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In this talk, I’m going to describe how some examples 
of Kuznetov’s homological projective duality (hpd) 

(for complete intersections of quadrics)
are realized physically, as phases of abelian GLSM’s.

WARNING:  physics talk

GLSM = `gauged linear sigma model’
These are the bread-and-butter tools used by 

physicists to describe families of spaces and related 
aspects of string compactifications.

Hpd taught us a great deal about GLSM’s, 
as we’ll see today.



What did hpd teach us?

Prior to ~ 2006, it was (falsely) believed that:

* GLSM’s could only describe global complete intersections, 

* which could only arise physically as critical locus of a 
superpotential, and

* GLSM Kahler `phases’ are all birational to one another

The papers
Hori-Tong hep-th/0609032, Hellerman et al hep-th/0606034, 

Donagi-ES 0704.1761, Caldararu et al 0709.3855, .... 

provided counterexamples to each statement above, 
all special cases of hpd.



Since ~ 2006, many of us have come to believe that 
all geometries realized by GLSM’s are related by hpd.

This now seems to be (close to) proven:
Ballard, Favero, Katzarkov, 1203.6643 & to appear

Matrix factorizations will play an important role.

Today, I’ll discuss some (old) examples of such exotic 
GLSM’s, and some (newer) analyses.



Outline:

* physical realization of hpd
as phases of abelian GLSM, i.e.  V // C*

* detour through physics of Z2 gerbes

* D-brane probes of nc res’ns

* analogues of GW invt’s for nc res’ns

* some phases will be CFT’s for nc resolutions

(w/ Nick, Ed)



You’ve heard (E Segal’s talk, J Knapp’s talk) about how 
Hori-Tong describe an exotic GLSM interpolating 

between two smooth non-birational spaces with the 
same mirror.

Singular examples of the same form also exist, and 
also have (exotic) GLSM descriptions.

My goal today is to describe examples of this form
(as further examples of hpd).

In fact, the singularities are nc-resolved, so we’ll see
nc res’ns in physics, and some of their properties.

Which GLSM’s will I describe?



Prototype for the exotic GLSM’s I’ll discuss today:

A complete intersection of k quadrics in Pn,

is hpd to
a (nc resolution of a) branched double cover of Pk-1,

branched over the locus

{Q1 = · · · = Qk = 0}

{detA = 0}
∑

a

paQa(φ) =
∑

i,j

φiA
ij(p)φjwhere

I’ll describe how this arises in physics.



GLSM’s are families of 2d gauge theories
that RG flow to families of CFT’s.

In this case:

one-parameter
Kahler moduli space

NLSM on
P3[2,2]

LG
point

= branched 
double 
cover

We’ll begin with the easiest possible example:
the GLSM for P3[2,2] (=T2):

r

r ! 0 r ! 0



GLSM for P3[2,2] (=T2):

Looks like a GIT quotient V//C×

where V = C
4
⊕ C

2

(φi) (pa)
weight 1 weight -2

Idea:  φi ~ homogeneous coordinates on P3

pa count quadric hypersurfaces
and there’s a superpotential:

W =
∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj



We physicists speak of Kahler phases, 
which are the chambers in VGIT.

One description of result is as LG models:

V//+C
×:

LG model on
Tot( O(-2)2 --> P3 )

V//−C
× :

LG model on
Tot( O(-1)4 --> P1[2,2] )

both with

W =
∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj

Kahler
r

V//C×
=

(

C
4
(1) ⊕ C

2
(−2)

)

//C×



All phases of GLSM’s can be described as LG models, 
and ultimately this is why work such as BFK relates 

GLSM phases to hpd, via matrix factorizations.

That said, we usually don’t stop at LG.
We can often use the `renormalization group’ to give 
an alternative description of the low-energy dynamics 

of the theory 
(which for some purposes may be more complicated 

than a LG model).



One phase:

NLSM on {Q1 = Q2 = 0} in P3

V//+C
×:

LG model on
Tot( O(-2)2 --> P3 )

W =
∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj

RG

= T2

(This is the easy example after all.)



The other phase is more exciting:

V//−C
× :

LG model on
Tot( O(-1)4 --> P1[2,2] )

W =
∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj

Here, the p’s not all zero (describing P1)
so W looks like it’s giving a mass to the φi

which would mean this RG flows to
NLSM on P1

Can’t be right! ....



