model.

Recall ordinary qguantum cohomology = OPE’s in A model
— (2,2) locus.

OPE’s take form
A HIiit (X) R H 2% (X) _y [Hirtizitie (X)

so ~ ordinary cohomology ring, but with modification to
relations.

Example: P"
A model correlation functions:
<wn> _ 17 <w2n—|—1> — q, <¢n—|—d(n—|—1)> _ qd

==> OPE (quantum cohomology rel'n) "' =gq



Quantum sheaf cohomology is analogous. It refers to
guantum-corrected product structure on

PH® (X, N°E™)
where
Chg(g) — ChQ(TX) and det £* = KX

and the classical product structure is of form
H (X, N'E*) @ H? (X, N?2EF) — H" T2 (X, N1T72E%)
(OPE’s in A/2 model)

Reduces to ordinary guantum cohomology when &€ =TX
For example: ©H®*(X,N\°E") ~ ®H*(X,0Q°%) = ®0H**(X)

(In physics, charged matter states in the heterotic
compactitication are counted by these sheat cohom’ gps.)



One of the main challenges of quantum sheaf cohomology is
that unlike ordinary guantum cohomology,
where the classical cohomology rings are well-known,
INn g.s.c. even the classical rings need to be computed!

That, plus the tfact that the technology developed for GW
theory, largely no longer applies.



Examples of resulting mathematical structures:
Pt x P!
Ordinary quantum cohomology ring is

Clo,5]/(0" = q,6% = q)

For £ a deformation of the tangent bdle defined by
four 2x2 matrices A, B, C, D,

gquantum sheaf cohomology ring is
Clo,c|/(det(Aoc + Bo) = q,det(Co + Do) = q)

Recover tangent bundle & ordinary quantum cohomology
when A=D=I[, B=C=0.

We'll see detalls later.



G(k,n):
Ordinary guantum cohomology ring is
(HOKI%°" ”70%—kﬂ/%l)k+1a"'7l)n—lal)n | ( )nq>::

<C[()-(1)70-(2)7 o °]/<Dk—|—17Dk—|—27 "y O(n—k+1)y "7 9y 0 (n—1);
On) + 4, 0mt1) +qoy, )

where D, = det (0(14_4))

1<, 7<m

For a def’ of tangent bundle, the guantum sheaf coh’ ring is

Cloy,o@), 3|/ {Dk+1, Drt2s s Rin—kg1)s - s Bn—1),
Rip) + ¢, Rini1y + 9oy, Riny2) +qo@2), )

min(7r,n) | | |

where Rpy= > Loy g0l for li the coeft’'s of char’ poly
(7) i0(r—i)0 (1) . o |

i=0 of matrix defining deformation.

We'll see detalls later.



Methods to compute A/2 correlation functions

(\%
q?;‘\\@\\ 6\(&\0
S
Mathematics S

e Direct Cech computations ®
(Katz, ES '04; Guffin, Katz '07)

e Koszul resolutions
(Donagi, Guffin, Katz, ES '11) 1/2

Physics (GLSMs)

* Coulomb branch 1-loop . |
eff’ twisted superpot’s /2
(McOirist, Melnikov '08; Guo, Lu, ES "15)

* Supersymmetric localization
(Closset, Gu, Jia, ES,'15; Guo, Lu, ES ‘15) ¢ “

'll describe only some of these....



Methods to compute A/2 correlation functions

Today I'll outline

Mathematics

e Direct Cech computations
(Katz, ES '04; Guffin, Katz '07)

Koszul resolutions
(Donagi, Guffin, Katz, ES "11)

Physics (GLSMs)

 Coulomb branch 1-loop

eff’ twisted superpot’s
(McOrist, Melnikov '08; Guo, Lu, ES ‘15)

Supersymmetric localization
(Closset, Gu, Jia, ES,’15; Guo, Lu, ES ‘15)

S
O
. o0 :
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Outline of the rest of this talk:

Koszul resolution methods for computing A/2

Susy localization in A/2 model for def’s of (2,2) theories
A/2 behaves same as true TFT at genus zero
Examples: P' xP', F,, G(k,n)

— new expressions for old results: JKG residues

— new results: nonabelian GLSM'’s

(0,2) Toda duals

Analogous computations in dual B/2 theories



Quantum sheaf cohomology via Koszul resolutions
Let's consider the

Example: classical sheaf cohomology on P' x P!

