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Quantum threshold theorems impose hard limits on the hardware capabilities to process quantum
information. We derive tight and fundamental upper bounds to loss-tolerance thresholds in different linear-
optical quantum information processing settings through an adversarial framework, taking into account
the intrinsically probabilistic nature of linear optical Bell measurements. For logical Bell state measure-
ments—ubiquitous operations in photonic quantum information—we demonstrate analytically that linear
optics can achieve the fundamental loss threshold imposed by the no-cloning theorem even though, fol-
lowing the work of Lee et al. [Phys. Rev. A 100, 052303 (2019)] the constraint was widely assumed to
be stricter. We spotlight the assumptions of the latter publication and find their bound holds for a logical
Bell measurement built from adaptive physical linear-optical Bell measurements. We also give an explicit
even stricter bound for nonadaptive Bell measurements.
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I. INTRODUCTION

Photonic quantum technologies benefits from the
advantages of photons: being in principle decoherence-
free, traveling at light speed, and produceable at high
clock rates. These advantages make photons arguably the
medium of choice for quantum communications and a
strong contender for quantum computing.

The simplest way to manipulate photonic quantum
information is through linear optics. A ubiquitous opera-
tion for photonic quantum information processing is the
Bell state measurement (BSM) [1–6], which is the cor-
nerstone of fusion-based quantum computing [7], one of
the current most advanced architectures for fault-tolerant
linear-optic quantum computing. Similarly, in quantum
communications, they are critical for quantum teleporta-
tion [8–11] and for entanglement swapping [12,13], for
example, in quantum repeater protocols, whose purpose is
to enable long-distance quantum communications [14,15].
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The most advanced quantum repeater schemes [16,17],
including the recently investigated all-photonic quantum
repeaters [18–25], are based on quantum error correction
and logical BSMs.

However, due to intrinsic limitations of linear optics,
two-photon BSMs are inherently probabilistic with a suc-
cess rate of at most 50% [2–6]. While photonic BSMs
can be improved beyond this limit—up to (near) determin-
ism—through the use of auxiliary resource states [26–29],
nonlinear interaction with an atom [30,31], hyperentangle-
ment [32–35], or squeezing [36], these strategies have not
been proved useful for loss tolerance.

Yet, we can use quantum error correction to make a
logical BSM resistant to loss [37–40]. A quantum error-
correcting code (QECC) protects a quantum state from
random qubit losses occurring with a probability below
a threshold value—the loss-tolerance threshold—which is
intrinsically linked to the QECC used.

Determining these loss-tolerance thresholds is crucial,
and finding QECCs compatible with linear optics and
which have the largest loss thresholds is of the utmost
importance as it imposes a hard limit on the tolerable
amount of loss of a quantum channel. In quantum com-
munications, this threshold immediately translates into
an upper bound on the distance between two nodes in
quantum repeater schemes based on quantum error
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correction. For fault-tolerant quantum computing, it
imposes an upper bound on the number of lossy operations
that can be made, in a photonic quantum circuit, before the
detection of photons. Moreover, the interest in loss-tolerant
QECCs extends beyond the scope of photonics as Refs.
[41–43] have recently shown that we can more efficiently
deal with some matter qubit errors by using erasure con-
version, i.e., converting a qubit computational error into a
heralded qubit loss.

In previous work, quantum error correction has already
been adapted to a linear-optical setting. In Ref. [44], Var-
nava et al. proved that single-qubit logical measurements
on a tree graph state QECC can be performed with 50%
loss tolerance. In Ref. [45], Ralph et al. showed how to
protect a logical quantum state from loss using a quan-
tum parity code and full linear-optical processing. Very
recently, Bell et al. [25] have proposed new methods for
QECCs based on graph states in a measurement-based set-
ting, together with methods to improve their performances.
This measurement-based quantum error correction has
strong connections with linear-optical quantum informa-
tion processing. Logical BSMs have also been investi-
gated, in particular because of their relevance for quantum
communications. Multiple all-photonic quantum repeater
protocols, based on logical BSMs have been investigated
[18,19,21,24,46]. Lee et al. [20] upper bounded to 1 − 2−n

the success probability of a logical BSM acting on n-
physical-qubit-encoded logical qubits through linear opti-
cal BSMs. This bound is reachable in the absence of
losses. In the presence of photon loss, they have also pro-
posed an upper bound for the loss tolerance thresholds of
logical BSMs based on linear optics and the no-cloning
theorem. However, in a previous work [21], we have built
linear-optical codes, which worked around their assump-
tions and have numerically shown they overcome this
bound.

In this paper, we derive fundamental and tight upper
bounds on the loss-tolerance thresholds of logical BSMs
both for general quantum information processing and when
restricting ourselves to linear optics. We derive these
bounds using fundamental results of quantum physics such
as the no-cloning theorem [47,48], the measurement pos-
tulate and by developing an adversarial framework based
on quantum error correction. We then show that these
fundamental bounds are actually achievable when restrict-
ing ourselves to a linear-optical measurement setting, by
providing concrete examples of QECCs with loss tol-
erance reaching these fundamental bounds. Furthermore,
we use our framework to prove other linear-optical tight
bounds for logical BSMs that can be implemented with
less demanding technological requirements. These tight
bounds also directly translate into a fully linear-optical
loss-tolerant decoder based on quantum teleportation and
with 50% loss thresholds, the theoretically maximum
achievable loss tolerance.

,

(a)

(b)

FIG. 1. (a) Logical encoding of a quantum state using an
encoder E and a decoder D to recover the state. Note that the
decoder can still decide the state when it receives some qubit sub-
sets R �= N (i.e., the Rc physical qubit subset is lost). (b) Logical
measurement of an operator Ô, giving an mÔ outcome.

This paper is organized as follows. In Sec. II, we intro-
duce briefly concepts of QECC and thresholds for qubit
loss, and we present the principal components of our
framework. We investigate how no-go theorems of quan-
tum mechanics impose bounds on these loss thresholds in
Sec. III, and we apply these results to logical BSMs in
Sec. IV. In Sec. V, we focus on linear optics and inves-
tigate how this setting influences the loss thresholds for
logical BSMs, investigating different logical requirements.
In Sec. VI, we show that linear-optical BSMs has the same
fundamental tight upper bound on loss tolerance as for gen-
eral BSMs and we propose a logical decoder with the same
loss threshold as the logical BSMs. Finally, we give an
overview of the results and conclude in Sec. VII.