The correct analysis of the //- phase is more subtle.

One subtlety is that the    are not massive 
everywhere.

φi

Write

then they are only massive away from the locus

But that just makes things more confusing....

{detA = 0} ⊂ P
1

W =
∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj



A more important subtlety is the fact that the p’s are 
coordinates on the Z2 gerbe P1[2,2],
so over most of the P1 of p vevs,

there is a trivially-acting Z2.

Let’s quickly review how this works....

Physics sees this as a double cover.



Strings on gerbes:
Present a (smooth DM) stack as [X/H].

String on stack = H-gauged sigma model on X.

If a subgroup G acts trivially, then this is a G-gerbe.

Physics questions:
* Does physics know about G?

(Yes, via nonperturbative effects -- Adams, Plesser, Distler.)
* The result violates cluster decomposition; 

why consistent?
(B/c equiv to a string on a disjoint union....)

(presentation-dependence washed out w/ renormalization group)



General decomposition 
conjecture

Consider [X/H ] where

1 −→ G −→ H −→ K −→ 1

and G acts trivially.

We now believe, for (2,2) CFT’s,

(together with some B field), where
Ĝ is the set of irreps of G

CFT([X/H ]) = CFT
([

(X × Ĝ)/K
])

gerbe
disjoint
union of
spaces



Decomposition 
conjecture

For banded gerbes, K acts trivially upon Ĝ

so the decomposition conjecture reduces to

where the B field is determined by the image of

CFT(G − gerbe on Y ) = CFT





∐

Ĝ

(Y, B)





H2(Y, Z(G))
Z(G)→U(1)

−→ H2(Y, U(1))

(Y = [X/K])



A sheaf on a banded G-gerbe
is the same thing as

a twisted sheaf on the underlying space,
twisted by image of an element of H2(X,Z(G))

Quick consistency check:

This implies a decomposition of D-branes (~ sheaves),
which is precisely consistent with the decomposition 

conjecture.



GW of [X/H ]

should match

GW of
[

(X × Ĝ)/K
]

H-H Tseng, Y Jiang, et al,
0812.4477, 0905.2258, 0907.2087, 0912.3580, 1001.0435, 1004.1376, ....

and this has been checked in

Another quick consistency check:

Prediction:



GLSM’s

Example:  P3[2,2]

Superpotential:

* mass terms for the    , away from locus             .φi {detA = 0}

* leaves just the p fields, of charge -2

* Z2 gerbe, hence double cover

Let’s now return to our analysis of GLSM’s.

∑

a

paQa(φ) =
∑

ij

φiA
ij(p)φj

V//−C
×

:



{ det = 0 }P1

Because we have a Z2 gerbe over P1....

V//−C
×

:



Double 
cover

Berry phase

Result:  branched double cover of P1

V//−C
×

:

P1



where RHS realized at //- via
local Z2 gerbe structure + Berry phase.

(S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, ‘06; R Donagi, ES, ‘07;
A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

So far:
The GLSM realizes:

P3[2,2]
      = T2

branched double cover
of P1, 

over deg 4 locus  = T2

Kahler

* novel realization of geometry
(via nonperturbative effects)

//+: //-:



Next simplest example:

GLSM for P5[2,2,2] = K3

K3 K3Kahler

(no surprise)

V//C×
=

(

C
6
(1) ⊕ C

3
(−2)

)

//C×

//+:  LG on 
Tot( O(-2)3 --> P5 )

//-:  LG on 
Tot( O(-1)6 --> P2[2,2,2] )

NLSM on P5[2,2,2]
RG

NLSM on branched 2-cover of P2,
branched over deg 6 locus

RG



So far:

* easy low-dimensional examples of hpd

* RG endpt at //- is NLSM on geometry, 
but not as the critical locus of a superpotential.

For physics, this is already neat, but there are much 
more interesting examples yet....



The next example in the pattern is more interesting.

GLSM for CP7[2,2,2,2]    = CY 3-fold
At //-,

naively, same analysis says
get branched double cover of CP3,

branched over degree 8 locus.