with gauge bundle E a deformation of the tangent bundle:

where

Operato
Nn-pt corre

0—-W ®0—0(1,0°®0(0,1)° >E—0

__Ax Bx

(% DX

Z*
x,X homog’ coord’s on P'‘s

and W =C"*

's counted by H'(E)=H°(W®0)=W

ation function is a map Sym"H'(E")=Sym"W — H"(A"E’)
OPE’s = kernel
Plan: study map corresponding to classical corr’ 'n



Quantum sheaf cohomology
Example: classical sheaf conomology on P' x P

with gauge bundle E a deformation of the tangent bundle:

0->W ®0—0(1,0)®0(0,1)" > E—0

Z*

where - A)f B)f x,X homog’ coord’s on P''s
- Cx Dx

and W =C"?

Since this is a rk 2 bundle, classical sheaf conomology
defined by products of 2 elements of H'(E)=H’(W ®0)=W.

So, we want to study map H°(Sym’W ®0)— H*(A*E") = corr’ f’n

This map is encoded in the resolution
0N E SA°Z=ZOW -5SymW®0 —0



Quantum sheaf cohomology

Example: classical sheaf cohomology on P' x P!
0N E SA°Z>SZOW - Sym™W®0 —0
Break into short exact sequences:
0o>AE 5A°Z >S5 >0
055 =>ZOW =Sym’'W ®0 -0
Examine second seguence:
induces H%‘Z@A%/)eHO(Sym2W®0)iH1(Sl)+H\‘\(\Z\CA>§C‘)V)
Since Zis a sum of O(-1,0)’s, O(0,-1)’s,

hence 6 :H°(Sym’W ® 0)— H'(S,) isS an iso.

Next, consider the other short exact sequence at top....



Review of qguantum sheaf cohomology

Example: classical sheaf conomology on P' x P
0N E SA°Z>SZOW - Sym™W®0 —0
Break into short exact sequences:

0585 —->Z@W —Sym'W ®0 —0
0:H°(Sym’W ® 0)— H'(S,)
Examine other sequence:
O0oAE A Z — 5, —0
induces Hl(/\zZ)%Hl(Sl)in(/\zE*)%H\&&\iZ)
Since Zis a sum of O(-1,0)’s, O(0,-1)’s,
H°(A°Z)=0 but H'(A*Z)=C®C
and so 0:H'(S)—H*(A’E") has a 2d kernel.

Now, assemble the coboundary maps....



Review of qguantum sheaf cohomology

Example: classical sheaf conomology on P' x P
0N E SA°Z>SZOW - Sym™W®0 —0

Now, assemble the coboundary maps....

A classical (2-pt) correlation function is computed as
Ho(sym2W®0)5$H1(51)?H2(A2E*)

where the right map has a 2d kernel, which one can show is
generated by

det(Ay + By ), det(Cy + Dy)
where A, B, C, D are four matrices defining the det’ E,
and V¥ correspond to elements of a basis for W.

Classical sheaf cohomology ring:
Cly w1/ (det(Ay + Byr),det(Cy + D))



Review of qguantum sheaf cohomology

Quantum sheaf cohomology
= OPE ring of the A/2 model

Instanton sectors have the same form,
except X replaced by moduli space M of instantons,
E replaced by induced sheaf F over moduli space M.

Must compactity M,
and extend F over compactification divisor.

ANPE =K, GRR

= APF =K,
ch,(E)=ch,(TX)

Within any one sector, can follow the same method just
outlined....



Review of qguantum sheaf cohomology

In the case of our example,
one can show that in a sector of instanton degree (a,b),
the “classical’ ring in that sector is of the form

Sym.W/ (Qa+1 ,Qb+l)
where Q=det(Ay +By), Q=det(Cy + Dyr)

Now, OPE’s can relate correlation functions in different
iInstanton degrees, and so, should map ideals to ideals.