II. QUANTUM ERROR CORRECTION

Here, we introduce the important concepts on QECCs
that we will use in the following, to derive fundamental
thresholds on logical linear-optical BSMs (LOBSMs). For
a more detailed review on quantum error correction, we
suggest Refs. [39,49,50] to the interested readers.

Quantum error correction is a strategy used to protect
quantum information from errors where we encode one
or more logical qubits onto many physical qubits. While
the strategy we present is likely adaptable to any kind of
error QECCs can correct, we focus in this article on the
erasure channel [51] for simplicity reasons, keeping other
error models for future work. Formally, as illustrated in
Fig. 1, we can use a QECC C to protect a state |ψ〉 by
encoding it into a logical state |ψC〉, using its encoder EC.
The logical quantum state is encoded onto a set N of |N |
physical qubits.

Definition 1.—A perfect encoder EC of a QECC C
is an isometry mapping any quantum state |ψ〉 ∈ H⊗|K |

2
describing a |K |-qubit state, into a subspace of a larger
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Hilbert space of |N | ≥ |K | qubits: |ψC〉〈ψC| = EC(|ψ〉)
with |ψC〉 ∈ H⊗|N |

2 , following the encoding C.
We follow the usual convention in the QECC literature

and assume the input state is unknown to the encoder. Sup-
pose that we only have access to a set R of qubits, for
example, because the set of qubits Rc = N\R has been lost.
In that case, we define an optimal decoder, which aims at
recovering the encoded quantum state |ψ〉 from this qubit
subset R (as illustrated in Fig. 1):

Definition 2.—Let C be a QECC that encodes any quan-
tum state |ψ〉 onto a set N of physical qubits as EC(|ψ〉).
An optimal decoder DC receives a subset R ∈ N of phys-
ical qubits in the state TrRcEC(|ψ〉). It deterministically
ouputs the |ψ〉 quantum state if it is theoretically possi-
ble to recover it from the subset R, or a failure flag |∅〉
otherwise,

DC (TrRcEC(|ψ〉)) =
{

|ψ〉 R ∈ DC,
|∅〉 otherwise,

where we call DC the set of all decodable qubit subsets.
Lemma 1.—For any QECC C, the probability P(DC | R)

of recovering the quantum state from a qubit subset R,
given the optimal decoder DC is an increasing function
of R.

Proof.—According to the definition of an optimal
decoder, P(DC | R) = δR∈DC with δi = 1 (respectively, 0)
if i is true (false). If we can retrieve the quantum state
from R ∈ DC, we can also retrieve it from any R′ ⊃ R.
Therefore, ∀R′ ⊃ R, P(DC | R′) ≥ P(DC | R). �

A. Loss channel

We focus here on loss channels that affect identically all
the physical qubits from a QECC.

Definition 3.—A loss channel C(η) is characterized by
its loss probability, ε, or equivalently by its transmission
efficiency η = 1 − ε, affecting each physical qubits. After
passing through a loss channel C(η) only a subset R of the
input physical qubit set N is transmitted with probability,
P(N → R | η):
∀ R ⊆ N , ∀ η ∈ [0, 1], P(N → R | η) = η|R|(1 − η)|N |−|R|.

In the following, we will use ε and η, to denote, respec-
tively, loss and transmission efficiencies. A linear-optical
implementation of a single-qubit lossy channel of trans-
mission η is a beam splitter with the same transmission
efficiency. Therefore, a lossy channel C(η) can be also rep-
resented as a beam splitter affecting each physical qubit as
shown in Fig. 2(a).

Property 1.—The sum over all the possible output sub-
sets R of the probabilities P(N → R | η) is unity:

∀ η ∈ [0, 1], ∀ N ,
∑
R⊆N

P(N → R | η) = 1.

(a)

(b)

FIG. 2. (a) Lossy channel C(η) represented using multiple
beam splitters with reflectivity η. (b) Chain rule represented with
beam splitters.

Property 2.—Chain rule of loss channels: C(η2η1) =
C(η2) ◦ C(η1), which gives the relation:

∀ η1, η2 ∈ [0, 1]2, ∀ N , ∀ R ⊆ N ,

P(N → R | η2η1)

=
∑

R⊆R′⊆N

P(N → R′ | η1)P(R′ → R | η2).

Property 2 is well understood in the beam-splitter
representation of a lossy channel as illustrated in
Fig. 2(b).

Using this lossy channel, we can derive a corollary of
Lemma 1.

Corollary 1.—For all QECCs C, the probability to
decode the quantum information given a physical qubit
detection probability η, denoted as P(DC | η), is an increas-
ing function of η.

Proof.—We first note that

P(DC | η) =
∑
R⊂N

P(N → R | η)P(DC | R)

=
∑

R∈DC

P(N → R | η).

Let us now consider, for each R, its supersets R′ ⊇ R. For
η < η′,

P(DC | η) =
∑

R,R′∈DC
R⊆R′⊆N

P(N → R′ | η′)P(R′ → R | η/η′) (1)
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=
∑

R′∈DC

P(N → R′ | η′)

⎛
⎜⎜⎝ ∑

R∈DC
R⊆R′

P(R′ → R | η/η′)

⎞
⎟⎟⎠

≤
∑

R′∈DC

P(N → R′ | η′) = P(DC | η′), (2)

which ensures that P(DC | η) is increasing with η. To
obtain this result, we have used Lemma 1 to ensure that
R′ is also in DC in Eq. (1) and that the sum in parentheses
is below 1 to obtain the inequality in Eq. (2). �

B. Loss threshold

We denote by C a family of QECCs, that is a (poten-
tially infinite) set of QECCs. An important result of quan-
tum error correction is that there often exists families of
QECCs, C, which protect quantum information with an
arbitrarily high success probability as long as the error rate
is below some threshold value [40,52,53]. Interested by
qubit losses, we define for each family of QECCs C the
maximum qubit loss probability εD such that we can use a
code in C to correct it.

Definition 4.—A family of QECCs, C, has a loss thresh-
old εD if [44,54]

∀ε′ > 0, ∀ ε < εD, ∃C ∈ C, P(DC | 1 − ε) > 1 − ε′,

with DC the set of all decodable qubit subsets of a decoder
DC, and ε the single physical qubit loss probability.

One important remark is that for a specific QECC C ∈ C,
the probability P(DC | 1 − ε) is strictly below one in the
presence of losses ε > 0. What this definition means is
that, as long as the single-qubit loss is below a threshold
value εD, it is always possible to find a QECC C ∈ C, such
that P(DC | 1 − ε) is arbitrarily close to 1 (but still strictly
below 1).

