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A brief partial history of FI in (   ) supergravityold
minimal

(Dienes, Thomas, 0911.0677)

* Any gauge group must be combined with the R symmetry; 
the FI term contributes to the charges of the gravitino, etc

(Freedman ‘77, Stelle-West ‘78, Barbieri et al ‘82)

which violates electric charge quantization.
(Witten, ``New issues...’’, ‘86, footnote p 85)

* Solve 1st problem: quantize the FI term.
(Seiberg, ‘10)

Seiberg worked w/ linearly-realized gp actions;
I’ll describe today how to generalize, in classical theory.

Old & complex literature on FI terms; some root issues:

* Continuous global symmetries => no UV quantum gravity



Outline:

* review Bagger-Witten

* quantization of FI parameters in sugrav
when sugrav moduli space is a space

* review stacks and gerbes (= special stacks)
-- discrete symmetries in string theory

* exs & prop’s of gerby moduli spaces
in field and string theory

* Bagger-Witten, FI quantization
when moduli space is a gerbe

But sometimes it’s a ``stack’’....



Review of Bagger-Witten:

Bagger-Witten’s pertinent paper studied 
N=1 sugrav in 4d.

Now, as a sugrav theory, it contains a 
(low-energy effective) 4d NLSM on a space,

the supergravity moduli space.

They derived a constraint on the metric on that 
moduli space

(assuming the moduli space is a smooth manifold).



Review of Bagger-Witten:

Across coordinate patches,

K !→ K + f + f

χi
!→ exp
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χi, ψµ !→ exp

(

−

i

2
Im f

)

ψµ

χi ∈ Γ (φ∗ (TM⊗ L)) , ψµ ∈ Γ
(

TX ⊗ φ∗L−1
)

(hence quantized)

Briefly, the supergravity moduli space
(the target space of a 4d NLSM)

comes with a natural line bundle      ,
whose c1 = Kahler form.

L
⊗2

M



Bagger-Witten dates to early ‘80s.

Seiberg in May 2010 argued that,
in the special case that the group action on the 

sugrav moduli space is realized linearly
(ie, moduli space = vector space V,
group acting as a subgp of GL(V) ),
the FI term exists & is quantized.

I’ll discuss generalization to nonlinear realizations 
(ie, gen’l Kahler moduli spaces) today.

Very recently, there has been progress on
FI terms in 4d sugrav.



Quick & dirty argument for FI quantization:

Continuously varying the FI term,
continuously varies the symplectic form on the 

quotient space.

But that symplectic form = Kahler form,
& Bagger-Witten says is quantized.

Consistency requires FI term be quantized too.

Problem:
-- IR limit not same as NLSM, so irrelevant to B-W

Nice intuition, but need to work harder.



To gain a more complete understanding,
let’s consider gauging the Bagger-Witten story.

Have:

* sugrav moduli space M

* line bundle L

* group action on moduli space M

Need to specify how group acts on    .....L



In principle, if we now wish to gauge a group action 
on the supergravity moduli space     ,

then we need to specify the group action on   .L
M

* not unique:
when they do lift, there are multiple lifts

(These will be the FI parameters.)

* not always possible:
group actions on spaces do not always lift to bundles

-- classical constraint on sugrav theories....

Ex: spinors under rotations; 
rotate     instead of    .2π4π



We’ll see FI as a choice of group action on the 
Bagger-Witten line bundle directly in sugrav.

First:  what is D?

For linearly realized group action,

If scalars    have charges    w.r.t. U(1),
then

φi qi

D =

∑

i

qi|φi|
2

up to additive shift (by Fayet-Iliopoulos parameter).

How to describe D more generally?



