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Let’s review.

In 10d, a heterotic string describes metric & gauge field.

Described on worldsheet by 2d (0,2) susy theory.

To compactify, must specify not only a space    , 
but also a holomorphic vector bundle     on that space, 

satisfying consistency conditions

X
E

[trF ^ F ] = [trR ^R] ch2(E) = ch2(TX)

Simplest case:                , corresponding to (2,2) susy.E = TX

“embed the spin connection in gauge connection”

Massless states/chiral primaries…



What are the massless states/chiral primaries?

(2,2) locus:
Massless states are counted by ordinary cohomology

H•,•(X)

plus moduli

KahlerX

(0,2):

Massless states are counted by sheaf cohomology

Kahler,X E ! X hol’ v.b.

H•(X,^•E⇤), H•(X,^•E)

plus moduli ✓ H1(T )�H1(T ⇤)�H1(End E)

Examples….

NLSM, target

(Distler-Greene ’88)

= H1(T )�H1(T ⇤)�H1(EndT )



Let     be Calabi-Yau 3-fold, for simplicity.X

Let     denote the gauge bundle.E

Rank 3 bundle:  low-energy E6 ⇥ E8

27 ⇠ H1(X, E⇤) 27 ⇠ H1(X, E)

16 ⇠ H1(X, E) 10 ⇠ H1(X,^2E)

Rank 4 bundle:  low-energy Spin(10)⇥ E8

SU(5)⇥ E8Rank 5 bundle:  low-energy

10 ⇠ H1(X, E) 5 ⇠ H1(X,^2E)

(2,2): ⇠ H1(X,T ⇤X) Kähler ⇠ H1
(X,TX) complex

(Distler-Greene ’88)

Examples of massless states in heterotic compactifications

What are the Yukawa couplings?



27
3

!i 2 H1(X, E⇤)where

What are the Yukawa couplings?

Suppose bundle is rank 3, for simplicity,  
so that we have low-energy                .E6 ⇥ E8

=

Z

X
!1 ^ !2 ^ !3 + O(q)

Example:  (2,2) quintic

27
3

= 5 +
1X

k=1

nkk3qk

1� qk

(Candelas, de la Ossa,  
Green, Parkes, ’91)

No perturbative loop corrections, but there are nonperturbative corrections.  
(Dine-Seiberg-Wen-Witten ’86)

intersection number 
(Strominger ’85)

nonperturbative 
contributions

nk = Gromov-Witten 
 invariants

= 5 + 2875q + 4876875 q2 + · · ·

The purpose of today’s talk is to discuss (0,2) analogues.



The purpose of today’s talk is to discuss (0,2) analogues.

Schematically, Yukawa couplings have the form:

27
3 = (classical cohomology product) + O(q)

(e.g. Blesneag, Buchbinder, Candelas, Lukas,  
1512.05322)

where the classical cohomology product is of the form
Z

!1 ^ !2 ^ !3

How to compute nonperturbative corrections in (0,2) cases?
They’re not merely Gromov-Witten invariants in general, 

so what to do?

nonperturbative 
contributions



How to compute nonperturbative corrections in (0,2) cases?

Historically, on the (2,2) locus,  
used mirror symmetry.

For (0,2), would need a generalization called 
(0,2) mirror symmetry.

Some results do exist — state of the art is a version of 
Batyrev’s mirror map due to Melnikov-Plesser ’10 — but we 

have not yet worked out analogue of flat coordinates or how to 
compute nonperturbative corrections using (0,2) mirrors alone.

We’ll do this directly instead….



It’s convenient to work in an analogue of a TFT.

On (2,2) locus,

27
3
= hV 16

f V 10
b V 16

f iphys = hV 3iA TFT

273 = hV 16
f V 10

b V 16
f iphys = hV 3iB TFT

& the TFT expressions are convenient for computations.

There are analogues for more general (0,2) theories; 
these are A/2, B/2 pseudo-TFT’s, which also have the property

273 = hV 16
f V 10

b V 16
f iphys = hV 3iB/2 TFT

27
3
= hV 16

f V 10
b V 16

f iphys = hV 3iA/2 TFT

How to compute nonperturbative corrections in (0,2) cases?



So:  4d Yukawa couplings are 3-pt functions in 
A/2, B/2 theories, 

(0,2) versions of the A, B model TFT’s.

For the rest of today’s talk, 
I’m going to focus on the A/2 and B/2 theories, 

and their correlation functions, 
whose OPE’s form a generalization of quantum cohomology, 

called quantum sheaf cohomology.

First, let me remind everyone, 
what are the A/2, B/2 theories ?



The A/2, B/2 pseudo-TFT’s

These (0,2) NLSM’s have two anomalous global U(1)’s:

• a right-moving U(1)R

• a canonical left-moving U(1),
rotating the phase of all left fermions, 
which becomes U(1)L on (2,2) locus

If                        , then a nonanomalous U(1) exists 
along which we can twist right & left moving fermions.

det E±1 ⇠= KX

There are two distinct possibilities, 
which on (2,2) locus become the A, B model TFT’s, 

and are called the A/2, B/2 models.