C. Measurements of observables

We can also use a QECC to perform the measurement
of an observable Ô, which yields the measurement out-
come mÔ as shown in Fig. 1. We can decompose Ô with
its spectral decomposition [55]:

Ô =
∑
mÔ

mÔ�̂mÔ
,

where �̂mÔ
is the projector onto the mÔ-valued eigenspace

of Ô.
Definition 5.—We define a loss-tolerant threshold for

a specific measurement εÔ, similarly to the general

loss-tolerant threshold:

∀ε′ > 0, ∀ ε < εÔ, ∃C ∈ C, P(ÔC | 1 − ε) > 1 − ε′,

where P(ÔC | 1 − ε) is the probability to have the correct
measurement outcome for the measurement of the logical
operator ÔC, given a loss probability ε, using a code C ∈ C.

D. Context

For practical reasons, we are often interested in the
capability of the same code to allow the measurement of
different observables in {Ok}k, and/or to fully decode the
state through D. Let S be the set of operators we are
interested in : S = {Ok}k or S = {D} ∪ {Ok}k. We call S
a context and define loss tolerant thresholds εS

i , for each
operator i in the context S:

Definition 6.—We define loss-tolerant thresholds for a
specific context S, εS

i , ∀i ∈ S, such that

∀ i ∈ S, ∀ ε′ > 0, ∀ εi < εS
i , ∃C ∈ C,

P(iC | 1 − εi) > 1 − ε′.

Using this definition, we can, for example, investigate
the loss-tolerance thresholds for the measurement of an
operator Ô and D, S = {Ô,D}. The derived loss thresh-
olds εS

Ô
, εS

D may now exhibit interdependence since we
should find a unique code C in C for which the con-
ditions P(Ô | 1 − ε) > 1 − ε′ and P(DC | 1 − ε) > 1 − ε′
are simultaneously met.

A context and its practical use may become clearer with
a simple example. The family of repetition codes |iC〉〈iC| =
|i〉〈i|⊗n for i = 0, 1 can perform an arbitrarily loss-tolerant
Z measurement by individually Z measuring each of its
physical qubit, so εZ = 1. Hereafter, X , Y, Z denotes the
usual Pauli operators. However, it cannot perform a loss-
tolerant X measurement, so εX = 0. Conversely, for the
phase repetition code with logical states |iC〉〈iC| = |i〉〈i|⊗n

with i = +, −, we have the opposite: εZ = 0, εX = 1. If
we now consider the joint family of repetition codes that
includes both the standard and phase repetition codes,
according to Definition 5, we have εX = εZ = 1. However,
it is impossible to find a unique code in this family for
which a X measurement and a Z measurement can succeed
with arbitrarily high success probability in the presence of
loss. The context S = {X , Z} accounts for the constraint of
having a unique code fulfilling this requirement. In prac-
tice, we will usually find inequality relations between εS

X
and εS

Z , e.g., εS
X + εS

Z ≤ 1 as will be shown more generally
in Theorem 2.

The objective of this paper is to obtain these fundamen-
tal operator measurement thresholds in the case of BSMs
built with different constraints.
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III. FUNDAMENTAL LIMITATIONS TO
QUANTUM ERROR CORRECTION

In the following, we show how fundamental theorems
and axioms of quantum mechanics constrain the maximum
performances of general QECCs. All the results from this
section are well established in the community, but we red-
erive them by introducing an adversarial framework where
we consider that the qubit set Rc that is lost through a lossy
channel C(η), is collected by an adversary. This framework
is closely related to the seminal work of Cleve et al. [56]
on quantum secret sharing. We will later use this frame-
work in a linear-optical setting to derive new fundamental
results. In the beam-splitter analogy for loss channels, this
corresponds to actually collecting the physical qubits Rc

that were not transmitted through the channel, i.e., beam
splitter (see Fig. 2).

Note that the results that we derive here are completely
general and are thus not limited to logical BSMs nor linear-
optical implementations.

Indeed, while the loss thresholds necessarily depend on
the family of codes considered, here, we are interested in
fundamental and general upper bounds for the loss thresh-
olds, valid for any family of QECCs. The fundamental
upper bounds derived in this section (and throughout this
paper) are valid for any QECCs.

A. No-cloning theorem

We start by rederiving the known result that the best
loss-tolerance threshold for QECC is at most 1

2 . This result
originates from the no-cloning theorem [47,48] and will
serve as a simple example of how to use our adversarial
framework. Theorem 1 is actually a straightforward exten-
sion of Theorem 2 of Ref. [56] to probabilistic losses and
families of codes, and the beginning of its proof is taken
from Ref. [56].

The no-cloning theorem states that an unknown arbi-
trary quantum state cannot be cloned. Therefore, a “cloning
machine” such as the one presented in Fig. 3 is not physical
and cannot be implemented. To understand the fundamen-
tal implications of the no-cloning theorem for QECC, we
will devise a nonphysical cloning machine based on QECC
and use this impossibility result to derive the bound on the
loss-tolerant threshold.

Theorem 1.—Due to the no-cloning theorem, the max-
imum amount of loss that any family of QECCs C can
tolerate is strictly below 1

2 :

∀ C, εD ≤ 1
2

.

Note that, in Definition 4, we have considered ε <

εD, therefore, having the bound εD ≤ 1
2 implies that it is

impossible to decode a logical quantum state with arbitrar-
ily high success probability in the presence of single-qubit
loss probability, ε, equal or above 50%.

(a)

(b)

Cloning 
machine

FIG. 3. (a) Schematic of a nonphysical cloning machine capa-
ble of reproducing any quantum states and (b) an implementation
using quantum error correction.

Proof.—The nonphysical cloning machine based on a
QECC C that we consider is represented in Fig. 3(b) and is
composed of two decoders DC. They, respectively, receive
a subset R and Rc of the physical qubits. We know that
such a cloning machine cannot work so that if R ∈ DC,
then Rc �∈ DC. We therefore have

∀ C ∈ C, ∀ R ⊂ N , P(DC | R)+ P(DC | Rc) ≤ 1.

