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Supplementary Note 1

This supplementary material contains several additional examples of generation protocols produced using our
algorithm. We begin with a simple example that illustrates in detail how our algorithm works. We then provide
solutions for more complicated examples of practical importance, including error correcting codes and repeater
graph states of arbitrary size. These more complicated examples are solved numerically using MATLAB codes that
are available on GitHub [1]. This code expresses the generation sequence in terms of an MPS [2] for bookkeeping
purposes:

|Ψ〉 = Up,tot.〈ψf |
[ np∏
j=1

(
M̂jUe,jÊηj

) ]
W0|ψ0〉, (1)

in which the initial and final states of emitter qubits are simply product states of |0〉: |ψf 〉 = |ψ0〉 = |0〉⊗ne . We
denote ηj as the emitter qubit that emits the j-th photon and µj as the emitter qubit that is measured after emitting

the j-th photon. Êηj is the emission tensor, Êηj = |0〉j |0〉ηj〈0|ηj + |1〉j |1〉ηj〈1|ηj , that describes emission of photon j
from emitter ηj , which can be represented as CNOTηj ,j . Ue,j is the unitary operation obtained from the j-th photon

absorption step, which transforms ga as explained in the main text (Sec.II.A). M̂j is identity if no measurement

happens (µj is not assigned), otherwise, M̂j = WjHµj
X
sj
µj π̂µj

, with projection π̂µj
≡ 1

2 [1 + (−1)sjZµj ] and its
random outcome sj ∈ {0, 1}. Here, Wj is the unitary operation that is obtained from time-reversed measurement
(Sec.IV.B), and W0 is the unitary operation that disentangles all emitters at the final stage of the time-reversed
sequence. Finally, Up,tot =

∏
j

(
X
sj
j Up,j

)
is the local Clifford operation that acts on photons with conditional X

sj
j

flipping. The profile of the solution is stored as {Ue,j , Up,j , µj , ηj ,Wj ,W0}. We note that such a solution is usually
not unique due to there being multiple choices for how to choose the emitter gates and emitter sites in each photon
absorption and time-reversed measurement.

As discussed in the main text, the height function plays a central role in determining the number of emitters
and the operation sequence needed to generate a target photonic graph state. As shown in Eq. (1) of the main
text, when the stabilizers gm are in the echelon gauge, the height function can be expressed as

h(x) = n− x−#{gm|l(gm) > x}, (2)

where l(gm) is the index of the left-most (smallest index) site on which gm acts nontrivially. In the main text, we
showed that the difference in the height function across adjacent sites determines whether we perform a photon
absorption or a time-reversed measurement at each step of the algorithm. Therefore, we define

δh(x) ≡ h(x)− h(x− 1) = #{gm|l(gm) = x} − 1, (3)

from which it is apparent that this difference only depends on the number of stabilizers (in the echelon gauge) that
have a left-ending on site x.
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We begin by demonstrating our protocol solver algorithm in the case of the simple 4-photon graph state displayed
in Supplementary Fig. 1(a). The stabilizers are given by

g1 = σx1σ
z
2σ

z
3 , g2 = σz1σ

x
2σ

z
3σ

z
4 ,

g3 = σz1σ
z
2σ

x
3σ

z
4 , g4 = σz2σ

z
3σ

x
4 .

(4)

We can switch to the echelon gauge by redefining g3 → g2g3. We then calculate the height function using Supple-
mentary Eq. (2), finding that the maximum is 2. Therefore, at least ne = 2 emitter qubits are needed, and so we
assemble a 6-qubit lattice. We can depict the complete set of 6 stabilizers as a tableau, as shown in Supplementary
Fig. 1(b).

In Supplementary Fig. 1(c), we first obtain inset (1) by transforming Supplementary Fig. 1(b) to the echelon
gauge. The upper left sub-block of the tableau is exactly Supplementary Eq. (4) with g3 → g2g3. Next we describe
in detail how the generator set is updated from inset (1) to inset (17) step by step. The column label j indicates
which photon we are currently focusing on, and the labels (i),...,(iv) indicate the specific step of our algorithm. For
each photon, we do the following steps:

• j = 4: (i) Obtain inset (1) by transforming to echelon gauge: g3 → g2g3. (ii) Supplementary Eq. (3) gives
δh(4) = −1. Perform a time-reversed measurement on emitter site 5 by applying a Hadamard H5 followed
by CNOT54, which yields inset (2). (iii) Let ga = g5 = σx4σ

x
5 in inset (2). One gets inset (3) by performing

Hadamards on sites 4 and 5. Then the 4-th photon is absorbed into the emitter on site 5 by applying CNOT54.
Replace g4 → g4g5 to eliminate the redundant σz4 , yielding inset (4). (µ4 = 5, η4 = 5, Up,4 = H4, Ue,4 = H5,
W4 = H5.)