A little more explicitly:

(0,2) NLSM has Lagrangian density
L = gi|@�

|@�i + igi| 
|
+D� 

i
+ + ihab�

b
�D+�

a
�

+ Fi|ab 
i
+ 

|
+�

a
��

b
�

 + ⇠ TX �� ⇠ E

subject to Green-Schwarz condition:  ch2(TX) = ch2(E)

A/2 twist:  take              to be scalars i
+,�

a
�

B/2 twist:  take              to be scalars ı
+,�

a
�

so we get a scalar half of susy — but this BRST operator is 
purely right-moving, so this not a standard TFT.

In order for this twist to be anomaly-free, there are constraints..



A/2 model: Exists when (det E)�1 ⇠= KX

(on (2,2) locus, always possible; reduces to A model)

States: H• (X,^•E⇤)

B/2 model: det E ⇠= KXExists when

(on (2,2) locus, requires                    ; reduces to B model)K⌦2
X

⇠= OX

States: H• (X,^•E)

Exchanging              swaps the A/2, B/2 models.E $ E⇤

(Physically, just a complex conjugation of left movers.)



A model: Classical contribution:

A/2 model: Classical contribution:

Again, a top form, so get a number.

Classical contributions, schematically:

What do the A, A/2 model correlation functions look like?

Now,
using the anomaly constraint

!
1

^ · · · ^ !n 2 Htop(X,^topE⇤) = Htop(X,KX)

det E⇤ ⇠= KX

hO1 · · · Oni =

Z

X
!1 ^ · · · ^ !n =

Z

X
(top� form)

!i 2 Hpi,qi(X)

!i 2 Hqi (X,^piE⇤)hO1 · · · Oni =

Z

X
!1 ^ · · · ^ !n



A model:

A/2 model:

Instanton sectors, schematically:

What do the A, A/2 model correlation functions look like?

hO1 · · · Oni =

Z

M
!1 ^ · · · ^ !n =

Z

M
(top� form)

!i 2 Hpi,qi(M)

hO1 · · · Oni =

Z

M
!1 ^ · · · ^ !n !i 2 Hqi(M,^piF⇤)

Now, !
1

^ · · · ^ !n 2 Htop(M,^topF⇤)

where      is moduli space of worldsheet instantons.M

where     is sheaf on      induced by   .M EF

so need to explain how to get top-form etc….



What do the A, A/2 model correlation functions look like?

To actually define A model correlation functions, 
need to compactify     .M

To actually define A/2 model correlation functions, 
need to not only compactify     , 

but also extend     over compactification divisor, 
consistent with symmetries.

M
F

Then, formally, get a top-form so long as no anomalies:

All of this has been done for toric var’s. (Katz-ES hepth/0406226, ….,  
Donagi-Guffin-Katz-ES 1110.3751, .3752) 

Resulting corr’ f’ns encoded in quantum (sheaf) cohomology

^topE⇤ ⇠= KX

ch
2

(E) = ch
2

(TX)

�
GRR

=) ^topF⇤ ⇠= KM



We’ll be interested in computing correlation functions 
and OPE’s = quantum sheaf cohomology 

in the A/2 model.

Recall ordinary quantum cohomology = OPE’s in A model  
— (2,2) locus.

OPE’s take form
^ : Hj1,i1(X)⌦Hj2,i2(X) �! Hj1+j2,i1+i2(X)

so ~ ordinary cohomology ring, but with modification to 
relations.

Example:  Pn

A model correlation functions:
h ni = 1, h 2n+1i = q, h n+d(n+1)i = qd

==> OPE (quantum cohomology rel’n)   n+1 = q



Quantum sheaf cohomology is analogous.  It refers to 
quantum-corrected product structure on

�H•(X,^•E⇤)
where

ch2(E) = ch2(TX) det E⇤ ⇠= KXand

Hi1(X,^j1E⇤)⌦Hi2(X,^j2E⇤) �! Hi1+i2(X,^j1+j2E⇤)

and the classical product structure is of form

Reduces to ordinary quantum cohomology when E = TX

For example:

(In physics, charged matter states in the heterotic 
compactification are counted by these sheaf cohom’ gps.)

�H•(X,^•E⇤) �H•(X,⌦•) = �H•,•(X)

(OPE’s in A/2 model)



One of the main challenges of quantum sheaf cohomology is 
that unlike ordinary quantum cohomology,  

where the classical cohomology rings are well-known,  
in q.s.c. even the classical rings need to be computed!

That, plus the fact that the technology developed for GW 
theory, largely no longer applies.



Examples of resulting mathematical structures:

P1 ⇥ P1 :

Ordinary quantum cohomology ring is
C[�, �̃]/(�2 = q, �̃2 = q̃)

For    a deformation of the tangent bdle defined by 
four 2x2 matrices A, B, C, D,

E

quantum sheaf cohomology ring is
C[�, �̃]/(det(A� +B�̃) = q, det(C� +D�̃) = q̃)

Recover tangent bundle & ordinary quantum cohomology 
when  A=D=I,  B=C=0.

We’ll see details later.