To be compatible with those ideals,
<0>a,b — qa —aéb —b <0Qa —aQb —b >a,,b,

~J

for some constants ¢,4 =>O0PE's O=¢q, O=¢

— quantum sheaf cohomology rel'ns



Review of qguantum sheaf cohomology

| (Math: Donagi, Guffin, Katz, ES, '11)
General result: (Physics: McOrist, Melnikov '08)

For any toric variety, and any def’ E of its tangent bundle,

0—-W ®0—®0(g,)—>E —0

*

Z

the chiral ring Is

Ha (det M - )Qg‘ =q,

where the M’s are matrices of chiral operators built from *.

Q7
Generalizes Batyrev’s ring H (Z ij%) = ({q
) b



So far I've outlined how to use Koszul resolutions to compute
classical and quantum sheat cohomology rings.

Now, let's switch gears.

Next: susy localization & gsc.



Susy localization

’ll first discuss A/2 theories obtained by deforming off the (2,2)
locus, generalizing A model susy localization described In
Benini-Zaffaroni 1504.03698 Closset-Cremonesi-Park 1504.06308

Corresponding (0,2) GLSM’s will have a Coulomb branch,
along which we shall work.

Schematically, correlation functions take general form

(f(0)) = > JKG = Res,—o {Z'°P¢™ f(0)}

me/z

det Ofermi
det Obose

and ¢ = adjoint-valued scalar defining Coulomb branch

for Zl—-leor




For deformations off the (2,2) locus, in a GLSM,

Susy localization

Zl—loop _

det Ofermi

det Opose

Y4+, Y- have same gauge charges.

Ferml Iinteractions:

det Osermi = (S(det E))IPH1] H

where

bn,

Ofermi

n>1

ElY D. E? 0

D_ (EH)* 0

Bl 0 E2
0 (E2* D_

Dy

2.

k=0

n(n+ b+ 1|) b

(B -

(E3)" -

11 <t2<-1k,01<J2<-Jk

~

E’il""ikjl"'jk

Q(m)

OB 4 P (B

)

2n—+|b+1|



Susy localization

det Ofermi

Zl—loop _
det Obose

Bosonic potential:

EY @)1 =Y [ DIEPP] + D> (Z (EF) E‘f) ' ¢
v J VF#]

 —DP B+ BV P (BL)CEy e+ (BY )RS
El(Eq)* 4 -+ EY (Ey )Y —D*+ |E3]® +--- 4 |Ey'|?

~

- 1 2n+|b
N 2
det Obose — H tnk Y e o o ) ) PR )
11 <t2<-<1p,J1<J2<-<Jk i

EZ1 k]l Jk
n>0 | k=0

2n(n+ 1)+ (2n+1)|b| — b)

N | —

where t, =



Susy localization

Putting this together, can show

Zl—loop _ det Ofermi _ 1 Qlm)+1
det Opose det E

SO schematically correlation functions take form

(f(0)) = > JKG = Res,—o {Z'°P¢™ f(0)}

mezZ

Q(m)+1
— Z JKG — Res,—g { (deiE) qu(a)}

mezZ




Example: P! x P!

Build a (0,2) theory that deforms (2,2) model.

Math: 0 — O = 0(1,00°® 0(0,1)* — £ — 0

- Ar DBz
_Ci Dz

x,r vectors of homogeneous coordinates,

A,B,C,D 2 x 2 matrices describing deformation
(2,2)locus: A=D =143, B=C=0

Physics....



Example: P! x P!
Build a (0,2) theory that deforms (2,2) model.

Physics:
¢, &' chiral superfields charge (1,0), (0,1)

A%, A* Fermi superfields charge (1,0), (0,1) s.t.
DA = Ajox? + Bjoa’ DA = Cloi! + D53
o neudtral (adj-valued) chiral supertield

no superpotential

On (2,2) locus, z*, A* combine into (2,2) chiral superfields,
7', A combine into (2,2) chiral superfields, and
o part of (2,2) vector multiplet.



Example: P! x P!

Localization computation: (genus zero)

1 mi+1 1 mo—+1
(f(0,6)) = > JKG — Reso—s—0 { ( T E) ( o E) ¢ q" f (o, &)}

mi,MaCZ

for E=Ac+ B&s, E=Co+ D&

Note: Looks like a THT result — no propagators, no
worldsheet position dependence — but this is not quite TFT.

"Non-topological TFT”

How can that be”



"Non-topological TFT”

The basic reason we're getting a TFT-like structure, albeit not
in an actual TFT, is that the OPE’s close on dim zero A/2 op’s.