If we consider that each physical qubit has a probability
η = 1 − ε to go to the first decoder and ε to go to the
second decoder, we find that

∀ C ∈ C,
∑
R⊂N

P(N → R | η)(P(DC | R)+ P(DC | Rc)) ≤ 1,

since
∑

R⊂N P(N → R | η) = 1. Because P(DC | η) =∑
R⊂N P(N → R | η)P(DC | R) and P(N → R | η) = P(N

→ Rc | 1 − η), we therefore have

∀ε ∈ [0, 1], ∀ C ∈ C, P(DC | 1 − ε)+ P(DC | ε) ≤ 1.
(3)

Having εD > 1
2 for a class of QECCs C would imply, by

Definition 4 that there is a code C ∈ C such that P(DC | 1
2 )

is arbitrarily close to one, say P(DC | 1
2 ) >

1
2 . This would

contradict Eq. (3), and thus by contradiction εD ≤ 1
2 .

There actually exist QECCs for which we reach this
loss-tolerance threshold limit such as surface codes [40,
57]. Therefore, the εD ≤ 1

2 bound is tight. �

B. Measurement postulate

The measurement postulate of quantum mechanics
states that, after the measurement of an observable Ô, the
system’s wave function collapses, and (i) cannot recover
the initial state |ψ〉. Moreover, (ii) if two observables Ô,
Ô′ do not commute—[Ô, Ô′] �= 0—they cannot be mea-
sured simultaneously. As a result measurement apparata
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(a)

(b)

FIG. 4. (a) Nonphysical nonprojective measurement machine
capable of measuring the operator Ô while recovering the
arbitrary quantum state |ψ〉 and (b) an implementation using
quantum error correction.

such as the ones depicted in Figs. 4 and 5 are not phys-
ically allowed, which immediately translates into bounds
on loss tolerance. If a decoder receives a subset R of the
physical qubits and the measurement device for Ô logical
measurements receives the Rc qubits, given (i) they cannot
simultaneously succeed. This leads to the result:

Theorem 2.—The measurement postulate implies two
bounds on the respective loss tolerance of the decoder and
operator measurement devices:

∀C, ∀ Ô, ε
{D,Ô}
D + ε

{D,Ô}
Ô

≤ 1. (4)

and

∀C, ∀ [Ô, Ô′] �= 0, ε
{Ô,Ô′}
Ô

+ ε
{Ô,Ô′}
Ô′ ≤ 1. (5)

Proof of Eq. (4).—Since a circuit such as the one
depicted in Fig. 4 is not physical, we can follow the

(a)

(b)

FIG. 5. (a) Nonphysical measurement machine capable of
measuring noncommuting operators Ô and Ô′ and (b) an imple-
mentation using quantum error correction.

reasoning in the proof of Theorem 1:

∀ε > 0, ∀ C ∈ C, P(DC | 1 − ε)+ P(ÔC | ε) ≤ 1. (6)

If we consider a class of QECCs C, which has a loss-
tolerance threshold ε

{D,Ô}
D , we can find codes C ∈ C

for which P(DC | 1 − ε) → 1, ∀ε < ε
{D,Ô}
D . Therefore, for

each of these codes C, Eq. (6) leads to 1 − P(DC | 1 − ε) ≥
P(ÔC | ε) → 0 and consequently 1 − ε

{D,Ô}
D ≥ ε

{D,Ô}
Ô

. We
therefore have proved the first inequality Eq. (4) between
the loss-tolerant threshold and the loss-tolerant Ô measure-
ment threshold. �

An important subtlety is that the loss-tolerance threshold
for a measurement is not strictly bounded by 1

2 , as it is the

case for a QECC loss-tolerant decoder, but by 1 − ε
{D,Ô}
D ,

which can be arbitrarily close to 1 if we consider a class of
codes for which εD is arbitrarily close to 0.

For example, the class of repetition codes, for which
E(|i〉) = |iC〉〈iC| = |i〉〈i|⊗n (for i = 0, 1), is not loss-tolerant
εD = 0. Yet, we can make a fully loss-tolerant logical Z
measurement by taking n sufficiently large, by simply mea-
suring Z on every qubit. Indeed, a logical Z measurement
will succeed if at least one physical Z measurement on any
physical qubits of the collected subset R succeeds, which
occurs with a nonzero probability if ε < 1. Therefore, as
long as ε < εZ = 1, we can loss-tolerantly measure the Z
operator. This is the reason why we are considering the
context in the derivation of loss-tolerance thresholds in
Definition 6.

Proof of Eq. (5).—The proof of the second inequality
[Eq. (5)] is based on (ii) from the measurement postulate
and follows exactly the same reasoning as for the proof of
Eq. (4) using the nonphysical machine represented in Fig. 5
and

∀ε ∈ [0, 1], ∀ [Ô, Ô′] �= 0, P(ÔC | 1 − ε)+ P(Ô′
C | ε)≤ 1.

(7)

�
These results are a consequence of the measurement

postulate applied to QECCs and Eq. (7) has strong con-
nections with quantum secret sharing [56,58–60] and
conjugate coding [61].

For “good” loss-tolerant QECCs for which εD = 1
2 , it

follows from these previous results [Eqs. (4) and (5)]
that we can have at best εS

D = εS
Ô

= εS
Ô′ = 1

2 , for S =
{D, Ô, Ô′}. This limit is actually tight since we can, for
example, perform loss-tolerant Pauli X and Z measure-
ments ([X , Z] �= 0) onto the class of surface codes and
show that these measurements have a 50% loss threshold
due to percolation theory [57].

Lemma 2.—For all families of codes C, if a context S
includes the decoder D and operator measurements, then
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FIG. 6. Logical operator measurements mÔ made using the
decoder DC and a physical operator measurement Ô.

εS
D is the smallest threshold of this context:

∀ i ∈ S, εS
D ≤ εS

i .

Proof.—We could perform any logical measurement Ô,
by first decoding the logical qubit state and then perform-
ing the physical measurement onto the physical qubit, as
shown in Fig. 6. Therefore, the loss tolerance of any QECC
is always smaller than or equal to the loss tolerance of any
measurement.

�

IV. FUNDAMENTAL BOUNDS ON LOGICAL BELL
STATE MEASUREMENTS

A. Physical and logical Bell state measurements

A Bell state measurement (BSM) on two physical qubits
a and b projects them into one of these four Bell states:

∣∣�±
a,b

〉 = 1√
2
(|0a, 0b〉 ± |1a, 1b〉) ⇔

{
ZaZb→+1
XaXb→±1

∣∣�±
a,b

〉 = 1√
2
(|0a, 1b〉 ± |1a, 0b〉) ⇔

{
ZaZb→−1
XaXb→±1

(8)

As shown in Eq. (8), a BSM is equivalent to the joint mea-
surement of the two stabilizer operators ZaZb and XaXb.
Here, we use a subscript a or b to denote the qubit the
Pauli operator is acting on. A BSM is thus successful if we
have successfully measured these two stabilizers. Rewrit-
ing a BSM into stabilizer measurements will be essential
to make a link with quantum error correction in the fol-
lowing. We emphasize that the results that we will derive
in the following are completely general, and we will focus
on linear optics only from Sec. V onwards.