G(k,n):

Ordinary quantum cohomology ring is

C[�(1),�(2), · · · ]/hDk+1, Dk+2, · · · ,�(n�k+1), · · · ,�(n�1),
�(n) + q,�(n+1) + q�(1), · · · i

C[�(1), · · · ,�(n�k)]/hDk+1, · · · , Dn�1, Dn + (�)nqi =

C[�(1),�(2), · · · , ]/hDk+1, Dk+2, · · · , R(n�k+1), · · · , R(n�1),

R(n) + q,R(n+1) + q�(1), R(n+2) + q�(2), · · · i

where Dm = det
�
�(1+j�i)

�
1i,jm

For a def’ of tangent bundle, the quantum sheaf coh’ ring is

R(r) =

min(r,n)X

i=0

Ii�(r�i)�
i
(1)where for Ii the coeff’s of char’ poly’  

of matrix defining deformation.

We’ll see details later.



Methods to compute A/2 correlation functions

Mathematics

Physics (GLSMs)

• Direct Cech computations

• Koszul resolutions

• Supersymmetric localization

(Katz, ES ’04; Guffin, Katz ’07)

(Donagi, Guffin, Katz, ES ’11)

(McOrist, Melnikov ’08; Guo, Lu, ES ‘15)

(Closset, Gu, Jia, ES,’15; Guo, Lu, ES ‘15)

toric va
rieties

Grassm
annians

• Coulomb branch 1-loop 
eff’ twisted superpot’s

I’ll describe only some of these….



Methods to compute A/2 correlation functions

Mathematics

Physics (GLSMs)

• Direct Cech computations

• Koszul resolutions

• Supersymmetric localization

(Katz, ES ’04; Guffin, Katz ’07)

(Donagi, Guffin, Katz, ES ’11)

(McOrist, Melnikov ’08; Guo, Lu, ES ‘15)

(Closset, Gu, Jia, ES,’15; Guo, Lu, ES ‘15)

toric va
rieties

Grassm
annians

• Coulomb branch 1-loop 
eff’ twisted superpot’s

Today I’ll outline



• Susy localization in A/2 model for def’s of (2,2) theories

• Examples:  P1 ⇥ P1, Fn, G(k, n)

— new expressions for old results:  JKG residues

— new results:  nonabelian GLSM’s

• Analogous computations in dual B/2 theories

Outline of the rest of this talk:

• (0,2) Toda duals

• Koszul resolution methods for computing A/2

• A/2 behaves same as true TFT at genus zero



Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and

Let’s consider the

Operators counted by H 1(E*)= H 0 (W ⊗O)=W

n-pt correlation function is a map SymnH1(E*)=SymnW→H n (∧n E*)

OPE’s = kernel
Plan:  study map corresponding to classical corr’ f’n

Quantum sheaf cohomology via Koszul resolutions



Example:  classical sheaf cohomology on P1 × P1

with gauge bundle E a deformation of the tangent bundle:

0→W *⊗O→
*
O(1,0)2 ⊕O(0,1)2

Z*
! "### $### → E→ 0

where *= Ax Bx
C!x D!x

⎡

⎣
⎢

⎤

⎦
⎥ homog’ coord’s on     ‘sx, !x P1

W =!2and
Since this is a rk 2 bundle, classical sheaf cohomology 

defined by products of 2 elements of                                 .H 1(E*) = H 0 (W ⊗O)=W

0→∧2 E*→∧2 Z→ Z⊗W →Sym2W ⊗O→ 0

H 0 (Sym2W ⊗O)→H 2 (∧2E*) = corr’ f’nSo, we want to study map

This map is encoded in the resolution

Quantum sheaf cohomology



Quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0
→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine second sequence:

H 0 (Z⊗W )→H 0 (Sym2W⊗O)→
δ
H 1(S1)→H 1(Z⊗W )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
0 0

hence H 0 (Sym2W ⊗O)→
~
H 1(S1) is an iso.δ :

induces

Next, consider the other short exact sequence at top….



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Break into short exact sequences:

0→∧2 E*→∧2 Z → S1→ 0

→ Z⊗W →Sym2W ⊗O→ 00→ S1

Examine other sequence:

H 1(∧2Z )→H 1(S1)→
δ
H 2 (∧2E*)→H 2 (∧2Z )

Since Z is a sum of O(-1,0)’s, O(0,-1)’s,
H 2 (∧2Z )= 0 but H 1(∧2Z )=!⊕!
and so H 1(S1)→H 2 (∧2E*) has a 2d kernel.

Now, assemble the coboundary maps….

H 0 (Sym2W ⊗O)→
~
H 1(S1)δ :

δ :

0
induces



Review of quantum sheaf cohomology
Example:  classical sheaf cohomology on P1 × P1

0→∧2 E*→∧2 Z → Z⊗W →Sym2W ⊗O→ 0

Now, assemble the coboundary maps….

A classical (2-pt) correlation function is computed as
H 0 (Sym2W ⊗O)→

~
H 1(S1)H 1(S1)→H 2 (∧2E*)

δ δ

where the right map has a 2d kernel, which one can show is 
generated by

det(Aψ + B !ψ ) det(Cψ + D !ψ ),
where A, B, C, D are four matrices defining the def’ E, 

and         correspond to elements of a basis for W.ψ , !ψ

Classical sheaf cohomology ring:
![ψ , "ψ ] / det(Aψ + B "ψ ),det(Cψ + D "ψ )( )



Review of quantum sheaf cohomology
Quantum sheaf cohomology

= OPE ring of the A/2 model

Instanton sectors have the same form, 
except X replaced by moduli space M of instantons, 
E replaced by induced sheaf F over moduli space M.

