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Onset of ordering in driven bilayer lattice gases
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Abstract

We investigate the phase diagram of a system with two layers of an Ising lattice gas at half
filling, as a function of the inter-layer coupling J, keeping the usual intra-layer nearest-neighbor
attraction constant. In equilibrium, the phase diagram is symmetric under J — —J, but exhibits
different ground states. The effects of imposing a uniform external drive are studied by simulation
and analytic techniques. In particular, we attempt to develop a simple intuitive picture which
allows us to predict the approximate location of I in driven lattice gases.
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One of the major problems in the study of non-equilibrium steady states is the ab-
sence of a free energy, with its associated store of simple intuitive arguments, which
often allow us to predict the qualitative phase diagram of equilibrium systems rather
successfully. For example, the structure of ground states can be predicted based on
simple energetics, while the existence of phase transitions, especially in systems with
discrete symmetry, as well as the qualitative shape of the phase diagram can be ob-
tained easily from Landau—Peierls-type arguments [1], balancing the competing effects
of entropy and energy. More sophisticated tools, such as Monte Carlo simulations,
mean-field theory or renormalization group methods, can then be invoked to obtain
more quantitative details. In contrast, there are as yet no intuitive arguments that would
enable us to predict, qualitatively, the basic features of phase diagrams even in sim-
ple non-equilibrium systems. A prime example for this situation is the driven lattice
gas, introduced over a decade ago by Katz et al. [2]. In this model, particles hop to
nearest-neighbor empty sites, subject to the usual Ising {3] Hamiltonian and a thermal
bath at temperature 7. The system is driven into a non-equilibrium steady state by
a driving force which favors particle hops along a specific lattice axis. While many
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surprising features of this basic model are by now well understood [4], a few results
remain puzzling. In particular, it is not yet clear why the critical temperature, T.(E),
increases with E, saturating at about 40% above the Onsager temperature as £ — oo
[5]. Since nearest-neighbor bonds are easily broken by sufficiently strong fields, one
might in fact have expected a lower T.. Additional data, demonstrating the presence
of long-range correlations in the system[6], give a first indication as to why 7, might
increase.

In the following, we will explore a related system, consisting of a bilayer driven
lattice gas. The purpose of our work is twofold. First, this system is closely related
to models for intercalated structures [7,8], and we will investigate its phase diagram
and critical properties. Second, we wish to test which of these competing arguments
successfully predicts the qualitative behavior of the phase diagram. The goal is to
develop a simple intuitive picture which can be applied to other systems.

Earlier simulation work [9] investigated driven bilayer lattice gases, with zero cross-
layer coupling. Surprisingly, two transitions were found: As T is lowered, the usual
disordered (D) phase orders into a strip phase (S), displaying a single strip in each
one of the layers. The two strips lie right on top of one another. At even lower tem-
peratures, a first-order transition occurs into a second ordered state: here, one of the
planes is mainly full, while the other is nearly empty, corresponding to homogeneous,
opposite magnetizations on the two planes. This state will be referred to as FE. The
lack of understanding, as to why there should be rwo transitions, as well as possible
applications to the physics of intercalated compounds, motivates our study of a bilayer
driven system with inter-layer interactions. The goal is to map out the phase diagram
in the space spanned by temperature, drive and inter-layer coupling strength. In the
following, we will briefly describe our model, report the main results from the sim-
ulations, and outline the first steps towards a renormalization group analysis of the
continuous transitions in the model. Finally, we will briefly summarize a few intuitive
arguments concerning the structure of the phase diagram. A more detailed description
of the simulations and of our intuitive picture can be found in [10]. A thorough dis-
cussion of the field theory analysis and additional Monte Carlo data will be published
elsewhere [11].

We consider two fully periodic L x L square lattices, arranged in a bilayer structure.
Each site (ji,/2,/3), with j;,jo»=1,...,L and j3=1,2, can be either occupied by a
particle or empty, denoted by a(ji,/2,/3)=0 or 1. Occasionally, we will use Ising
spin language, s(ji,j2,/3)=2n(J|.j2,j3) — 1. To access the usual critical point of the
Ising model, we study only half-filled systems, i.e., 3. n=L>. This constraint imposes
a conservation law on the dynamics. The particles interact with their nearest neighbors,
both within and across layers, with coupling strengths Jy and J, respectively. Thus,
the Hamiltonian is given by # = —Jo>_ nn’ —J > nn", where n and n’ are nearest
neighbors within a given layer, and » and »” differ only by the layer index. Our
study is restricted to positive Jy , with several values of J/Jy in the range [—10,10].
Negative J’s are motivated by the physics of intercalated materials [7,8], where elastic
deformations of the host lattice may lead to repulsive effective interactions between
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intercalating atoms in adjacent layers. To simulate equilibrium systems coupled to a
thermal bath at temperature 7, we use mostly standard spin-exchange (Kawasaki) [12]
dynamics with Metropolis rates [13]. A few datapoints for large |J| have been obtained
using Glauber dynamics, in order to reduce the relaxation times. Since the steady-state
properties of an equilibrium system are independent of the dynamics (as long as detailed
balance is satisfied), this is a valid procedure. Finally, to drive the system into non-
equilibrium steady states, we model the bias as an “electric” field (aligned with the
l-axis), acting on “charged” particles, by adding £E to the change in configurational
energy for hops against/along the field [2,4]. Of course, spin exchange dynamics is
used for all simulations at non-zero E.