B. Arbitrarily high loss-tolerant BSM threshold

In the following, we consider the fundamental loss toler-
ance of logical BSMs in the two different settings displayed
in Fig. 7: in the general case, and when the logical encod-
ing of the two qubits a and b is local. A logical BSM

(a)

(b)

FIG. 7. (a) General logical encoding of a two-party quantum
state shared by parties a and b and a measurement apparatus
allowing the measurement of the operator set Ô. (b) Variant
where the two parties realize the logical encoding remotely.

acting on two logical qubits a, b (using a given QECC C)
corresponds to the joint measurement of the operator set
{XaCXbC, ZaCZbC}, where we have added the subscript C to
indicate that it is a logical operator acting on the logical
space defined by the QECC C.

Lemma 3.—For codes prepared as in Fig. 7(a), the funda-
mental logical BSM loss-tolerance threshold is only upper
bounded by unity: ε(BSM) ≤ 1.

This surprising first result seems promising—we can
find QECCs for which ε(BSM) = 1—however, these codes
are not as useful as it appears and this is essentially a
consequence of the power of nonlocal encoding.

Proof.—Because {XaCXbC, ZaCZbC} is a set of commut-
ing operators, we do not have limitations such as the one
derived in Eq. (5) and we are thus only limited by Eq. (4).
We find a variant of the class of repetition codes for which
we can make arbitrarily loss-tolerant BSMs. We consider
the code, which encodes two logical qubits into 2n physical
qubits and which has the following logical basis states:

|00C〉 = ∣∣�+
C
〉 + ∣∣�−

C
〉 = ∣∣�+〉⊗n + ∣∣�−〉⊗n

|11C〉 = ∣∣�+
C
〉 − ∣∣�−

C
〉 = ∣∣�+〉⊗n − ∣∣�−〉⊗n

|01C〉 = ∣∣�+
C
〉 + ∣∣�−

C
〉 = ∣∣�+〉⊗n + ∣∣�−〉⊗n

|10C〉 = ∣∣�+
C
〉 − ∣∣�−

C
〉 = ∣∣�+〉⊗n − ∣∣�−〉⊗n

Its stabilizers are (XaXb)i(XaXb)i+1 and (ZaZb)i(ZaZb)i+1
(for i = 1, . . . , n − 1) and resembles the stabilizers ZiZi+1
of a standard repetition code. Its logical Bell states are
given by |Bell(n)C 〉 = |Bell〉⊗n, with |Bell〉 ∈ {∣∣�±〉

,
∣∣�±〉}.

Therefore, we can perform a logical BSM by perform-
ing physical two-qubit BSMs, only one of which needs
to succeed. This logical BSM succeeds with arbitrarily
high probability for sufficiently large n for any ε < 1.
Therefore, for this family of QECCs, ε(BSM) = 1, yet sim-
ilarly to the usual repetition code they are not loss tolerant
(εD = 0), as expected from Eq. (4). We can also show that
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this threshold also holds when we restrict ourselves to a
linear-optical setting. �

This surprising result deserves some discussions. First,
we should note that the encoding requires that the encoder
E has access to the two parties a (having access to the state
|ψa〉) and b (having access to the state |ψb〉) to prepare the
logical state [see Fig. 7(a)]. Therefore, an interesting open
question is whether this result is of practical interest for
quantum computing and quantum communications, which
usually consider BSM performed on states prepared locally
by different parties.

C. Loss-tolerant threshold of BSM on locally prepared
QECCs

A more practical setting—which we will consider in the
remainder of this paper—is the one depicted in Fig. 7(b).
Here, contrary to the general case, each party a and b
performs their logical encoding locally. Consequently, the
physical qubits encoding the logical qubits owned by a
are not the same as the physical qubits owned by b. Such
a configuration is particularly important, for example, in
quantum communications, where the logical BSMs are
performed on logical qubits generated remotely at differ-
ent nodes. The class of “Bell repetition codes” cannot be
prepared locally by each party and, consequently, the loss-
tolerance threshold under such a restriction may be—and
actually is—different, and we will call it ε̄(BSM).

Theorem 3.—Logical BSMs performed on locally
encoded logical qubits have a loss-tolerance threshold of
at most 1

2 :

∀ C, ε̄(BSM) ≤ 1
2

.

Proof.—To find this theoretical bound, we consider how
to make single-qubit logical measurements of an opera-
tor Ôa on party a, using the second party b as an ancilla,
as depicted in Fig. 8. Here, we use a known state |φÔb

〉,
chosen to be an eigenstate of a second logical operator
Ôb acting on system b, so that the measurement of this
operator yields a deterministic outcome mÔb

. We then mea-

sure Ô = Ôa ⊗ Ôb such that the measurement outcome mÔ
corresponds to an indirect measurement of mÔa

. For exam-
ple, if Ô = XaXb and |φÔb

〉 = |±〉b, then mXb = ±1, and
mXa = mXaXbmXb . We denote the threshold for successfully
measuring Ôa in this indirect way by ε̄Ôa

, and we simi-
larly define ε̄Ôb

. Since this indirect approach is a way to

measure Ôa, it can only work provided εa < εÔa
, where

εa is the single-qubit loss rate of the physical qubits in
a, and εÔa

is the threshold for successfully measuring Ôa
regardless of the method used. We similarly denote the
loss rate of the physical qubits in b by εb, and in general
εa �= εb. By switching the roles of a and b, we find the same

(a)

(b)

FIG. 8. (a) Logical measurement of the operator Ôa. (b) Imple-
mentation using a two-party logical encoding with a prepared
state φ0̂b

generated by b and by measuring ÔC = ÔaC ⊗ ÔbC.

result for εb: εb < εÔb
. We therefore find that the two loss-

tolerance thresholds ε̄Ô,a, ε̄Ô,b for measuring the operator
Ô = Ôa ⊗ Ôb are bounded by

ε̄Ô,a ≤ εÔa
; ε̄Ô,b ≤ εÔb

. (9)