-- another CY
(Clemens’ octic double solid)

Here, different CY’s;
not even birational



However, the analysis that worked well in lower 
dimensions, hits a snag here:

The branched double cover is singular, 
but the GLSM is smooth at those singularities.

Hence, we’re not precisely getting a branched double 
cover; instead, we’re getting something slightly 

different.

We believe the GLSM is actually describing
a `noncommutative resolution’ of the branched double 

cover, as hpd implies in this case.



Check that we are seeing K’s noncomm’ resolution:

Here, K’s noncomm’ res’n is defined by (P3,B)
where B is the sheaf of even parts of Clifford 

algebras associated with the universal quadric over P3 
defined by the GLSM superpotential.

B is analogous to the structure sheaf; 
other sheaves are B-modules.

Physics?......



Physics picture of K’s noncomm’ space:

Matrix factorization for a quadratic superpotential: 
even though the bulk theory is massive, one still has 

D0-branes with a Clifford algebra structure.

Here: a `hybrid LG model’ fibered over P3,
gives sheaves of Clifford algebras (determined by the 

universal quadric / GLSM superpotential)
and modules thereof. 

So:  open string sector duplicates Kuznetsov’s def’n.

(Kapustin, Li)



This GLSM realizes:

CP7[2,2,2,2]
nc res’n of

branched double cover
of CP3

where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

Non-birational twisted derived equivalence

Summary so far:

Kahler

Physical realization of a nc resolution

Geometry realized nonperturbatively



More examples:

CI of
n quadrics in P2n-1

(possible nc res’n of) 
branched double 
cover of Pn-1,

branched over deg 2n 
locus 

Both sides CY

Kahler



More examples:

CI of 2 quadrics in the total space of

branched double cover of P1xP1xP1,
branched over deg (4,4,4) locus

* In fact, the GLSM has 8 Kahler phases,
4 of each of the above.

P
(

O(−1, 0)⊕2 ⊕O(0,−1)⊕2
)

−→ P
1 × P

1

Kahler



A non-CY example:

CI 2 quadrics
in P2g+1

branched double 
cover of P1,

over deg 2g+2
(= genus g curve) 

Here, r flows -- not a parameter.
Semiclassically, Kahler moduli space falls apart

into 2 chunks.
Positively
curved

Negatively
curved

r flows:

Homologically projective dual.

Kahler



D-brane probes of nc resolutions

Let’s now return to the branched double covers and 
nc resolutions thereof.

I’ll outline next some work on D-brane probes of 
those nc resolutions.

(w/ N Addington, E Segal)

Idea:  `D-brane probe’ = roving skyscraper sheaf;
by studying spaces of such, can sometimes gain

insight into certain abstract CFT’s.



Setup:

To study D-brane probes at the LG points,
we’ll RG flow the GLSM a little bit,

to build an `intermediate’ Landau-Ginzburg model.
(D-brane probes = certain matrix fact’ns in LG)

Pn[2,2,..,2] (k intersections) is hpd to

LG on 

with superpotential

Tot
(

O(−1/2)n+1
−→ P

k−1
[2,2,···,2]

)

W =
∑

a

paQa(φ) =
∑

i,j

φiA
ij(p)φj



Our D-brane probes of this Landau-Ginzburg theory 
will consist of (sheafy) matrix factorizations:

E0

P

!!
E1

Q

""

In a NLSM, a D-brane probe is a skyscraper sheaf.
Here in LG, idea is that we want MF’s that RG flow to 

skyscraper sheaves.

That said, we want to probe nc res’ns (abstract CFT’s), 
for which this description is a bit too simple.

P ◦ Q, Q ◦ P = W End

where

up to a constant shift

(equivariant w.r.t. C*R)



Ox

!!
0

""

where x is any point.

Since W|x is constant, 0 = W|x up to a const shift,
hence skyscraper sheaves define MF’s. 

First pass at a possible D-brane probe:
(wrong, but usefully wrong)

This has the right `flavor’ to be pointlike, 
but we’re going to need a more systematic def’n....



When is a matrix factorization `pointlike’?

One necessary condition:  
contractible off a pointlike locus.