Def’n of D more generally:
δφi

= ε(a)X(a)i inf’ gp action on M

where X(a)
= X(a)i ∂

∂φi

``holomorphic Killing 
vector’’

`Killing’ implies
∇iX

(a)
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which implies

for some       -- defines       up to additive shift (FI)D
(a)

D
(a)



Closer examination of the supergravity:

δA(a)
µ = ∂µε(a)

+ fabcε(b)A(c)
µ

δφi
= ε(a)X(a)i inf’ gp action on M

δK = ε
(a)

F
(a)

+ ε
(a)

F
(a)

F
(a)

= X
(a)

K + iD
(a)where

Recall K !→ K + f + f implies
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Hence  * gp action on          includes           terms Im F
(a)χi, ψµ

* This will be gp action on L



δA(a)
µ = ∂µε(a)

+ fabcε(b)A(c)
µ

δφi
= ε(a)X(a)i inf’ gp action on M
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Encode infinitesimal action on   L

δK = ε
(a)

F
(a)

+ ε
(a)

F
(a)

F
(a)

= X
(a)

K + iD
(a)where

Indeed:



We need the group to be represented faithfully.

Infinitesimally, the D’s can be chosen to obey

If the group is semisimple, 
the constraints above will fix D.  

If there are U(1) factors, must work harder...

Next:  constraints from representing group ....

(

X(a)i∂i + X(a)ı∂ı

)

D(b)
= −fabcD(c)

δ(b)ε(a)
Im F (a)

− δ(a)ε(b)Im F (b)
= −ε(a)ε(b)fabc

Im F (c)

and then



An infinitesimal action is not enough.

Need an action of the group on    ,
not just its Lie algebra.

L

Lift of g = exp

(

iε(a)T a

)

is g̃ = exp

(

i

2
ε(a)Im F (a)

)

g̃h̃ = g̃hRequire

so that the group is honestly represented.

(This is the part that can’t always be done.)



The lifts g̃ might not obey g̃h̃ = g̃h initially,

but we can try to adjust them:

Since F
(a)

= X
(a)

K + iD
(a)

shifting the D-term D
(a)

,

is equivalent to adding a phase to   :g̃

g̃ ≡ exp

(

i

2
ε(a)Im F (a)

)

"→ g̃ exp (iθg)

for some    encoding the shift in     .θg D
(a)



If the lifts g̃ do not obey g̃h̃ = g̃h ,

then we can shift       to add phases:D
(a)

g̃ !→ g̃ exp (iθg)

That *might* fix the problem, maybe.

1 −→ U(1) −→ G̃ −→ G −→ 1

Globally, the group    formed by the   is an extensionG̃ g̃

If that extension splits, we can fix the problem;
if not, we’re stuck -- cannot gauge G, not even 

classically.
(new consistency condition on classical sugrav)



Let’s assume the extension splits, 
so we can fix the problem and gauge G (classically).

In this case, there are multiple     ‘s, differing by 
phases.

{g̃}

Those different possibilities correspond to the 
different possible FI parameters 

-- remember, the phases originate as shifts of      .D
(a)

Let’s count them.
We’ll see they’re quantized.



Count set of possible lifts     :{g̃}

Start with one set of consistent lifts   ,g̃

meaning they obey g̃h̃ = g̃h

Shift the D-terms:

g̃′h̃′
= g̃h

′

Demand

Implies θg + θh = θgh

g̃ !→ g̃′ ≡ g̃ exp (iθg)

Result:  Set of lifts is Hom(G, U(1))

(= set of FI parameters)



So far:  set of possible lifts is Hom(G, U(1))

* this is a standard math result
for lifts of group actions to line bundles.

Ex:  G = U(1) Hom(G, U(1)) = Z

-- integrally many lifts / FI parameters

* Lifts = FI parameters,
so we see that FI parameters quantized.

(though the sugrav realization is novel)

Ex: G semisimple Hom(G, U(1)) = 0
-- only one lift / FI parameter



D-terms:

Although the      were only defined up to const’ shift:D
(a)

giX
(a)

= i
∂

∂φi
D(a)

the constraint g̃h̃ = g̃h

determines their values up to a (quantized)
shift by elements of  Hom(G, U(1))



Supersymmetry breaking:

Is sometimes forced upon us.

If the FI parameters could be varied continuously,
then we could always solve  D=0  just by suitable

choices.

Since the FI parameters are quantized,
sometimes cannot solve  D=0  for any

available FI parameter.