This should hold if we measure Xa through a XaXb mea-
surement and Za through a ZaZb measurement, as above.
Consequently, since a BSM is a joint measurement of XaXb
and ZaZb, we should have

ε̄(BSM)
a ≤ min[ε̄XaXb,a, ε̄ZaZb,a]

≤ min[ε{Xa,Za}
Xa

, ε{Xa,Za}
Za

] ≤ 1
2

, (10)

ε̄
(BSM)
b ≤ min[ε̄XaXb,b, ε̄ZaZb,b]

≤ min[ε{Xb,Zb}
Xb

, ε{Xb,Zb}
Zb

] ≤ 1
2

, (11)

which conclude the proof. In Eq. (10), we go from the first
to the second line by using the fact that a ZaZb (respec-
tively, XaXb) measurement can be used to perform an
indirect Za (respectively, Xa) measurement: ε̄ZaZb,a ≤ εZa
(respectively, ε̄XaXb,a ≤ εXa). However, the minimization
should be done jointly onto both XaXb and ZaZb, which
implies that the minimization on the single-qubit opera-
tors Xa and Za should be done in the same context {Xa, Za},
hence the result in the second line. Then, we have obtained
the final result by maximizing the loss thresholds for the
operators Xa and Za (respectively, for Xb and Zb) under the
constraint Eq. (5), because they are noncommuting.

�
We should also note that we have considered here

independent loss thresholds for each party a or b. There-
fore, we have derived bounds on locally encoded logical
BSMs based on single-qubit measurement loss thresholds.
We emphasize that the loss thresholds for logical BSMs
derived in this section are very general and do not depend
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on physical implementation. In Sec. VI, we will show that
this bound is actually tight even when we restrict ourselves
to a linear-optical setting.

V. FUNDAMENTAL BOUNDS ON
LINEAR-OPTICAL LOGICAL BSM

A. Linear-optical quantum information processing

In the remainder of this paper, we will focus on
linear-optical BSMs. In linear-optical quantum informa-
tion processing, photons are the quantum information
carriers, and we process them by using optical interfer-
ometers for unitary transformations, and photon-number-
resolving detectors for measurements. We assume that
physical qubits are encoded onto single photons using
a dual-rail encoding, which is the most common encod-
ing for discrete variable photonic quantum information
processing.

Linear-optical elements enable arbitrary unitary trans-
formations between photonic modes, yet are not sufficient
to perform deterministic two-qubit gates between photonic
qubits. Two-qubit gates are thus inherently probabilistic
using linear-optical quantum information processing [62].
For this reason, it is hard (though not impossible [45]) to
re-encode a logically encoded qubit deterministically.

Another limitation concerns the qubit measurements
built using single-photon or potentially photon-number-
resolving detectors. These detectors are intrinsically
destructive measurement apparata so that the detected
photons do not exist anymore after their measurements,
and thus cannot be reused. Such a subtlety is gener-
ally well handled in both a quantum communication set-
ting and in linear-optics quantum computing such as the
measurement-based or fusion-based quantum computing
paradigms [7,63–65].

A LOBSM without ancillary photons has an intrinsic
success probability of at most 1

2 [1]. In practice, it is
possible to design a linear optical setup [2–4], which mea-
sures the operator ZaZb measurement deterministically but
realizes only the XaXb measurement for a particular mea-
surement outcome of the ZaZb operator, either +1 or −1,
which occurs with probability 1

2 . The role of ZaZb and
XaXb can be switched, and we can design other LOBSM
setups, which measure XaXb deterministically and ZaZb
with success probability 1

2 .
We now focus on logical BSMs built with linear optics.

Figure 9 displays the measurement devices that we are
considering for LOBSM at the physical level. Such a
device can only yield a successful result if the two qubits
are successfully detected, which occurs with a probabil-
ity ηaηb, ηa, and ηb being the single-photon detection
probabilities for each QECC. It is also based on the
interference of the two photonic qubits, which erase the
which-path information. Consequently, it does not mat-
ter how the losses are spread over the two physical

(a) (b)

FIG. 9. (a) Top: physical two-photon linear-optical mea-
surement apparatus measuring the operator Ô. The detection
probabilities ηa, ηb of each photon yield a success probabil-
ity ηaηb. Middle and bottom: each of these photon-detection
probabilities yields the same measurement success probability.
(b) Measurement apparatus which can switch on demand
between two-photon joint measurements and two single-photon
measurements.

qubits: if qubit a has a detection probability η′
a = ηaηb,

while η′
b = 1, the LOBSM device has the same success

probability. Therefore, the three configurations illustrated
in Fig. 9 have the same success probability. Besides, a
LOBSM yields a result probabilistically upon two-photon
detection, such that we can measure XaXb with a prob-
ability pXX and ZaZb with probability pZZ with pXX +
pZZ ≤ 3

2 , and the probability to measure both of them is
pXX ∪ZZ ≤ 1

2 .
Therefore, we have three constraints for a LOBSM:

(1) Joint successful detection probability (ηaηb).
(2) pXX ∪ZZ ≤ p
(3) pXX + pZZ ≤ 1 + p .

The overall success probability of a LOBSM including
losses is therefore PLOBSM = ηaηbpXX ∪ZZ , while we can
recover the XX (ZZ) component with probability PXX =
ηaηbpXX (PZZ = ηaηbpZZ). Without the use of auxiliary
states, we generally cannot do better than having p = 1

2 ,
but the intrinsic success probability of a LOBSM can be
made near deterministic p → 1 through the use of many
entangled ancillary photons [26]. This solution is in prac-
tice challenging to implement since a successful LOBSM
would generally require all the ancillary photons to be
detected and thus would make such a LOBSM much more
sensitive to photon losses.

By restricting our logical measurement device so that
we can implement it using linear optics, the question that
we are now addressing is whether we can reach the fun-
damental bounds that we already derived in the general
case. While doing so, we also find stricter bounds for more
restricted constraints, in Secs. V C and V D, the former one
being already discovered by Lee et al. [20], who thought it
applied to all linear optical setups.
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FIG. 10. Transverse logical operator ÔC which can be mea-
sured using a decoder made of single-qubit operations.