Example: X = C2

{x != 0}Sim’ly, contractible on

W = xy

O

x

!!
O

y

""
s, tThere exist maps      s.t. 1 = ys + tx

is contractible on             :{y != 0}

hence support lies on {x = y = 0}

t = 0namely s = y
−1,



When is a matrix factorization `pointlike’?

Demanding contractible off a point, 
gives set-theoretic pointlike support, 

but to distinguish fat points, need more.

To do this, compute Ext groups.
Say a matrix factorization is `homologically pointlike’ 

if has same Ext groups as a skyscraper sheaf:

dimExtk

MF(E , E) =

(

n

k

)



We’re interested in Landau-Ginzburg models on

Tot
(

O(−1/2)n+1
−→ P

k−1
[2,2,···,2]

)

W =
∑

a

paQa(φ) =
∑

i,j

φiA
ij(p)φjwith superpotential

For these theories, it can be shown that the
`pointlike’ matrix factorizations are of the form

OU

!!
0

""

where U is an isotropic subspace of a single fiber.



Let’s look at some examples, fiberwise, to understand 
what sorts of results these D-brane probes will give.

Example: Fiber [C2/Z2] W |F = xy,

Two distinct matrix factorizations:

D-brane probes see 2 pts over base => double cover

O{y=0}

!!
0

""
∼ O

x

##
O(1/2)

y

$$

and

O{x=0}

!!
0

""
∼ O

y

##
O(1/2)

x

$$



Example: Family [C2/Z2]x,y × Cα

W = x2
− α2y2

A =

[

1 0

0 −α2

]

detA = −α
2

Find branch locus:

α != 0When
there are 2 distinct matrix factorizations:

,

(O{x=αy} ⇀↽ 0) (O{x=−αy} ⇀↽ 0),

Over the branch locus           ,{α = 0} there is only one.

=> branched double cover



Global issues:

Over each point of the base, we’ve picked an isotropic 
subspace U of the fibers, to define our ptlike MF’s.

These choices can only be glued together up to an 
overall C* automorphism,

so globally there is a C* gerbe.

Physically this ambiguity corresponds to gauge 
transformation of the B field;

hence, characteristic class of the B field
should match that of the C* gerbe.



So far:

When the LG model flows in the IR to a smooth 
branched double cover,

D-brane probes see that branched double cover
(and even the cohomology class of the B field).



Case of an nc resolution:

Toy model: [C2/Z2]x,y × C
3

a,b,c

W = ax2
+ bxy + cy2

A =

[

a b/2

b/2 c

]

Branch locus:
detA ∝ b

2
− 4ac ≡ ∆

Generically on C3, have 2 MF’s, quasi-iso to
OF

2ax+by+
√

∆y

!!
OF (1/2)

2ax+by−
√

∆y

"" OF

2ax+by−
√

∆y

!!
OF (1/2)

2ax+by+
√

∆y

""

,

Gen’ly on branch locus, become a single MF,
but something special happens at                   ....{a = b = c = 0}



Case of an nc resolution, cont’d:

Toy model: [C2/Z2]x,y × C
3

a,b,c

W = ax2
+ bxy + cy2

{a = b = c = 0}At the point

OF

0

!!
OF (1/2)

φ

"" OF

φ

!!
OF (1/2)

0

""

there are 2 families of ptlike MF’s:

where    is any linear comb’ of x, y (up to scale)φ

* 2 small resolutions (stability picks one)



I’m glossing over details,
but the take-away point is that for

nc resolutions 
(naively, singular branched double covers),

D-brane probes see small resolutions.

Often these small resolutions will be non-Kahler,
and hence not Calabi-Yau.

(closed string geometry    probe geometry;
also true in eg orbifolds)

!=



So far:

* examples of hpd realizing singular non-birat’l pairs,
in physics

* D-brane probes of nc resolutions appearing above

Next:

* predictions for analogues of GW inv’ts for those 
nc resolutions,

by applying GLSM localization techniques of 
Jockers et al



GW inv’ts of nc res’ns
Basic idea of Jockers, Morrison, Romo et al, 1208.6244:

Partition function of GLSM on S2 can be computed 
exactly, for example:

(Benini, Cremonesi, 1206.2356; Doroud et al, 1206.2606)