(Adams-Distler-Ernebjerg '05) argued that e.g. in an open patch on
moduli space containing (2,2) locus, the OPE’s of the A/2
model operators close into other A/2 model operators.

For conformal cases, combination of
* right-moving N=2 algebra to bound dimensions

* worldsheet conformal invariance to relate left, right dim’s

to argue closure on patches.

Since operators have dim’ zero, & OPE’s close, no worldsheet
dependence in correlation functions.



Example: P! x P!
|_et’s take another ook at the result:

3 1 mi+1 1 mo+1 i i
(f(o,0)) = Z JKG — Resy—5—0 { (det E) (det E) g™ g™ f (o, U)}

mj,mo EZ

for E=Aoc+ B&, E=Co+ D&

Inserting a factor of, say, det E In the correlation f'n
'S equivalent to shifting q.

Quantum sheaf cohomology ring rel'ns:
det E = ¢, detFE = §

This result already known (for all toric varieties w/ def’s):
Physics: McOrist-Melnikov 0810.0012 Math: Donagi-Guffin-Katz-ES 1110.3751, .3752

but the derivation Is new.



Example: P! x P!

Compare

Quantum sheaf cohomology (g.s.c.) ring rel’ns:

det(Ao + Bo) = q, det(Co+ Do) = q

Ordinary guantum cohomology ring rel'ns:

2 ~2 o~
0" =gq, 0° = ¢

On the (2,2) locus, where A=D =154, B=C=0

guantum sheaf cohomology reduces to
ordinary gquantum cohomology.



Example: P! x P!

2-pt correlation functions:
(co) = —a T (oT)

where

= o A (66) = —a Ty

Fl = VABdetD—vgpdetB FQ

vyap = det(A+ B) —c

= Yopdet A — yapdetC
et A —det B

YCD — det(C—

D) — ¢

et C —det D

A = det Adet D — det Bdet C
o — AZ—F1F2

{a =0} = locus where bundle degenerates

JKG residue results match Cech cohomology computation.



Example: P! x P!
2-pt correlation functions:

(c0) = —a™ 'y (06) = a'A  (66) = —a'T,
Can show these 2-pt functions obey

(det(Ao + Bo)) = 0 (det(Co + Dg)) = 0
matching classical limit of g.s.c. relations.
Can also compute higher-pt functions.

They also match Cech computations, and obey suitable OPE'’s;
for brevity, let's move on.



Example: Hirzebruch surtaces I,

Build a (0,2) theory that deforms (2,2) model.

Math:
0 — 0 = 0(1,00°®0(n,1)®0(0,1) — & — 0
I Ax Bx ]
* = | mw+ sfu(z1,22) Brw + sgn(x1,22)
i Y2 Bas 1
Physics: DA = Alox’ + Bjoa’

E_|_Aw — U(”Ylw_l_sfn) + 5-(5111}_'_89%)
E_I_AS — 0728 + 5’528

— depends upon deg n polynomials fn, gn ;
however, they don't contribute to correlation functions:

Math: 1110.3751, .3752 Also follows from susy localization



Example: Hirzebruch surtaces I,

Localization computation:

3 1 my+1 1 nmi+mo+1 1 mo—+1 ) .
(f(o,0)) = Z JKG — Resg=5=0 { (detE) <@) <@> q" g™ f (o, 0)}

mi,moEZ

E = Ao + Bo
Qw — ’Vlg_l_ﬁla-
QS — 720+625'

Can read off quantum sheaf cohomology ring rel'ns:
(detE)QZ = (g QsQuw = q

— matches previous results of McOrist-Melnikov: Donagi-Guffin-Katz-ES

— reduce to ordinary quantum cohomology on (2,2) locus



Example: Hirzebruch surtaces I,

2-pt correlation functions:

(o) = a " [A = B1B2det(A+ B) + (71 + B1) (72 + B2) det B]
(06) = a tA

(66) = a™ ' [A+yy2det(A+ B) — (v1 4 B1)(72 + B2) det A

A = 6152 det A — Y1772 det B

X — (131(132
for
®; = 3 det A — By, vaB + ; det B
Yap = det(A+ B) —det A —det B

JKG residue results match Cech cohomology computation.