B. Transverse logical operator measurements

In the following, we will focus on single- and two-
qubit logical operators, which are transverse. We use the
definition of a transverse operator, Ô, as a logical opera-
tor, which can be decomposed into single-qubit operators
Ô = Ô1 ⊗ Ô2 ⊗ · · · ⊗ Ô|N |. As a result, we can also per-
form a logical measurement of Ô by performing only
individual physical single-qubit measurements as illus-
trated in Fig. 10. For our concerns, individual single-qubit
measurements are interesting since they can be natively
implemented in a linear-optical setting. More generally as
well, transverse operators are also considered to be the
“easy” set of operations on a QEC code as opposed to
nontransversal operations. We consider a two-qubit logical
gate to be transverse if it can be decomposed onto two-
qubit physical operators each of which acts on one physical
qubit from one code and its counterpart from the second
code.

Note that in Fig. 10, we use a more restricted abstract
measurement apparatus: contrary to the case of Fig. 1
where the measurement apparatus can recover the mea-
surement outcome in any case where it is theoretically pos-
sible, in Fig. 10, the measurement apparatus has restricted
capabilities and can only recover the measurement out-
come only in the transverse case. For logical BSMs, we
should thus consider families of codes for which the logi-
cal X and the logical Z operators are transverse, which is,
for example, the case for all the Calderbank-Shor-Steane
codes.

C. Logical LOBSM based on adaptive LOBSM

Using our formalism, we can derive the loss threshold
for logical BSMs based on adaptive LOBSMs. This result
relates to one of the main results from Ref. [20], which
claims to have derived the fundamental loss-tolerance
threshold for linear optical logical BSMs. We will mod-
erate this claim by proving that this is only true in the
specific context of logical BSMs based solely on adaptive
LOBSMs. Moreover, we will prove in Sec. VI that we can
overcome this limit in a more general setting.

Theorem 4.—For a logical BSM based on adaptive
LOBSMs acting between a and b, the loss thresholds for

qubit a, ε(ABSM)
a , and b, ε(ABSM)

b , are always bounded by

∀ C,
(
1 − ε(ABSM)

a

) (
1 − ε

(ABSM)
b

)
≥ 1

2
,

where we use “(ABSM)” to indicate that we are restricting
ourselves to decoders using adaptive physical LOBSMs.

Proof.—We now impose restrictions on the logical mea-
surement devices, which should be solely based on physi-
cal LOBSM apparata, as depicted in Fig. 11(a). Because
we are using only physical LOBSMs, this logical BSM
device works with the same probability if all the losses are
transferred to the party a: η′

a = ηaηb and η′
b = 1. Restrict-

ing ourselves to such logical measurement devices, we
can derive a new bound using the measurement apparatus
depicted in Fig. 8 with the specific operator measurement
depicted in Fig. 11(a). In that case, because η′

a = ηaηb =
(1 − εa)(1 − εb), the measurement should be loss tolerant
if ε′

a = 1 − η′
a is below ε̄(BSM)

a , which is itself bounded by
1
2 by Eq. (10). Therefore, we find the following condition
for the thresholds ε(ABSM)

a , and ε(ABSM)
b :

(1 − ε(ABSM)
a )(1 − ε

(ABSM)
b ) ≥ 1 − ε̄(BSM)

a ≥ 1
2

.

�
Interestingly, to derive this bound, we only used the con-

straint (1) of the physical LOBSM, but did not consider
its probabilistic nature [constraints (2) and (3)]. In Ref.
[20], Lee et al. showed that this threshold is tight with
an example of an adaptive logical LOBSM onto quan-
tum parity codes, which reaches this loss tolerance. This
result illustrates that we can handle the intrinsic proba-
bilistic nature of the physical LOBSMs, by using adaptive
measurements, i.e., by changing the LOBSM configuration
and deciding which Bell states can be measured unam-
biguously. A second consequence of this result is that
having access to ancillary photons [26–29], even with
unit detection probability, to allow physical LOBSMs with
potentially near-deterministic success probability cannot
improve the loss threshold of logical BSMs based on
adaptive LOBSMs, even though it could still potentially
improve performances in other aspects (e.g., the number
of physical qubits required in the code to reach a given
success probability).

D. Derivation of the logical LOBSM loss threshold
based on static LOBSMs

Another important consideration for applications is what
is the best achievable loss tolerance for static LOBSMs,
where the physical LOBSM basis is chosen beforehand
and is not modified based on the previous measurement
outcomes, which simplifies the experimental implementa-
tion. This configuration corresponds to the one depicted in
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(a)

(b)

(c)

FIG. 11. Logical measurement apparatus based on two-qubit
linear-optical measurements. Based on (a) adaptive and (b) pas-
sive two-photon measurements and on an (c) adaptive com-
bination of two-photon and single-photon measurements. CPP
indicates a classical postprocessing device that reconstructs the
logical Ô measurement outcome from the measurement out-
comes of each two-photon linear-optical measurement apparatus.
FF stands for classical feedforward.

Fig. 11(b), where there are no communications between the
different physical LOBSMs and the resulting logical BSM
is postprocessed through the two-photon measurement
outcomes of each BSM.

Here, we assume that we chose the same configuration
for all of the physical LOBSMs, which is equivalent to
choosing pXX and pZZ constant for all the physical LOB-
SMs. In that case, the reasoning is similar to the adaptive
case discussed in the previous section, except that we
should fulfill the conditions

(1 − ε(SBSM)
a )(1 − ε

(SBSM)
b )

≥ max

[
(1 − ε

{Xa,Za}
Xa

)

pXX
,
(1 − ε

{Xa,Za}
Za

)

pZZ

]
≥ 2

3
. (12)

Indeed, using the same reasoning as for the previous case,
we have ε′

a = 1 − η′
a with η′

a = (1 − εa)(1 − εb). We can

use the setup illustrated in Fig. 8 but using the mea-
surement apparatus described in Fig. 11(b) to perform
an indirect Xa measurement from a XaXb measurement.
This measurement will succeed as long as η′

apXX > 1 −
ε

{Xa,Za}
Xa

. We find a similar result for a Za measurement.

So η′
a should be greater than both

(
1 − ε

{Xa,Za}
Xa

)
/pXX and(

1 − ε
{Xa,Za}
Za

)
/pZZ , hence the first inequality in Eq. (12).

The final lower bound of 2
3 is found by minimizing this

quantity under the linear-optic BSM constraints (pXX +
pZZ ≤ 3

2 ) and Eq. (5). This bound is also tight because
we can reach it with surface codes, by using BSMs with
random bases pXX = pZZ = 3

4 . In that case, we can make
a logical ZaZb (respectively, XaXb) measurement on two
surface codes if pZZηaηb (respectively, pXX ηaηb) is above
the percolation threshold 1

2 , i.e., if ηaηb ≥ 2
3 . We have also

found this bound numerically with a tree graph state logical
encoding in a previous work [21]. With access to ancillary
state-assisted LOBSMs with overall success probability
1
2 ≤ p < 1, this result straightforwardly generalizes to a
tight lower bound of 1/(1 + p).