To distinguish different ordered phases, we choose the appropriate structure factors
as order parameters [2,4]. Introducing the Fourier transform of the occupation variables
of a given configuration,

n(l[,lz,l?,)zﬁZ”(}l,]Z,J})e ( ‘ ) 5 (1)

the structure factor is defined as S(/y, /5, /3) = (|A(/1, 15, 13)|*). As usual, the { )’s are
time-averages, taken over the run. Clearly, $(0,1,0) and S(0,0,1) measure, respec-
tively, the degree of ordering in the S- and FE-phases. Structure factors associated
with a range of other wave vectors have also been monitored, in order to exclude the
emergence of additional phases. First-order transitions are identified by the appearance
of hysteresis loops in the order parameters as either T or J are varied. As a first ap-
proximation, we place the phase boundary at the mid-point between the values where
the order parameter jumps in a hysteresis loop. Second-order transitions are associated
with a peak in the fluctuations of [7i|>, measured as a function of T at fixed J and E.
More precise estimates of the phase boundaries are clearly possible, by obtaining better
statistics accompanied by a finite size scaling analysis. However, the accuracy of our
data is sufficient to reach some conclusions about the nature of the phase transitions
in our systems.

We now turn to a summary of our findings. In the equilibrium case, the low-
temperature configurations can be determined from energetic arguments. Since the intra-
layer coupling Jy is always attractive, the system attempts to maximize the number of
satisfied intra-layer bonds. For large negative J, broken inter-layer bonds are favored,
and the FE phase results. In contrast, for positive J, the inter-layer bonds must also
be satisfied. In the thermodynamic limit, the associated energetic gain offsets the ex-
tra interfacial cost for any J >0, so that the S-phase prevails in that regime. As the
temperature is increased, the system disorders via a continuous transition at a criti-
cal temperature T.(J). Since a gauge transformation relates the J >0 system to the
J <0 one, T.(J) is even in J. It takes its minimum at J =0, where the two layers
decouple, so that T.(0) is given by the Onsager value. Then, as |J| increases, T.(+J)
also increases, reaching a value of 27.(0) for J = =+ 10, within the error bars. This
bears out the expectation that, in the limit of J — oc, the system is equivalent to a
single d =2 Ising model with coupling 2.J,. Finally, the J =0 axis, between 7 =0 and
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T:(0), is a line of first-order transitions, with the point (7.(0), J =0) being a bicritical
point.

Next, we summarize the effects of turning on the drive. Since the drive violates the
Ising symmetry, the phase diagram is no longer symmetric (Fig. 1). At high tempera-
tures, the system is disordered, ordering via a continuous transition as the temperature
decreases. Intriguingly, the critical temperature T.(J,E) is lowered for large |J|, com-
pared to its equilibrium counterpart T.(J,E =0). This is quite surprising, given that
T.(E) is greater than 7 (0) in the single-layer case. The other remarkable feature is the
shift of the bicritical point to higher values of T and negative J. Thus, the S-phase
prevails, not only for positive J, but also in a finite, triangular region (inset, Fig. 1),
characterized by small negative J. We conclude that neither energy nor entropy deter-
mine the steady state here. For larger values of the inter-layer repulsion, the FE phase
is observed to be stable. Its presence is also somewhat surprising since one might have
expected a phase with strips in each layer, but staggered. The phase boundary between
the S- and FE-phases is a line of first order transitions. A few test runs at selected
points in the phase diagram for larger systems indicate that none of these characteristics
appear to be due to finite size effects.