For a general toric variety + deformation of tangent bundle,

(f(@) = > JKG — Resg—g ¢

m17...EZ \

/T

1

I1(

det M(a)

) Qg(ma)+1

m
qo *

f(o)

It can be shown that this matches result of vcorist-melnikov '08:

(fo)) = ) flo) ((det Ja,b)HdetM(a))

o|J=0

where  J, = In (qal HM(QO%)

Now, getting new expressions for old results is nice,

but, what's even better is that we can also get new results.....

\

/



Nonabelian cases

So far, we have discussed the results of applying susy
localization to A/2 theories describing toric varieties.

Next: Grassmannians

Understanding A/2 twists of Grassmannians has been an open
problem for many years, as older GLSM techniques don't

easily apply.

We'll see that susy localization allows us to quickly derive
results not previously obtainable.



Basic example, (2,2): G(k,n) = Grassmannian of k planes in C"

Physics: U(k) gauge theory

n chiral multiplets in fundamental rep’

(0,2) deformation: U(k) gauge theory

n chiral multiplets #" in fundamenta rep
n Fermi multiplets A*in fundamental rep

DA, = o,¢y + Bi(Tro)¢),

The B'’s define deformation off (2,2) locus.

Can show, total num’ of deformations = n? — 1
(forl <k <n-—1)

— overall trace of B defines trivial deformation; rest interesting



General formula for A/2 correlation functions:

<f(01,“° ,Uk)> —

L S m; i 1 Mol .
x Z JKG — Resg—g {q ' (H (00 — 05)) 1:[1 (det E(aa)) f(g)}

my,--- M EZL a3

where E;(0) = o6; + B! (Z %)

Q.s.c. relations:  det E(o,) = ¢  forall a

We'll see more meaningful expressions shortly....

We'll give formulas for cases in which B is diagonal,
for simplicity.



Example: Deformation of TG(2,4)
Classical correlation functions (m; = mg = 0)

(o1) = A7 (I + 217 + 4L Iy — 213 + 215 + 21115 — 4 det B + 21513 — 21, det B)
(o302) = A7 (=1 =31y — 217 — 31y — AL I, — 215 — I3 — 21115 + 4 det B — 21515 + 21, det B)
(o703) = A7 (2441 + 217 + 41> + 411 I + 213 — 4 det B + 215 + 21115 + 21515 — 21, det B)

(o105) = (0702) (03) = (o1)

A = 2]+ By + Bjy) 'S the locus on which
i<j bundle degenerates.

are coefticients in the characteristic polynomial of B.



How can we interpret those correlation functions usetully?
How can we compare to ordinary cohomology, on (2,2) locus?

Gauge-invariant combinations naturally correspond to Young
diagrams (via Schur polynomials’):

o = 01+ 09
o = O'%—I—O'%-I—O'la'g
O] — 0109
o — J%Ug—kalag
2 2




Cohomology of G(k,n) is naturally in 1-1 correspondence with
Young diagrams inside k x (n-k) box.

G(2,4):

so on (2,2) locus, for example, o = 0
o = 0

Classical correlation functions on (2,2) locus:
o = +1 (o ) = 0 = (o7

which imply OPE o110 = 0

hence O =0 Agree!



(2,2) locus: o = = = 0  classically
g -0 = 2¢  nonpertly
(0,2):
(@) Q+5L+L+)o + (Is+ 2L+ 2I)ory = 0

(D) A+ 1L+ L+ I3)orry + (1430 + 312 + 213)o 1 + (Is 4+ 21 4+ 211)o

() M+ I3+ Iy + I + 2det B)o

+ (=14 I, + 31, + 6det B)o

—|—(—[3—|—2.[1 —|—4detB)O' = 2q

(derived from det E' = q)



More generally, for any deformation of given form of TG(k,n),

we've recently argued that

classical sheaf cohomology ring =

Cloays »0um-k)] / {Dk+1s > Din—rk)s Rin—k+1)> s Rk(n—k)) )
Dy, = det(o14j-i)1<ij<m
min(r,n)

Ry = Y Log_yo(,
1=0

for o) = oy and so forth, ana
(I;) the coefficients in the characteristic polynomial of B.