Must compactify M, 
and extend F over compactification divisor.

∧ topE* ≅ KX

ch2(E)= ch2(TX) }⇒
GRR

∧ topF* ≅ KM

Within any one sector, can follow the same method just 
outlined….



Review of quantum sheaf cohomology
In the case of our example, 

one can show that in a sector of instanton degree (a,b), 
the `classical’ ring in that sector is of the form

Sym•W/ (Qa+1, !Qb+1)
where Q = det(Aψ + B !ψ ) !Q = det(Cψ + D !ψ ),

Now, OPE’s can relate correlation functions in different 
instanton degrees, and so, should map ideals to ideals.

To be compatible with those ideals,
〈O〉a,b = q

′a −a !q ′b −b 〈OQ ′a −a !Q ′b −b 〉 ′a , ′b

for some constants q, !q => OPE’s Q = q, !Q = !q

— quantum sheaf cohomology rel’ns



Review of quantum sheaf cohomology

General result:

For any toric variety, and any def’ E of its tangent bundle,

0→W * ⊗O→
*
⊕O(!qi )

Z*
"#$→E → 0

the chiral ring is

∏α (detM (α ) )
Qα
a

= qa
where the M’s are matrices of chiral operators built from *.

(Math: Donagi, Guffin, Katz, ES, ’11)

Generalizes Batyrev’s ring
Y

i

 
X

b

Qb
i b

!Qa
i

= qa

(Physics: McOrist, Melnikov ’08)



So far I’ve outlined how to use Koszul resolutions to compute 
classical and quantum sheaf cohomology rings.

Now, let’s switch gears.

Next:  susy localization & qsc.



Susy localization

I’ll first discuss A/2 theories obtained by deforming off the (2,2) 
locus, generalizing A model susy localization described in

Corresponding (0,2) GLSM’s will have a Coulomb branch, 
along which we shall work.

Benini-Zaffaroni 1504.03698 Closset-Cremonesi-Park 1504.06308

Schematically, correlation functions take general form

Z1�loop =
detO

fermi

detO
bose

for

hf(�)i =
X

m2Z
JKG� Res�=0

�
Z1�loopqmf(�)

 

� = adjoint-valued scalar defining Coulomb branchand



Susy localization

Z1�loop =
detO

fermi

detO
bose

For deformations off the (2,2) locus, in a GLSM, 
  have same gauge charges. +, �

Fermi interactions:  
i
� 

j
+E

j
i +  

j
+ 

i
�(E

j
i )

⇤

Ofermi =

2

666664

E1
1 D+ E2

1 0 · · ·
D� (E1

1)
⇤ 0 (E1

2)
⇤ · · ·

E1
2 0 E2

2 D+ · · ·
0 (E2

1)
⇤ D� (E2

2)
⇤ · · ·

...
. . .

3

777775

detOfermi = (S(detE))|b+1|
Y

n�1

2

4
NX

k=0

t2kn

0

@
X

i1<i2<···ik,j1<j2<···jk

���Ẽi1···ikj1···jk

���
2

1

A

3

5
2n+|b+1|

tn = n(n+ |b+ 1|)where b = Q(m)



Susy localization

Z1�loop =
detO

fermi

detO
bose

Bosonic potential:

|Ei(�)|2 =
X

i

0

@
X

j

|Ei
j |2|�j |2

1

A +
X

i 6=j

 
X

k

(Ek
i )

⇤Ek
j

!
�
ı
�j

O
bose

=

2

64
�D2 + |E1

1

|2 + · · ·+ |EN
1

|2 (E1

1

)⇤E1

2

+ · · ·+ (EN
1

)⇤EN
2

· · ·
E1

1

(E1

2

)⇤ + · · ·+ EN
1

(EN
2

)⇤ �D2 + |E1

2

|2 + · · ·+ |EN
2

|2 · · ·
...

. . .

3

75

detO
bose

=
Y

n�0

2

4
NX

k=0

t2kn

0

@
X

i1<i2<···<ik,j1<j2<···<jk

���Ẽi1···ikj1···jk

���
2

1

A

3

5
2n+|b|+1

tn =
1

2
(2n(n+ 1) + (2n+ 1)|b|� b)where



Susy localization

Z1�loop =
detO

fermi

detO
bose

Putting this together, can show

so schematically correlation functions take form

=

✓
1

detE

◆Q(m)+1

hf(�)i =
X

m2Z
JKG� Res�=0

�
Z1�loopqmf(�)

 

=
X

m2Z
JKG� Res�=0

(✓
1

detE

◆Q(m)+1

qmf(�)

)



Example: P1 ⇥ P1

Build a (0,2) theory that deforms (2,2) model.

Math: 0 �! O2 ⇤�! O(1, 0)2 �O(0, 1)2 �! E �! 0

⇤ =


Ax Bx

Cx̃ Dx̃

�

x, x̃ vectors of homogeneous coordinates, 
A,B,C,D 2⇥ 2 matrices describing deformation

(2,2) locus:  A = D = I2⇥2, B = C = 0

Physics….



Example: P1 ⇥ P1

Build a (0,2) theory that deforms (2,2) model.