• j = 3: (i) Skip this step since inset (4) is already in echelon gauge. (ii) Supplementary Eq. (3) gives
δh(3) = −1. Perform a time-reversed measurement on emitter site 6 by applying H6 followed by CNOT63.
Inset (6) is then obtained by redefining g5 ↔ g6. (iii) Let ga = g5 = σx3σ

x
6 in inset (6). One gets inset (7)

by applying Hadamards on sites 3 and 6. Then the 3rd photon is absorbed by applying CNOT63. Replace
g3 → g3g5 to eliminate the redundant σz3 . Thus, inset (7) becomes (8). (µj = 6, η3 = 6, Up,3 = H3, Ue,3 = H6,
W3 = H6.)

• j = 2: (i) Skip this step since inset (8) is already in echelon gauge. (ii) Skip this step since Supplementary
Eq. (3) gives δh(2) = 1. (iii) Choose ga = g4 = σz2σ

z
5σ

x
6 in inset (10). One gets inset (11) by applying H6

followed by CNOT65 on the emitters, so that ga → σz2σ
z
5 . Then the 2nd photon is absorbed into emitter 5

by applying CNOT52. Redefine gk → gkg4 for k = 1, 3 to eliminate the redundant σz’s. Thus, inset (11)
becomes (12). (η2 = 5, Up,2 = 1, Ue,2 = H6CNOT65, M̂2 = 1.)

• j = 1: (i) Obtain inset (13) from (12) by transforming to echelon gauge: (g3, g4, g5, g6) → (g4, g5, g6, g3).
(ii) Skip this step since Supplementary Eq. (3) gives δh(1) = 1. (iii) Choose ga = g2 = σz1σ

x
5σ

z
6 in inset

(14). One gets inset (15) by applying H5 and then CNOT65 to transform ga → σz1σ
z
5 . Then the 1st photon

is absorbed into emitter site 5 by applying CNOT51. Thus, inset (15) becomes (16). (η1 = 5, Up,1 = 1,

Ue,1 = H5CNOT65, M̂1 = 1.)

• (iv) Finally, to recover the state |0〉⊗n, one needs to disentangle the emitter qubits. This can be done with
the following gate sequence: H5CNOT56H5. In the last step, we permute the gm to obtain inset (17).
(W0 = H6CNOT56H5.)

Now that the algorithm is complete, we reverse all the operations to obtain the final generation sequence. This
circuit is shown in Supplementary Fig. 2(a). It is worth noting that, in this example, the emission sequence can
be further optimized by swapping the 1st and 3rd photons in the emission order, such that the maximum of h(x)
is reduced to 1. Thus, only one emitter qubit is needed in this case, and the corresponding generation circuit is
displayed in Supplementary Fig. 2(b).

Supplementary Note 2

In this subsection, we demonstrate how to generate a useful quantum error correction code, with some continuous
logical rotation. In particular, we present an emission sequence for the Shor code [3] with 9 photonic qubits, which
is able to protect a qubit from single bit-flip and phase-flip errors. The stabilizer generators of this code are well
known: gj = σzjσ

z
j+1 for j = 1, 2, 4, 5, 7, 8, and g3 = σx1σ

x
2 · · ·σx6 , g6 = σx4σ

x
5 · · ·σx9 [4]. We can also define the

logical operators XL ≡ σz1σz2 · · ·σz9 , ZL ≡ σx1σx2 · · ·σx9 and YL = iXLZL. Let the last stabilizer be g9 = ±XL, which
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Supplementary Figure 1: Step-by-step illustration of the protocol solver. (a) A target graph state with
4 photons. (b) The set of generators Gf = {gm} is depicted as a tableau in which each row corresponds to one
generator. Different colors correspond to different Pauli operators. The first 4 columns correspond to photonic
qubits, and the last 2 columns correspond to emitters. (c) Step by step demonstration of how to obtain the time-
reversed generation sequence, where G0 = {σzi } is finally obtained. Explanations are in the main text. (d) Local
Clifford equivalent graph state representations of tableaux in (c).