Z =
∑

m∈Z

e−iθm

∫

∞

−∞

dσ

2π
e−4πirσ

(

Γ(q − iσ − m/2)

Γ(1 − q + iσ − m/2)

)8 (

Γ(1 − 2q + 2iσ + 2m/2)

Γ(2q − 2iσ + 2m/2)

)4

After normalization, this becomes exp(-K):

... and then read off the     ’sNn

= −

i

6
κ(t − t)3 +

ζ(3)

4π3
χ(X) +

2i

(2πi)3

∑

n

Nn (Li3(q
n) + Li3(q

n))

−

i

(2πi)2

∑

n

Nn (Li2(q
n) + Li2(q

n))n(t − t)

Z

stuff
= exp(−K)



Let’s work through this in more detail.

For a U(1) gauge theory,

Z =

∑
m∈Z

e
−iθm

∫ ∞

−∞

dσ

2π
e
−4πirσ

∏
i

ZΦ,i

where

ZΦ =
Γ(Q/2 − Q(iσ + m/2))

Γ(1 − Q/2 + Q(iσ − m/2))

= gauge U(1) chargeQ

Q defines hol’ Killing vector that
combines with U(1)R



Q vs Q :

To explain the difference, it’s helpful to look at a 
NLSM lagrangian on S2:

gī∂mφi∂mφ̄̄
− igīψ̄

̄γm
Dmψi + gīF

iF̄ ̄
− F i(

1

2
gī,k̄ψ̄̄ψ̄k̄

− Wi)

− F̄ ı̄(
1

2
gjı̄,kψjψk

− W̄ı̄) −

1

2
Wijψ

iψj
−

1

2
W̄ı̄̄ψ̄

ı̄ψ̄̄ +
1

4
gī,kl̄ψ

iψkψ̄̄ψ̄l̄

−
1

4r2
gīX

iX ̄ +
i

4r2
KiX

i
−

i

4r2
Kı̄X

ı̄
−

i

2r
gīψ̄

̄
∇jX

iψj

r = radius of S2
Specific to S2

X = holomorphic Killing vector
(defines    of previous slide)Q

Constraints: 2W = −iX
i
∂iW

W != 0 X != 0so if then -- important for GLSM

(B. Jia, 2013,
to appear)



As a warm-up, 
let’s outline the GW computation at //+,

on P7[2,2,2,2],
where the answer is known,

and then afterwards we’ll repeat at //-,

where the nc res’n lives.



For the GLSM for P7[2,2,2,2]:

Z =
∑

m∈Z

e−iθm

∫

∞

−∞

dσ

2π
e−4πirσ

(

Γ(q − iσ − m/2)

Γ(1 − q + iσ − m/2)

)8 (

Γ(1 − 2q + 2iσ + 2m/2)

Γ(2q − 2iσ + 2m/2)

)4

Φ, Q = 1

Q = 2q
P, Q = −2

Q = 2 − 4q

For //+, r >> 0, so close contour on left.

f(ε) =

∣

∣

∣

∣

∣

∞
∑

k=0

zk Γ(1 + 2k − 2ε)4

Γ(1 + k − ε)8

∣

∣

∣

∣

∣

2

Z =

∮
dε

2πi
(zz)q−επ4 (sin 2πε)4

(sin πε)8
f(ε)

Define

then

=
8

3
(zz)q

[

− ln(zz)3f(0) − 8π2f ′(0) + 3 ln(zz)2f ′(0)

+ ln(zz)
(

8π2f(0) − 3f ′′(0)
)

+ f (3)(0)
]



P7[2,2,2,2], cont’d

In principle,

= −

i

6
κ(t − t)3 +

ζ(3)

4π3
χ(X) +

2i

(2πi)3

∑

n

Nn (Li3(q
n) + Li3(q

n))

−

i

(2πi)2

∑

n

Nn (Li2(q
n) + Li2(q

n))n(t − t)

Z ∝ exp(−K)

We know κ = 2
4

= 16 and

t =
ln z

2πi
+ (terms invariant under z !→ ze

2πi)

so we can solve for the normalization of Z, 
then plug in and compute the     ‘s.Nn



P7[2,2,2,2], cont’d
Details:
Z =

8

3
(zz)q

[

− ln(zz)3f(0) − 8π2f ′(0) + 3 ln(zz)2f ′(0)

+ ln(zz)
(

8π2f(0) − 3f ′′(0)
)

+ f (3)(0)
]

−

i

(2πi)2

∑

n

Nn (Li2(q
n) + Li2(q

n))n(t − t)

∝ −

i

6
κ(t − t)3 +

ζ(3)

4π3
χ(X) +

2i

(2πi)3

∑

n

Nn (Li3(q
n) + Li3(q

n))also

so we use the ln(z z*)3 term to normalize.