In the following, we outline the first steps towards a full field-theoretic analysis [11]
of critical behavior in this system, beginning with the equilibrium case. Our first task is
to coarse-grain the microscopic Hamiltonian # in order to arrive at a Landau-Ginzburg
Wilson Hamiltonian, 4., for the bilayer structure. A convenient approach is to perform
a Hubbard Stratonovich transformation [11]. #. then emerges as a functional of two
fields which can be identified, in the usual way, with the local magnetizations ¢;(ji, j2)
and @1(J1,/2) of the first and second layer, respectively. After a naive continuum limit,
the discrete in-layer coordinate (i, /2) is replaced by the continuous variable x. For
generality, we take x to be d-dimensional. A particularly simple form of 2 results if
the single-layer magnetizations ¢((x) and ¢,(x) are expressed in terms of their sum
Z(x)= —\]72((P1 + ¢7) and difference A(x)= %((pl — @)

i _ d l 2 l 2 l 2 : -
.;g.[z,d]_/dx{z(vm +3(Vay 423 [2dﬂJo 2"}
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(2)

Here, V denotes the gradient in d-dimensional space, f§ is the inverse temperature,
and

e SPED L enh)

~ 2cosh(BJ)’ ~ 2cosh(BJ) =a(=J)

are coefficients originating from the Hubbard Stratonovich transformation. For simplic-
ity, Boltzmann’s constant is set to 1. The gauge invariance of the microscopic model
translates into the symmetry of . under exchanging ¥ and 4, and replacing J by
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Fig. 1. Phase diagram for a bi-layer lattice gas at half filling, driven with £ =25Jy [10]. The system size
here is L=30. T is given in units of the single-layer Onsager temperature: 0.5673.Jy/kg; both J and E are
measured in units of Jy. The disordered (D), strip (S), and full-empty (FE) phases are labeled. The D-S
and D-FE transitions, denoted by e. are second order; while the S-FE transitions, shown by @, are first
order. The three lines join at a bicritical point.

Inset: Magnified view of the region near the bicritical point showing the presence of the S phase in J <0
half-plane.

—J. It is easy to check that setting J =0 reduces #, to the sum of two completely
decoupled ¢*-theories for ¢, and ¢, as expected.

Next, we show that the basic features of the zero-field phase diagram, namely, the
nature of ordered states, the type of transitions, and the shape of the line of continuous
transitions are correctly captured by a mean-field analysis of .. Anticipating that
spatial inhomogeneities are energetically costly, we will focus on homogencous X, 4.
Seeking stable equilibrium phases, we determine the global minima of #.. Four types
of extrema are present, at (a) X=A4=0, (b) 2=0, A= £ 49#0, (c) 2= £ X #0,
A=0, and finally (d) ¥= +2%,#0, 4=+ 4, #0. The explicit expressions for Xy, 4o,
X, and 4, are casily found from Eq. (2), but their precise values are not important
here. Considering the matrix of second derivatives of #,, we find that (d) never
corresponds to a minimum. In contrast, solution (a) is the only minimum at high
temperatures, representing the disordered phase. Just below a critical temperature 7.,
given implicitly by

T (Jy=2dJyexp(B*|J])/cosh(B*|J]). (3)
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(a) becomes a saddle point, and the global minimum shifts to (b) for J negative,
and to (c) if J is positive. Clearly, the former of these corresponds to the FE phase,
while the latter represents the S phase. By virtue of Eq. (3), the phase boundary
TMF(J) is symmetric in the cross-layer coupling, and monotonically increasing with
its magnitude. The bicritical point is located at J =0. There, the two layers decouple,
and TMF(0)=2dJy reduces to the mean-field critical temperature of a single-layer
Ising model on the hypercubic lattice, as expected. Finally, it is particularly gratifying
that the ratio TMF(J)/TMF(0) approaches the observed limit for large |J|, namely,
TMF (+oc)/TMF(0)=2.

We now turn to the universal critical behavior described by #.. Focusing first on
the D-S transition, i.e., J > 0, we note that the ordering field here is X while A does
not order. As a result, its coupling to X is irrelevant in the renormalization group
sense, and the D-S transition is Ising-like, along the whole J > 0 line. Similarly, for
J <0, 4 and X simply exchange roles, so that the D-FE transitions also belong into
the Ising universality class. However, the dynamic universality classes of the two lines
differ, due to the conservation law: For the D-S transition, the order parameter X is
conserved, so that the dynamic universal behavior is that of Model B, in the Halperin—
Hohenberg scheme [14]. In contrast, the order parameter for the D-FE transition is
4, which is not conserved. Since its coupling to the conserved, non-ordering X is
quadratic in X, rather than linear, the dynamics here falls into the universality class of
Model A.

In the presence of the drive, the analysis is complicated by several features. First,
strong spatial anisotropies are generated since a specific lattice axis has been singled
out. Second, the drive explicitly breaks the fluctuation—dissipation theorem so that the
underlying Langevin equations are no longer Hamiltonian. Third, the transformation
from (@, ¢2) to (2, 4) leads to novel, drive-dependent couplings in the field theory.
Nevertheless, preliminary resuits suggest that the D-S transition belongs into the uni-
versality class of the single-layer driven lattice gas. Work is in progress to confirm this
hypothesis, and to identify the universal properties of the D-FE transition [11].