Physics:

⇤i, ⇤̃i Fermi superfields charge (1,0), (0,1) s.t.
D+⇤

i = A

i
j�x

j +B

i
j �̃x

j
D+⇤̃

i = C

i
j�x̃

j +D

i
j �̃x̃

j

no superpotential

neutral (adj-valued) chiral superfield�

On (2,2) locus,           combine into (2,2) chiral superfields, 
      combine into (2,2) chiral superfields, and 

    part of (2,2) vector multiplet.�

x

i
,⇤i

x̃

i
, ⇤̃i

chiral superfields charge (1,0), (0,1)x

i
, x̃

i



Example: P1 ⇥ P1

Localization computation: (genus zero)

for E = A� +B�̃, Ẽ = C� +D�̃

Note:  Looks like a TFT result — no propagators, no 
worldsheet position dependence — but this is not quite TFT.

“Non-topological TFT”

How can that be?

hf(�, �̃)i =
X

m1,m22Z
JKG� Res�=�̃=0

(✓
1

detE

◆m1+1 ✓ 1

det Ẽ

◆m2+1

qm1 q̃m2f(�, �̃)

)



“Non-topological TFT”

The basic reason we’re getting a TFT-like structure, albeit not 
in an actual TFT, is that the OPE’s close on dim zero A/2 op’s.

(Adams-Distler-Ernebjerg ’05) argued that e.g. in an open patch on 
moduli space containing (2,2) locus, the OPE’s of the A/2 

model operators close into other A/2 model operators.

For conformal cases, combination of
• right-moving N=2 algebra to bound dimensions 
• worldsheet conformal invariance to relate left, right dim’s

to argue closure on patches.

Since operators have dim’ zero, & OPE’s close, no worldsheet 
dependence in correlation functions.



Example: P1 ⇥ P1

Let’s take another look at the result:

Inserting a factor of, say,           in the correlation f’n 
is equivalent to shifting   .

detE
q

Quantum sheaf cohomology ring rel’ns:
detE = q, det Ẽ = q̃

for E = A� +B�̃, Ẽ = C� +D�̃

This result already known (for all toric varieties w/ def’s):
Physics:  McOrist-Melnikov 0810.0012 Math:  Donagi-Guffin-Katz-ES 1110.3751, .3752

but the derivation is new.

hf(�, �̃)i =
X

m1,m22Z
JKG� Res�=�̃=0

(✓
1

detE

◆m1+1 ✓ 1

det Ẽ

◆m2+1

qm1 q̃m2f(�, �̃)

)



Example: P1 ⇥ P1

Quantum sheaf cohomology (q.s.c.) ring rel’ns:

Compare

det(A� +B�̃) = q, det(C� +D�̃) = q̃

Ordinary quantum cohomology ring rel’ns:
�2 = q, �̃2 = q̃

On the (2,2) locus, where A = D = I2⇥2, B = C = 0

quantum sheaf cohomology reduces to  
ordinary quantum cohomology.



Example: P1 ⇥ P1

2-pt correlation functions:

�1 = �AB detD � �CD detB �2 = �CD detA� �AB detC

�AB = det(A+B)� detA� detB

�CD = det(C +D)� detC � detD

� = detA detD � detB detC

↵ = �2 � �1�2

where

= locus where bundle degenerates{↵ = 0}

h��i = �↵�1�1 h��̃i = ↵�1� h�̃�̃i = �↵�1�2

JKG residue results match Cech cohomology computation. 



Example: P1 ⇥ P1

2-pt correlation functions:

Can show these 2-pt functions obey

matching classical limit of q.s.c. relations.

Can also compute higher-pt functions. 
They also match Cech computations, and obey suitable OPE’s;  

for brevity, let’s move on.

h��i = �↵�1�1 h��̃i = ↵�1� h�̃�̃i = �↵�1�2

hdet(A� +B�̃)i = 0 hdet(C� +D�̃)i = 0



0 �! O2 ⇤�! O(1, 0)2 �O(n, 1)�O(0, 1) �! E �! 0
Math:

⇤ =

2

4
Ax Bx

�1w + sfn(x1, x2) �1w + sgn(x1, x2)
�2s �2s

3

5

— depends upon deg n polynomials           ; 
however, they don’t contribute to correlation functions:

fn, gn

Example:  Hirzebruch surfaces Fn

Build a (0,2) theory that deforms (2,2) model.

Physics:
D+⇤

i = A

i
j�x

j + B

i
j �̃x

j

D+⇤w = �(�1w + sfn) + �̃(�1w + sgn)

D+⇤s = ��2s + �̃�2s

Math: 1110.3751, .3752 Also follows from susy localization



E = A� +B�̃

Qs = �2� + �2�̃

Qw = �1� + �1�̃

Can read off quantum sheaf cohomology ring rel’ns:
(detE)Qn

w = q QsQw = q̃

Example:  Hirzebruch surfaces Fn

Localization computation:

— reduce to ordinary quantum cohomology on (2,2) locus
— matches previous results of McOrist-Melnikov; Donagi-Guffin-Katz-ES

hf(�, �̃)i =
X

m1,m22Z
JKG� Res�=�̃=0

(✓
1

detE

◆m1+1 ✓ 1

Qw

◆nm1+m2+1 ✓ 1

Qs

◆m2+1

qm1 q̃m2f(�, �̃)

)



2-pt correlation functions:

� = �1�2 detA� �1�2 detB

↵ = �1�2

h��i = ↵�1 [�� �1�2 det(A+B) + (�1 + �1)(�2 + �2) detB]

h�̃�̃i = ↵�1 [�+ �1�2 det(A+B)� (�1 + �1)(�2 + �2) detA]

h��̃i = ↵�1�

Example:  Hirzebruch surfaces Fn

�i = �2
i detA� �i�i�AB + �2

i detB

�AB = det(A+B)� detA� detB

where

for

JKG residue results match Cech cohomology computation. 