Expect t − t =
ln(zz)

2πi
+

∆(z) + ∆(z)

2πi
∆(z)for some



Expect t − t =
ln(zz)

2πi
+

∆(z) + ∆(z)

2πi
∆(z)for some

After normalization,

e−K = −i
16

6

[

ln(zz)3

(2πi)3
+

8π2

(2πi)3
f ′(0)

f(0)
−

3

2πi

ln(zz)2

(2πi)2
f ′(0)

f(0)

−

ln(zz)

2πi

(

8π2

(2πi)2
−

3

(2πi)2
f ′′(0)

f(0)

)

−

1

(2πi)3
f (3)(0)

f(0)

]

also

−

i

(2πi)2

∑

n

Nn (Li2(q
n) + Li2(q

n))n(t − t)

= −

i

6
κ(t − t)3 +

ζ(3)

4π3
χ(X) +

2i

(2πi)3

∑

n

Nn (Li3(q
n) + Li3(q

n))

so from ln(z z*)2 term, ∆ + ∆ = −

∂

∂ε
ln f(ε)

∣

∣

∣

∣

ε=0

P7[2,2,2,2], cont’d



P7[2,2,2,2], cont’d

So far,
q = exp(2πit) = ze2πiC

(

1 + 64z + 7072z2 + 991232z3 + 158784976z4 + · · ·

)

z = qe
−2πiC

− 64q
2
e
−4πiC + 1120q

3
e
−6πiC

− 38912q
4
e
−8πiC + · · ·

Invert:

Plug into remaining equations:
−

i

(2πi)2

∑

n

nNn (Li2(q
n) + Li2(q

n)) = −i
16

6

1

(2πi)2

[

3

(

∂

∂ε

)2

ln f(ε)

∣

∣

∣

∣

∣

ε=0

− 8π2

]

ζ(3)

4π3
χ(X)+

2i

(2πi)3

∑

n

Nn (Li3(q
n) + Li3(q

n)) = i
16

6

1

(2πi)3

(

∂

∂ε

)3

ln f(ε)

∣

∣

∣

∣

∣

ε=0

-- 2 equ’ns for the genus 0 GW inv’ts



Result for P7[2,2,2,2]:

n N
1 512
2 9728
3 416256
4 25703936
5 1957983744
6 170535923200

matches    Hosono et al, hep-th/9406055



Now, let’s consider the opposite limit, //-, 
where r << 0.

In order for the previous analysis to work,
we needed

t =
ln z

2πi
+ (terms invariant under z !→ ze

2πi)

-- characteristic of large-radius
-- don’t typically expect to be true of LG models

(so, computing Fan-Jarvis-Ruan using these methods 
will be more obscure),

but the present case is close enough to geometry 
that this should work, and indeed, one can extract 

integers.



Applying the same method, 
one finds

n N
1 64
2 1216
3 52032
4 3212992

N
29504

128834192
1423720545880

23193056024793312

Compare GW inv’ts of
smooth br’ double cover

(Morrison, 
in “Mirror Symmetry I”)



Interpretation?

We’ve found a set of integers, that play the same 
role as GW inv’ts, but for a nc res’n.

I don’t know of a notion of GW theory for nc res’ns,
but there’s work on DT invt’s
(see e.g. Szendroi, Nagao, Nakajima, Toda)

Perhaps some version of GW/DT can be used to 
define a set of integers that ought to be GW inv’ts?



Summary:

* physical realization of hpd

CI quadrics (nc res’n of) 
branched double cover

as phases of abelian GLSM, i.e.  V // C*

* detour through physics of gerbes

* D-brane probes of nc res’ns

* Briefly:  analogues of GW invt’s for nc res’ns