EXs: Ip=1, I, =TrB, I, =detB



More generally, for any deformation of given form of TG(k,n),

we've recently argued that

classical sheaf cohomology ring =

Cloays »0um-k)] / {Dk+1s > Din—rk)s Rin—k+1)> s Rk(n—k)) )
Dy, = det(o14j-i)1<ij<m
min(r,n)

Ry = Y Log_yo(,
1=0

On (2,2) locus, R, = oy and the above simplifies to

C [0-(1)7 "o 70-(71—]6)} / <Dk—|—17 "o 7Dn>
a standard presentation of the ordinary cohomology of G(k,n).

S0: matches (2,2) locus. Next: guantum case...



Structure of quantum sheat cohomology ring for
a generic deformation of T G(k,n)

C[O(1)7O(2)7 " ']/<Dk—|—17Dk—|—27 Tt 7R(n—k—|—1)7 N 7R(n—1)7

R(n) + g, R(n—l—l) -+ q0(1)7 R(TL—I—Q) -+ QO'(Q), ce

where Dy, = det (U(1+j—i))1g7;,j§m

min(r,n)

Ry = Z [ia(r—i)gzl)
i=0

for 1; the char’ poly’s of B: det(tI + B) an it

EXs: Ip=1, I, =TrB, I, = detB



Quantum sheaf cohomology ring:

C[O(l)v g(2), """ ]/<Dk—|—17 Dk—|—27 T 7R(n—k—|—1)7 T 7R(n—1)7
Riny + ¢, Rint1) + 901y, Rina2) + 402, )

If we turn off the deformation (set B=0), then
B(n) = 0(n)

and with some work it can be shown that the ring above can
be presented as

C[O-(l)v "o 7U(n—k)]/<Dk—|—17 "o 7Dn—17 D, + (_)nQ>

which Is a standard presentation of the (ordinary) guantum
cohomology ring of G(k,n).

(Buch, Kresch, Tamvakis, Bertram, Witten, Siebert, Tian, ....)



Example: G(1,3)

This has no nontrivial deformations, so any result should be
equivalent to ordinary quantum cohomology ring of P

C[O-(l)?O-(Q)) e ]/<D27 CU 7R(3) -+ q,R(4) -+ C]O’(l), .- >

using D2 = 0(21) — 0(2), " to eliminate o¢m)for m>1, ana

the result Ris1e) + g0y = o) (R + q)

Now, R = Z[U(g no' = (21) (det(I + B)) o*

sothe gscringis  Clo]/(det(I + B)o® + q)

which is equivalent to std guantum cohomology ring.



So far we've used susy localization & other methods to

— find new residue-based formulas for toric results

— derive new results for nonabelian GLSM’s
(Grassmannian quantum sheaf cohomology)

Next: Toda duals, then B/2 results



Toda duals

The mirror to the A model on P" is a B-twisted Landau-
Ginzburg model, defined by a superpotential

q

W = X{+---4+ X, -
1+ X, X,

often referred to as the Toda dual.’

Analogous statements are known for heterotic theories,
which we'll describe, but first let's review how this works.



Toda duals (io P")
q
W = X{+---+ X, -
1+ X, X,
(Genus zero correlation functions:
f(Xla'” 7Xn>
Xqi,--- . X)) =

<f( 1, 9 )> Z det(@lz XW)

dlnXW— =

AW =0—= X1 =Xg=+-=X, =

Can show det(0°W) = (n+1)X"

hence (X™) = ) (n+1)X"

thus (X nTdnthy — 4d

matching A model.



What's the heterotic analogue?

A heterotic Landau-Ginzburg model is defined by
 complex Kahler manitfold X
* holomorphic vector bundle & — X

* holomorphic section (J,) € I'(€7)

Recover ordinary Landau-Ginzburg models when
E = TX, Ja — 8CLW



The mirror to the (A/2) theory on P"™ x P™,
with def’ of tangent bundle param’d by matrices A, B, C, D,
is a Landau-Ginzburg theory on (C*)" x (C*)™ with € =T

X’n—l—l n \

_ _(1-n)/n 0

R A e =

- _ X’m‘|‘1 m Xk

J. = d0m)/m X, et LN 92
Xp =X XX,

a=detA, b=detB, c=detC, d=detD,

d€t(A.CC—|—By) _ awn+1+byn+1+2u@ 1. n+1— 7,7
1= 1

det(Cx 4+ Dy) = cz™tt +dy™ ™ + Z vyt TR,
k=1



| et me outline correlation functions in these theories.