For a general toric variety + deformation of tangent bundle,

hf(�)i =
X

�|J=0

f(�)

 
(det Ja,b)

Y

↵

detM(↵)

!�1

Ja = ln

 
q�1
a

Y

↵

M
Qa

↵

(↵)

!

It can be shown that this matches result of McOrist-Melnikov ’08:

where

Now, getting new expressions for old results is nice, 
but, what’s even better is that we can also get new results…..

hf(~�)i =
X

m1,···2Z
JKG� Res~�=0

("
Y

a,↵

✓
1

detM(↵)

◆Qa
↵(ma)+1

qma
a

#
f(~�)

)



Nonabelian cases

So far, we have discussed the results of applying susy 
localization to A/2 theories describing toric varieties.

Next: Grassmannians

Understanding A/2 twists of Grassmannians has been an open 
problem for many years, as older GLSM techniques don’t 

easily apply.

We’ll see that susy localization allows us to quickly derive 
results not previously obtainable.



Basic example, (2,2):  G(k,n) = Grassmannian of k planes in Cn

Physics:  U(k) gauge theory

n chiral multiplets in fundamental rep’

(0,2) deformation: U(k) gauge theory
n chiral multiplets      in fundamental rep’�i

n Fermi multiplets      in fundamental rep’⇤i

D+⇤
i
a = �b

a�
i
b + Bi

j(Tr�)�
j
a

The     ’s define deformation off (2,2) locus.B

Can show, total num’ of deformations = n2 � 1
(for                      )1 < k < n� 1

— overall trace of     defines trivial deformation; rest interestingB



General formula for A/2 correlation functions:

hf(�1, · · · ,�k)i =

Ẽi
j(�) = ��ij + Bi

j

 
X

↵

�↵

!

where

Q.s.c. relations: for all ↵

We’ll see more meaningful expressions shortly….

We’ll give formulas for cases in which     is diagonal,  
for simplicity.

B

det Ẽ(�↵) = q

1

k!

X

m1,··· ,mk2Z
JKG� Res~�=0

8
<

:q
P

mi

0

@
Y

↵ 6=�

(�↵ � ��)

1

A
kY

↵=1

✓
1

det Ẽ(�↵)

◆m↵+1

f(~�)

9
=

;



Example:  Deformation of TG(2,4)

Classical correlation functions (                    )m1 = m2 = 0

h�1�
3
2i = h�3

1�2i h�4
2i = h�4

1i

� = 2
Y

i<j

(1 +Bii +Bjj)

I2 =
X

i<j

BiiBjj

is the locus on which  
bundle degenerates.

are coefficients in the characteristic polynomial of    .B

I1 =
X

i

Bii = trB I3 =
X

i<j

BiiBjjBkk

h�4
1i = ��1

�
I1 + 2I21 + 4I1I2 � 2I3 + 2I22 + 2I1I3 � 4 detB + 2I2I3 � 2I1 detB

�

h�3
1�2i = ��1

�
�1� 3I1 � 2I21 � 3I2 � 4I1I2 � 2I22 � I3 � 2I1I3 + 4detB � 2I2I3 + 2I1 detB

�

h�2
1�

2
2i = ��1

�
2 + 4I1 + 2I21 + 4I2 + 4I1I2 + 2I3 � 4 detB + 2I22 + 2I1I3 + 2I2I3 � 2I1 detB

�



How can we interpret those correlation functions usefully? 
How can we compare to ordinary cohomology, on (2,2) locus?

Gauge-invariant combinations naturally correspond to Young 
diagrams (via `Schur polynomials’):

� = �1 + �2

� = �2
1 + �2

2 + �1�2

� = �1�2

� = �2
1�2 + �1�

2
2

� = �2
1�

2
2



Cohomology of G(k,n) is naturally in 1-1 correspondence with 
Young diagrams inside k x (n-k) box.

G(2,4):

so on (2,2) locus, for example, � = 0

� = 0

Classical correlation functions on (2,2) locus:
h� i = +1 h� i = 0 = h� i

which imply OPE � · � = 0

hence � = 0 Agree!