Supersymmetry breaking:

Example: M = P
1

G = SU(2)

Hom(SU(2), U(1)) = 0

so equivariant lift unique

(D(1))2 + (D(2))2 + (D(3))2 =
(

n

2π

)2

L = O(−n)For Bagger-Witten

susy always broken

(Bagger, 1983)

[ Use                 on    , plus fact that D’s obey Lie 
algebra rel’ns to fix the value above.  ]
Da

= φT aφ P
1



Math interpretation:

* Symplectic quotients do not have a restriction
to integral Kahler classes;

this cannot be a symplectic quotient.

* Instead, propose:  GIT quotients.

* Symplectic/GIT sometimes used interchangeably;
however, GIT quotients restrict to integral classes.

* In rigid susy, gauging ~ symplectic reduction



Symplectic 
quotients

GIT
quotients

complex Kahler manifolds,
integral Kahler forms



Why should GIT be relevant ?

* 1st, to specify GIT,
need to give an ample line bundle on original space,

that determines a projective embedding.
( = Bagger-Witten line bundle)

* 2nd, must specify a group action on that line bundle;
Kahler class ultimately determined by that group action.

Same structure as here:  thus, sugrav = GIT



N=2 susy in 4d:

Tentative conclusion:  no D-terms

In rigid N=2 susy, have a triplet of FI parameters.

Analogous quantization?

* Math literature distinguishes `hyperKahler quotients’
(with a triplet of Kahler parameters)
from `quaternionic Kahler quotients’

(with no Kahler parameters)

* Only set of triplet of integers compatible with    SU(2)R 
rotation is { (0,0,0) }

* Old Bagger result says Kahler structure on quaternionic 
Kahler moduli space is unique

Some notes:



So far:  quantization of FI parameters
when moduli space is an ordinary manifold

As a practical matter, this is never the case:
singularities, stack structures.

Next:  outline what happens when 
the moduli `space’ is a smooth stack.

This will bear on NLSM’s with restrictions on 
nonperturbative sectors,

and on discrete symmetries in sugrav, strings ....



NLSM on a stack

A stack is a generalization of a space.

Idea:  defined by incoming maps.

(and so nicely suited for NLSM’s;
just have path integral sum over what 

the def’n gives you)

Most moduli `spaces’ are really stacks; 
thus, to understand sugrav, need to understand stacks 

as targets of 4d NLSM’s.



Example:  A space X as a stack

For every other space Y, associate to Y the set of 
continuous maps Y ---> X

Example:  A quotient stack [X/G]

Maps  Y ---> [X/G] are pairs

(principal G bundle (w/ connection) E on Y,
G-equivariant map E --> X)

= twisted sector maps in string orbifold

g
h

XIf Y = T2 & G finite,



All smooth `Deligne-Mumford’ stacks (over C)
can be described as [X/G]

for some X, some G

Program:
A NLSM on a stack

is a G-gauged sigma model on X

Problem:  such presentations not unique

Potential fix:  RG flow

(G not nec’ finite, not nec’ effectively-acting
 -- these are not all orbifolds)



Does RG flow wash out presentation-dependence,
giving physics that only depends on the stack,

and not on the choice of X, G?

Two dimensions:  Yes
Numerous checks & work by myself, T Pantev, J Distler, 

S Hellerman, A Caldararu, and others in physics; 
extensive math literature on Gromov-Witten

Four dimensions:  No
-- the stack does not determine gauge coupling

-- in low energy effective field theory, W bosons generate 
effects that can swamp NLSM interp’

Can associate stack to physics, but not physics to stack.



Let’s consider a particularly interesting kind of stack.

Consider NLSM’s in which the sum over nonperturbative 
sectors has been restricted;

only sum over maps of degree obeying divisibility prop’.

Since stacks describe, in essence, all possible NLSM’s, 
naturally this is a kind of stack.

Specifically, this sort of stack is known as a gerbe.

(Also describes extra discrete symmetry present 
everywhere on space.)

(Seiberg, ‘10; ES, Distler, Pantev, Hellerman, GW, ....)



Example:  Gerby susy CPN model in two dim’s

* 2d U(1) susy gauge theory

* N+1 chiral superfields, charge k
-- nonminimal charges

How can this differ from ordinary susy CPN model?

Answer:  nonperturbative effects

(Global unbroken Zk)



To specify Higgs fields completely, need to specify 
what bundle they couple to.  