For heterotic LG models of the form just discussed,
at genus O,

fX27X]€
(/1 Z
o det(9(J, J))
J,j:():> X1::X’H,EX7 XlZZXmEX

& det(AX +BX)=g¢q, det(CX + DX) =g
— the quantum sheat cohomology ring rel'ns
Can show all (genus 0) correlation functions match those of

the corresponding A/2 theory, which is how we've checked this
poroposal.



Analogues for the B/2 model

So far I've only discussed susy localization in the A/2 model,
for deformations of (2,2) theories.

We can also apply the same ideas to B/2 twists of "dual’
theories.

Which theories?

Recall mentioned earlier that
A/2(X,E) = B/2(X,E)

SO we're going to be able to apply B/2 to spaces with
deformations of cotangent bundles — no (2,2) locus.



Analogues for the B/2 model

Quick aside: how is this related to (0,2) mirror symmetry?

Suppose (0,2) NLSM’s on (X, &) and (Y, F) define same
SCFT.

A/Q(X, 8) (0,2) mirror B/Q(Y, f)

B/Z(X, g*) (0.2) mirror A/Q(Y, :/t*)




Analogues for the B/2 model

S0, for example, we should be able to compute B/2 correlation
functions for deformations of cotangent bundle of P! x P!

Math:
0 — & — O(-1,00°20(0,-1)* — 0* — 0
- Ar Bx
- Cr Dz
x,r vectors of homogeneous coordinates,
A,B,C,D 2 x 2 matrices describing deformation

k

No (2,2) locus; but cotangent bundle at
A:DZIQXQ, B:C:O

Physics....



Analogues for the B/2 model

S0, for example, we should be able to compute B/2 correlation
functions for deformations of cotangent bundle of P! x P!

Physics:

', Z" chiral superfields charge (1,0), (0,1)

p,p neutral chiral superfields

~

A;, A; Fermi superfields charge (-1,0), (0,-1)
plus (0,2) superpotential

where Fj = A'p + Bjp
F, = Cip+ D:p

(Compare A/2 version: there, no superpotential, and charges matched.)



Analogues for the B/2 model

S0, for example, we should be able to compute B/2 correlation
functions for deformations of cotangent bundle of P! x P!

Unlike the A/2 case, here there is no o field — no adjoint-
valued scalar that is part of vector multiplet on (2,2) locus.

S0, no Coulomb branch along which to compute.

Instead, have p field, which plays a dual’ role.

In effect, the Coulomb branch replaced by (part of) Higgs
branch.



Analogues for the B/2 model

S0, for example, we should be able to compute B/2 correlation

functions for deformations of cotangent bundle of P! x P!

Result:

Correlation functions are given by:

i (1
Ue5) = 3 IKG - Res,pmad (i

mj,mo EZ

where F = Ap+ Bp

)

1
det I/

m2—|—1
) ¢ ¢ f(p,p)

F = Cp+ Dp

— equivalent to results in dual A/2 model, as expected

Other cotangent bundle deformations similar.

/



Summary

* Qutline of A/2, B/2 models
» Koszul resolution methods for computing A/2

e Susy localization in A/2 model for det’s of (2,2) theories

 A/2 behaves same as true TFT at genus zero
» Examples: P' x P!, F,, G(k,n)
— new expressions for old results: JKG residues

— new results: nonabelian GLSM'’s

 (0,2) Toda duals
* Analogous computations in dual B/2 theories

Next steps....



Next steps

 Mathematical derivation of gsc for def’s of G(k,n),
in terms of induced sheaves on moduli spaces = Quot schemes

Already know physics derivation of gsc,
and math derivation of classical ring structure.

* QSC for def’s of flag manifolds (just started)

Once that's accomplished,
QSC for def’s of quiver varieties will be next.

 Nonabelian Toda duals (just started)

More to do....



To Do

e Math derivation of McOrist-Melnikov results

Why is A/2 independent of J def’s?
Why Is B/2 independent of E def’'s”?

Suggests (0,2) moduli space factors;
might be seen via study of U(1) actions.

 QSC for (0,2) theories that are not (2,2) deformations
* QSC for non-Kahler heterotic compactifications

e Heterotic GW invariants

Thank you for your time!