(2,2) locus: � = � = � = 0

(0,2):

(1 + I1 + I2 + I3)� + (I3 + 2I2 + 2I1)� = 0

(1 + I1 + I2 + I3)� + (1 + 3I1 + 3I2 + 2I3)� + (I3 + 2I2 + 2I1)� = 0

(1 + I3 + I2 + I1 + 2detB)� + (�1 + I2 + 3I1 + 6detB)�

+ (�I3 + 2I1 + 4detB)� = 2q

(a)

(b)

(c)

(derived from                )detE = q

classically
� � � = 2q nonpert’ly



More generally, for any deformation of given form of TG(k,n),

classical sheaf cohomology ring = 

Dm = det(�1+j�i)1i,jm

we’ve recently argued that

(Ii) the coefficients in the characteristic polynomial of B.
�(1) = �for and so forth, and

I0 = 1, I1 = TrB, In = detBExs:

R(r) =

min(r,n)X

i=0

Ii�(r�i)�
i
(1)

C
⇥
�(1), · · · ,�(k(n�k))

⇤
/
⌦
Dk+1, · · · , Dk(n�k), R(n�k+1), · · · , R(k(n�k))

↵



More generally, for any deformation of given form of TG(k,n),

classical sheaf cohomology ring = 

On (2,2) locus, Rr = �(r) and the above simplifies to

So: matches (2,2) locus.

we’ve recently argued that

C
⇥
�(1), · · · ,�(k(n�k))

⇤
/
⌦
Dk+1, · · · , Dk(n�k), R(n�k+1), · · · , R(k(n�k))

↵

a standard presentation of the ordinary cohomology of G(k,n).
C
⇥
�(1), · · · ,�(n�k)

⇤
/ hDk+1, · · · , Dni

Dm = det(�1+j�i)1i,jm

R(r) =

min(r,n)X

i=0

Ii�(r�i)�
i
(1)

Next: quantum case…



Structure of quantum sheaf cohomology ring for 
a generic deformation of T G(k,n)

C[�(1),�(2), · · · ]/
⌦
Dk+1, Dk+2, · · · , R(n�k+1), · · · , R(n�1),

R(n) + q,R(n+1) + q�(1), R(n+2) + q�(2), · · ·
↵

Dm = det
�
�(1+j�i)

�
1i,jm

R(r) =

min(r,n)X

i=0

Ii�(r�i)�
i
(1)

det(tI +B) =
nX

i=0

In�it
ifor     the char’ poly’s of B:Ii

I0 = 1, I1 = TrB, In = detBExs:

where



C[�(1),�(2), · · · ]/
⌦
Dk+1, Dk+2, · · · , R(n�k+1), · · · , R(n�1),

R(n) + q,R(n+1) + q�(1), R(n+2) + q�(2), · · ·
↵

If we turn off the deformation (set B=0), then
R(n) = �(n)

Quantum sheaf cohomology ring:

and with some work it can be shown that the ring above can 
be presented as

C[�(1), · · · ,�(n�k)]/hDk+1, · · · , Dn�1, Dn + (�)nqi

which is a standard presentation of the (ordinary) quantum 
cohomology ring of G(k,n).
(Buch, Kresch, Tamvakis, Bertram, Witten, Siebert, Tian, ….)



Example: G(1,3)
This has no nontrivial deformations, so any result should be 

equivalent to ordinary quantum cohomology ring of      .P2

C[�(1),�(2), · · · ]/hD2, · · · , R(3) + q,R(4) + q�(1), · · · i

= C[�(1)]/hR(3) + qiiwhich

using D2 = �2
(1) � �(2), · · · to eliminate         for m>1, and�(m)

the result R(3+`) + q�(`) = �(`)(R(3) + q)

R(3) =
3X

i=0

Ii�(3�i)�
i =

 
3X

i=0

Ii

!
�3 = (det(I +B))�3Now,

C[�]/hdet(I +B)�3 + qiso the qsc ring is

which is equivalent to std quantum cohomology ring.



So far we’ve used susy localization & other methods to

— find new residue-based formulas for toric results

— derive new results for nonabelian GLSM’s
(Grassmannian quantum sheaf cohomology)

Next:  Toda duals, then B/2 results



Toda duals

The mirror to the A model on      is a B-twisted Landau-
Ginzburg model, defined by a superpotential

Pn

W = X1 + · · ·+Xn +
q

X1 · · ·Xn

Analogous statements are known for heterotic theories, 
which we’ll describe, but first let’s review how this works.

often referred to as the `Toda dual.’



Toda duals

W = X1 + · · ·+Xn +
q

X1 · · ·Xn

Genus zero correlation functions:

dW = 0 =) X1 = X2 = · · · = Xn ⌘ X

& (q.c. rel’n!)X = qX�n Xn+1 = qor

(to      )Pn

det(@2W ) = (n+ 1)XnCan show

hXmi =
X

Xn+1=q

Xm

(n+ 1)Xnhence

hXn+d(n+1)i = qdthus matching A model.

hf(X1, · · · , Xn)i =
X

dlnXW=0

f(X1, · · · , Xn)

det (@2
lnXW )



A heterotic Landau-Ginzburg model is defined by

• complex Kahler manifold X

• holomorphic vector bundle E ! X

• holomorphic section (Ja) 2 �(E⇤)

Recover ordinary Landau-Ginzburg models when
E = TX, Ja = @aW

What’s the heterotic analogue?



The mirror to the (A/2) theory on                ,Pn ⇥ Pm

with def’ of tangent bundle param’d by matrices A,B,C,D,

is a Landau-Ginzburg theory on                           with(C⇥)n ⇥ (C⇥)m E = T

a = detA, b = detB, c = detC, d = detD,

det(Ax+By) = ax

n+1 + by

n+1 +
nX

i=1

µix
i
y

n+1�i
,

det(Cx+Dy) = cx

m+1 + dy

m+1 +
nX

k=1

⌫kx
k
y

n+1�k
,

Ji = a(1�n)/n

 
aXi + b

X̃n+1
1

Xn
1

+
nX

i=1

µn+1�i
X̃i

1

Xi�1
1

� q1
X1 · · ·Xn

!