(a) (b)

p1 |0〉

p2 |0〉

p3 |0〉 H X

p4 |0〉 H X

e1 |0〉 H H H |0〉

e2 |0〉 H H H |0〉

p1 |0〉

p2 |0〉 H P

p3 |0〉 H

p4 |0〉 H X

e1 |0〉 H P H X H P H |0〉

1 2

3 4

3 2

1 4

Supplementary Figure 2: Graph state generation circuits. In this figure, pj (j = 1, 2, 3, 4) labels different
photonic qubits, and e1 and e2 are emitter qubits. At the end of each circuit, the photon qubits are in the target
graph state displayed at the top right, while the emitter qubits are in state |0〉 after the measurements. (a) The
emission circuit obtained from the steps in Supplementary Fig. 1. (b) A different generation circuit that produces
the same target graph state as in (a). This circuit is obtained by swapping qubits 1↔ 3, resulting in a circuit that
requires only one emitter.

determines a pair of logical space basis states |±〉L. For both choices, Supplementary Eq. (2) gives hmax = 2, and
the emission circuit solutions for |±〉L are given in Supplementary Fig. 3, where |±〉L are separately given by R = 1

and R = Xe1 . Therefore, by replacing R by a more general x-rotation, ei
ϕ
2Xe1 ≡ 1 cos ϕ2 + iXe1 sin ϕ

2 , we can obtain

a rotated logical qubit |ϕ〉L = ei
ϕ
2XL |+〉L, with an arbitrary angle ϕ. That is, the circuit in Supplementary Fig. 3

allows us to transmit a rotated photonic logical qubit protected by the Shor code, with merely 2 emitter qubits, 1
two-qubit gate and 2 measurements, which is surprisingly simple.

Supplementary Note 3

In this section, we generalize the repeater graph state example from the main text and present explicit generation
circuits for repeater graphs with arbitrarily many photons. As shown in Supplementary Fig. 4, for a repeater graph
state with 2m photons, the maximum of the height function indicates that we need 2 emitters regardless how large
m is (m ≥ 4). The unitary operations A, B and C displayed in Supplementary Fig. 5(a) depend on m:

A = Xbm/2c+1
e2 , B = Xbm/2ce1 , C = Pme2 , (5)

where Xi = σxi , and P = diag(1, i). Compared to the approach given in previous work [5], which requires m − 1
two-qubit gates and m measurements, the new solution in Supplementary Fig. 4(a) uses 2m−3 two-qubit gates and
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Supplementary Figure 3: Shor code example. The emission circuit that generates a logical state of the Shor
code, controlled by a local operation R (the yellow block). The inset displays the height function of |±〉L, which
has hmax = 2.

m − 1 measurements, reducing the number of measurements needed to produce the state. We highlight that our
method yields different solutions with flexible settings, so actually the solution from Ref. [5] can also be obtained
from our algorithm.

p1 |0〉
p2 |0〉 pi |0〉 H X

p3 |0〉 pi+1 |0〉
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Supplementary Figure 4: Example of a large RGS. (a) and (b) show the emission circuit and height function
for the repeater graph state of 2m photons displayed in (c). The boxed area of the circuit is repeated multiple
times to generate photons p4, p5, p6, · · · , p2m−6.

Supplementary Note 4

Finally, we consider a modified repeater graph state that includes some additional redundancy to further boost the
likelihood of successful Bell measurements [5]. Supplementary Fig. 5(a) shows an example of such a repeater graph
state with 6m photons (m > 3). Note that compared to the state in Supplementary Fig. 4(c), this state contains
twice as many external photon arms and is missing those internal edges that are not necessary for the functionality
of this state as a repeater. Supplementary Fig. 5(b) shows that the height function is at most 2 for any m > 3,
i.e., only two emitter qubits are needed to generate the state in (a). We list all operations in the generation circuit
in Supplementary Eq. (1). Denoting the e1-th and the e2-th qubits as the emitter qubits, where e1 = 6m+ 1 and
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Supplementary Figure 5: Modified RGS example. (a) The graph for RGS, which has 6m vertices. The labels
represent the emission sequence. (b) The height function h(x) for the target graph state in (a).

e2 = 6m+ 2, the circuit is given by:

W0 = CNOTe1e2He1He2

ηj =

{
e2, 6m− 5 ≤ j ≤ 6m− 3

e1, otherwise

Up,j =

{
1, j = 1 (mod 3)

Hj , otherwise

Ue,j =


CNOTe2e1 , j = 3

He1 , j = 3k with 2 ≤ k ≤ 2m

He2 , j = 6m− 3

1, otherwise

,

µj =


e1, j = 3k with 2 ≤ k ≤ 2m,

and k 6= 2m− 1

e2, j = 6m− 3

not assigned, otherwise

Wj =



CNOTe1e2 , j = 3k with 2 ≤ k ≤ 2m− 2,

and k 6= m− 1

He2CNOTe1e2 , j = 3m− 3

He2 , j = 6m− 3

He1 , j = 6m

1, otherwise

. (6)

In the above circuit, there are 2m − 1 measurements, and 2m − 1 CNOT gates. Plugging these operations into
Supplementary Eq. (1) gives the full sequence.
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