If the gauge field     
then    charge    implies 

  

Different bundles => different zero modes 
=> different anomalies => different physics 

∼ L

Φ Q

Φ ∈ Γ(L⊗Q)

The difference lies in nonperturbative effects.
(Perturbatively, having nonminimal charges makes no 

difference.)

2d:  Argument for compact worldsheet:



Argument for noncompact worldsheet:

Utilize the fact that in 2d,
theta angle acts as electric field.

(J Distler, R Plesser, Aspen 2004 & hepth/0502027, 0502044, 0502053;
N Seiberg, 2010)

Want Higgs fields to have charge k
at same time that instanton number is integral.

Latter is correlated to periodicity of theta angle;
can fix to desired value by adding massive charge 1, 

-1 fields -- for large enough sep’, can excite, and that
sets periodicity.



So far, only discussed 2d case.

There is a closely analogous argument in analogous 
four-dimensional models coupled to gravity.

Instead of theta angle, 
use Reissner-Nordstrom black holes.

Idea:  if all states in the theory have charge a 
multiple of k, then, gerbe theory is same as ordinary 

one.
However, if have massive minimally-charged fields,

then a RN BH can Hawking radiate down to charge 1,
and so can sense fields with mass > cutoff.

(J Distler, private communication)



P
N−1 : U(1)A !→ Z2N

Here : U(1)A !→ Z2kN

Example:  Anomalous global U(1)’s

P
N−1

: < XN(d+1)−1 > = qd

Here : < XN(kd+1)−1 > = qd

Example:  A model correlation functions

Example:  quantum cohomology
P

N−1 : C[x]/(xN
− q)

Here : C[x]/(xkN
− q)

Different
physics

Return to the 2d gerby CPN example:



More generally, for 2d gerbe theories, there are 
somewhat extensive results.

-- quantum cohomology rings

-- mirror symmetry, inc. Toda duals

-- decomposition conjecture for (2,2) susy theories....
(will describe next)



Decomposition 
conjecture

In the special case of `banded’ gerbes,
the decomposition conjecture says

where the B field is determined by the image of

H2(X, Z(G))
Z(G)→U(1)

−→ H2(X, U(1))

CFT(G − gerbe on X) = CFT





∐

Ĝ

(X, B)





More gen’ly, disjoint union of different spaces.

(Hellerman, Henriques, 
Pantev, Sharpe, etc)



 Example:

Consider [X/D4] where the center acts trivially.

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1

Can show this is physically distinct from [X/Z2xZ2];
for example,

Z([X/D4]) = Z
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]d.t.

)



 Example:

Consider where <i> acts trivially:

Can show this is physically distinct from [X/Z2];
for example,

[X/H ]

1 −→ 〈i〉(= Z4) −→ H −→ Z2 −→ 1

Z([X/H ]) = Z
(

[X/Z2]
∐

[X/Z2]
∐

X
)



Suffice it to say, 
there’s been considerable work done on the 2d case.

Pertinent here:  4d case.

Specifically,
4d NLSM on sugrav moduli `space’.

Far less work done; 
I’ll outline some results and issues.



Four dimensions
Example:

Consider a U(1) susy gauge theory on in 4d,
with N (massless) chiral superfields of charge k,

N of charge -k.

To be different physically from charge 1 case, 
need either:

-- topologically nontrivial 4d spacetime
(so that there are U(1) instantons)

-- massive fields of charge +1, -1

(parallels 2d case)



Gerby moduli spaces in string theory:

Consider toroidally-compactified Spin(32)/Z2 heterotic 
string.

Low-energy theory has only adjoints,
hence all invariant under Z2 center of Spin(32)/Z2

Math’ly, equivalent observation is that the moduli 
space of flat Spin(32)/Z2 connections has 

Z2 gerbe structure.

But, there are massive states that do see the center.



One can get enhanced gerbe structures along various 
strata.

Ex:  toroidally-compactified E8xE8 heterotic string

-- no center, so no gerbe structure globally

-- but, over stratum where E8xE8 broken to
Spin(16)/Z2 x Spin(16)/Z2,

there is a Z2xZ2 gerbe structure,
matching the corresponding Spin(32)/Z2 

compactification



Examples in Seiberg duality:

Several years ago, Matt Strassler was very interested
in Spin/SO Seiberg duals.