J̃k = d(1�m)/m

 
dX̃k + c

Xm+1
1

X̃m
1

+
mX

k=1

⌫k
Xk

1

X̃k�1
1

� q2

X̃1 · · · X̃m

!



Let me outline correlation functions in these theories.

For heterotic LG models of the form just discussed,

hf(Xi, X̃k)i =
X

J,J̃=0

f(Xi, X̃k)

det(@(J, J̃))

J, J̃ = 0 =) X1 = · · · = Xn ⌘ X, X̃1 = · · · = X̃m ⌘ X̃

det(AX +BX̃) = q, det(CX +DX̃) = q̃

at genus 0,

&

Can show all (genus 0) correlation functions match those of 
the corresponding A/2 theory, which is how we’ve checked this 

proposal.

— the quantum sheaf cohomology ring rel’ns



Analogues for the B/2 model

So far I’ve only discussed susy localization in the A/2 model, 
for deformations of (2,2) theories.

We can also apply the same ideas to B/2 twists of `dual’ 
theories.

Which theories?

Recall mentioned earlier that
A/2(X, E) = B/2(X, E⇤)

so we’re going to be able to apply B/2 to spaces with 
deformations of cotangent bundles — no (2,2) locus.



Analogues for the B/2 model

Quick aside:  how is this related to (0,2) mirror symmetry?

Suppose (0,2) NLSM’s on            and              define same 
SCFT.
(X, E) (Y,F)

A/2(X, E) B/2(Y,F)

B/2(X, E⇤) A/2(Y,F⇤)

(0,2) mirror

(0,2) mirror



Analogues for the B/2 model

0 �! E �! O(�1, 0)2 �O(0,�1)2
⇤�! O2 �! 0

Math:

⇤ =


Ax Bx

Cx̃ Dx̃

�

x, x̃ vectors of homogeneous coordinates, 
A,B,C,D 2⇥ 2 matrices describing deformation

No (2,2) locus; but cotangent bundle at
A = D = I2⇥2, B = C = 0

Physics….

So, for example, we should be able to compute B/2 correlation 
functions for deformations of cotangent bundle of             .P1 ⇥ P1



Analogues for the B/2 model

Physics:
chiral superfields charge (1,0), (0,1)

Fermi superfields charge (-1,0), (0,-1)
plus (0,2) superpotential

neutral chiral superfieldsp, p̃

where

(Compare A/2 version:  there, no superpotential, and charges matched.)

So, for example, we should be able to compute B/2 correlation 
functions for deformations of cotangent bundle of             .P1 ⇥ P1

W = ⇤iF
i
jx

j + ⇤̃iF̃
i
j x̃

j

⇤i, ⇤̃i

x

i
, x̃

i

F i
j = Ai

jp + Bi
j p̃

F̃ i
j = Ci

jp + Di
j p̃



Analogues for the B/2 model

Unlike the A/2 case, here there is no     field — no adjoint-
valued scalar that is part of vector multiplet on (2,2) locus.

�

Instead, have    field, which plays a `dual’ role.p

So, no Coulomb branch along which to compute.

In effect, the Coulomb branch replaced by (part of) Higgs 
branch.

So, for example, we should be able to compute B/2 correlation 
functions for deformations of cotangent bundle of             .P1 ⇥ P1



Analogues for the B/2 model

Correlation functions are given by:

— equivalent to results in dual A/2 model, as expected

Result:

So, for example, we should be able to compute B/2 correlation 
functions for deformations of cotangent bundle of             .P1 ⇥ P1

where F = Ap+Bp̃ F̃ = Cp+Dp̃

Other cotangent bundle deformations similar.

hf(p, p̃)i =
X

m1,m22Z
JKG� Resp=p̃=0

(✓
1

detF

◆m1+1 ✓ 1

det F̃

◆m2+1

qm1 q̃m2f(p, p̃)

)



• Susy localization in A/2 model for def’s of (2,2) theories

• Examples:  P1 ⇥ P1, Fn, G(k, n)

— new expressions for old results:  JKG residues

— new results:  nonabelian GLSM’s

• Analogous computations in dual B/2 theories

• (0,2) Toda duals

• Koszul resolution methods for computing A/2

• A/2 behaves same as true TFT at genus zero

Summary
• Outline of A/2, B/2 models

Next steps….



Next steps

• Mathematical derivation of qsc for def’s of G(k,n),
in terms of induced sheaves on moduli spaces = Quot schemes

Already know physics derivation of qsc,  
and math derivation of classical ring structure.

• QSC for def’s of flag manifolds (just started)
Once that’s accomplished, 

QSC for def’s of quiver varieties will be next.

• Nonabelian Toda duals (just started)

More to do….



To Do

• Math derivation of McOrist-Melnikov results
Why is A/2 independent of J def’s?
Why is B/2 independent of E def’s?

Suggests (0,2) moduli space factors; 
might be seen via study of U(1) actions.

• QSC for (0,2) theories that are not (2,2) deformations

• QSC for non-Kahler heterotic compactifications

• Heterotic GW invariants

Thank you for your time!