Finally, we briefly review a first attempt towards developing a simple intuitive picture
for the behavior of T.(J,E) [10]. It relies on the behavior of G(x), the two-point
correlation function, in the disordered phase. In the driven single-layer case, both its
short- and long-range properties are affected by the drive: First, the nearest-neighbor
correlations of the driven system are suppressed [15], compared to the equilibrium case,
consistent with the picture that the drive acts as an extra noise in breaking bonds. This
effect alone would lead to a decrease in T.(E), compared to 7.(0). However, the long-
range correlations in the driven system are vastly enhanced over those in the equilibrium
system: while the latter decay exponentially, the former follow a power law oc 1/[x|,
with an angle-dependent amplitude [6]. Specifically, correlations parallel (transverse)
to £ are positive (negative). Thus, the long-range correlations promote ordering into
a single strip aligned with the drive, leading us to expect T.(E) to be greater than
T.(0). Clearly, the effects of the short- and long-range parts of the transverse correlation
function compete with one another, giving some insight as to why it is quite difficult
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to predict the correct £ dependence of T.(E). However, an extension of the above
reasoning does “predict” the observed behavior in d =3 [16,10].

For the bi-layer system, the ratio 7.(J, E)/T.(J,0) is again determined by the compe-
tition between the short- and long-range properties of the transverse correlations. Now,
an additional contribution due to the cross-layer correlations will be present. Since it
is purely short-range in nature, we anticipate that it will tend to lower T.(J,E), due
to the fact that E effectively reduces J. Of course, this effect may still be offset by
the long-range in-plane correlations. However, if the effective cross-layer coupling is
determined predominantly by E, while being only weakly dependent on J, then we
expect to see a lowering of the ratio T.(J,E)/T.(J,0) with increasing J. This hy-
pothesis is indeed borne out by the simulation data. For small J >0, the long-range
part still dominates, leading to 7.(J,E)/T.(J,0)> 1. Specifically, for J =0 we find
T.(J,E)/T.(J,0)~~ 1.3, comparable to the single-layer case, since the cross-layer cor-
relations vanish here. In fact, the long-range part continues to dominate in a small
region of negative J, so that the S-phase prevails there also. Thus, the bicritical point,
together with its trailing first-order line, is “driven” into the J < 0 half-plane (inset,
Fig. 1). Retuming to positive J, the ratio 7.(J, E)/T.(J,0) is indeed observed to de-
crease with increasing J. For J =35, it even drops below unity, signalling that the
short-range correlations dominate the behavior of 7.(J, £) in this regime!

For large but negative J, we expect strong negative correlations across the layers,
so that the system orders into the FE phase in equilibrium. Our data indicate that this
process still dominates under the drive, so that the low-temperature phase of the driven
system is also FE. However, the FE phase tends to be suppressed by both the short-
and long-range parts of the correlations, the former effectively lowering |/|, the latter
favoring an S phase. Thus, the critical temperature should be lower than its equilibrium
counterpart. Further, in contrast to the J > 0 case, the two effects cooperate rather than
compete, so that the J <0 branch of 7.(J,E) is significantly lower than the J>0
branch.

In summary, our study of an interacting bi-layer driven lattice gas provides new
insight into the nature of ordering in driven systems. In an extended T—-E-J phase
space, we have shown that there are three phases, one disordered (D) and two ordered
ones, namely, a strip (S) and a full-empty (FE) phase. The equilibrium phase dia-
gram consists of two second-order lines, symmetric in J, joining at a bicritical point
(7.(0), J =0) from which a first-order line stretches to (7 =0, J =0). The emergence
of the ordered phases, the shape of the transition lines, and the universal behavior of
the system near the continuous transitions can be easily understood. When driven, the
phase diagram is modified, in a nontrivial way, by the competition between short- and
long-range properties of the correlations. Specifically, the presence of large negative
transverse correlations favors the strip phase, so that, for small |/|, the region asso-
ciated with this phase is larger than in equilibrium. The associated shift of bicritical
point and first-order line places the two J =0 transitions [9] into a wider, more com-
prehensible context. The second-order transition temperature, as a function of J and E,
appears to be determined by a subtle interplay of the competing short- and long-range



B. Schmittmann et al. | Physica A 239 (1997) 382-389 389

components of the transverse correlation function. This hypothesis is currently being
tested on a variety of other driven systems, with the hope of developing better intuitive
insight into the qualitative structure of non-equilibrium phase diagrams.
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