Prototypical example:

* Spin(8) gauge theory with Nf fields in 8V,
and one massive 8S

Seiberg dual to 
* SO(Nf - 4) gauge theory with Nf vectors

(from Higgsing SU(Nf-4) theory)

massive 8S  <-->  Z2 monopole
π2(SU(Nf − 4)/SO(Nf − 4)) = Z2

hepth/9507018, 9510228, 
9709081, 9808073



* Spin(8) gauge theory with Nf fields in 8V,
and one massive 8S

Seiberg dual to 

* SO(Nf - 4) gauge theory with Nf vectors
(from Higgsing SU(Nf-4) theory)

massive 8S  <-->  Z2 monopole

Important for his analysis that a Z2 center of Spin(8) 
acted trivially on massless matter,
but nontrivially on the massive 8S

-- so Z2 gerbe structure on moduli space on one side



Apply to quantization of FI parameters:

For a simple example,
consider the (anomalous) 4d gerby CPN model:

* U(1) gauge theory

* N+1 chiral superfields charge k

now in supergravity

(The anomaly is irrelevant; 
more complicated anomaly-free exs exist.)



D-terms:

* U(1) gauge theory

* N+1 chiral superfields charge k
∑

i

k|φi|
2

= r

But r is an integer, so this is same as
∑

i

|φi|
2

= r/k

-- looks like ordinary CPN model, 
but now with fractional FI term.

Interpretation ??



We’ve argued that FI integrality in sugrav
follows b/c FI term is a choice of

equivariant structure on the Bagger-Witten line bdle.

Over a gerbe, there are `fractional’ line bundles.

Ex:  gerbe on CPN

[x0, · · · , xN ] ∼= [λkx0, · · · , λ
kxN ]

Can define a line bundle L by y !→ λny

Call it O(n/k)



χi ∈ Γ (φ∗ (TM⊗ L)) , ψµ ∈ Γ
(

TX ⊗ φ∗L−1
)

Let’s redo Bagger-Witten,
when the sugrav moduli space is a gerbe.

For same reasons as ordinary case,

Now, however,     is a gerbe.M

Gerbes have more (ie fractional) bundles 
than their underlying spaces,

so    can be fractional.L

-- that’s what’s happening in the previous r/k ex.



Potential issue:

* Fractional line bundles have no smooth sections,
only multisections w/ branch cuts.

However, all maps into gerbes 
= maps into spaces w/ divisibility constraint,

which turns out to 
ensure pullback bundles are honest bundles.

so even if     is fractional,
   is an honest bundle,

and so no branch cuts in            .

L

φ∗
L

χi, ψµ



Have we missed any subtleties?

Indirect consistency check:

One can build heterotic string compactifications
on CY gerbes, with fractional gauge bundles.

In 2d GLSM examples,
* UV theory (GLSM) is consistent, anomaly free
* massless spectrum at LG point is consistent.

(Can also get these via dim’l reduction of twisted 4d 
N=2 theories on curves)

-- consistency here suggests 4d case not problematic



Is there a loophole in Bagger-Witten?

Naively, that’s what’s suggested by the gerby PN 
model.

However, it can be argued that’s not what’s going on 
here.

Briefly,

-- there is a fractional quantization condition

-- but it does not apply to Bagger-Witten’s theories;
these are, effectively, different 4d theories.

Conclusion:  no loophole



Summary:

* reviewed Bagger-Witten

* quantization of FI parameters in sugrav
when moduli space is a space

* review stacks

* exs & prop’s of gerby moduli spaces
in field and string theory;

discrete symmetries....

* Bagger-Witten, FI quantization
when moduli space is a gerbe



Strings-Math 2011
A new biennial conference series,

oriented towards math aspects & mathematicians

First meeting:  June 6-10, 2011,
University of Pennsylvania

Future meetings:  Stony Brook, Bonn
http://www.math.upenn.edu/StringMath2011
Organizers:  J Distler, R Donagi, T Pantev, E Sharpe