Theorem 5.—For a logical BSM based on static LOB-
SMs, the loss thresholds for qubits a, ε(SBSM)

a , and b,
ε
(SBSM)
b , are bounded by

∀ C, (1 − ε(SBSM)
a )(1 − ε

(SBSM)
b ) ≥ 1

1 + p
, (13)

when using LOBSM with success probability p .
Proof.—The Appendix contains the general proof of

this result, including removing the assumption of taking
identical pZZ and pXX for any physical qubit. �

The limit case, p → 1, corresponds to a determinis-
tic LOBSM, which also approaches the previous limit
for adaptive logical BSMs based only on LOBSMs, thus
showing that this limit can also be approached using
ancillary state-assisted methods, though at the cost of a
large overhead of ancillary photons consumed to perform
near-deterministic physical LOBSMs.

VI. BEST ACHIEVABLE LOSS TOLERANCE FOR
BSM WITH LINEAR OPTICS

We have shown in Sec. IV that the fundamental best
achievable loss tolerance for logical BSMs is 1

2 (ε̄(BSM) ≤
1
2 for both a and b) without assuming any specific imple-
mentations, and we have seen that we can reach a lower
loss tolerance of (1 − ε(ABSM)

a )(1 − ε
(ABSM)
b ) > 1

2 using
adaptive LOBSM (Theorem 4). Can we devise another
way of making logical BSMs compatible with linear optics
but which reach the fundamental bound? In the following,
we show this to be the case. We will provide a simple
example of a logical LOBSM scheme, which maximizes
the amount of loss tolerated by the laws of physics.
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Before doing so, we need first to understand why log-
ical BSMs based on physical LOBSMs fail to reach the
fundamental bounds for logical BSMs. Since we are mak-
ing measurements of the photonic qubits two by two using
LOBSMs, the measurement of each physical qubit is also
conditioned on the detection of its counterpart from the
second QECC, hence the appearance of the (1 − εa)(1 −
εb) >

1
2 threshold. Contrarily, measurements of logical X

and Z operators are only limited by the εi <
1
2 thresh-

old (∀i ∈ {a, b}), because they can be, for example, based
on single-qubit measurements. The question is therefore
whether we can use single-qubit measurements to perform
a logical LOBSM.

It is easy to see that this is impossible if we are uniquely
using single-qubit measurements, because we would need
to measure the logical operators X and Z individually on
each code, which is impossible because they are not com-
muting. However, nothing contradicts the idea of using
logical BSMs based on an adaptive combination of both
physical LOBSMs and single-qubit measurements as illus-
trated in Fig. 11(c), which uses a physical measurement
apparatus of the form in Fig. 9(b). The critical idea behind
this is that we use some LOBSMs because they are needed
for logical BSM measurements. Then, we use single-qubit
measurements whenever possible to achieve better loss tol-
erance. Using this strategy it should be possible to perform
LOBSMs with the maximum loss tolerance allowed by the
laws of physics, as we illustrate by proposing a simple
example in the following.

Theorem 6.—The tight fundamental upper-bound for
logical BSMs of Theorem 3 constitutes also a tight upper
bound in a linear-optical setting:

∀ C, ε(LOBSM) ≤ 1
2

.

We will prove this result by finding an example of a
logical BSM reaching this loss tolerance based on linear
optics.

A. Example of logical BSM with maximum loss
tolerance

In this section, we propose a class of codes together with
a scheme for logical LOBSMs based on adaptive LOB-
SMs and single-qubit measurements, which reach the best
achievable loss tolerance. We should emphasize that our
objective in this section is to prove the tightness of the
fundamental upper bound of logical LOBSMs. Therefore,
we use this class of codes mostly as a theoretical tool
to prove this tightness analytically. It also serves peda-
gogical purposes as it illustrates with a simple example
how we can perform a loss-tolerant logical LOBSM based
on a QECC and a combination of optical two-qubit and
single-qubit measurements. Nevertheless, this code is inef-
ficient in terms of resources required and is of very limited

FIG. 12. Variant of a QPC(n, 2) code with a logical LOBSM.

practical utility for implementations. Yet, we expect a
similar approach with other codes to produce the same
threshold while being practical. For example, numerical
evidence shows that tree graph codes [21] have the same
loss-tolerance thresholds.

Our example is based on a variant of the quantum par-
ity code QPC(n, m) consisting of n blocks of m qubits
each [19]. Figure 12 illustrates such a code. Quantum par-
ity codes are a generalization of the well-known Shor code
[37], which is the special case corresponding to QPC(3, 3).
In particular, we will focus on QPC(n, 2) composed of n
blocks of two qubits, where, for each block i = 1, . . . , n,
the first qubit q1,i is simply a physical photonic qubit,
and the second qubit q2,i is itself encoded logically using
a QECC with loss-tolerance thresholds for X and Z of
ε

{X ,Z}
X = ε

{X ,Z}
Z = 1

2 , such as surface codes or tree graph
states [44]. We want to show that we can construct a log-
ical LOBSM on two logically encoded qubits, based on
this variant of the QPC(n, 2), whose loss-tolerance thresh-
old is exactly the one of the single-qubit QECC used for
the qubits q2,i.

For a quantum parity code, a logical X measurement
corresponds to the successful X measurement of all qubits
from at least one single block, and a logical Z measurement
corresponds to the Z measurement of at least one qubit in
each block. A logical BSM therefore corresponds to the
measurement of the logical operators XaXb and ZaZb:

∀ i, j = 1, . . . , n, XaXb = X a
i,1X b

j ,1X a
i,2X b

j ,2

(14)

∀ k1, . . . , kn, l1, . . . , ln, ∈ {1, 2}, ZaZb =
n∏

j =1

Za
j ,kj

Zb
j ,lj ,

(15)

where Za
i,j and X a

i,j (respectively, Zb
i,j and X b

i,j ) correspond to
Z and X operators on the qubit qa

i,j (respectively, qb
i,j ) from

logical qubit a (respectively, b). The logical BSM with
record loss tolerance is illustrated in Fig. 12 and detailed
in the following.
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On each block, qa
1,n and qb

1,n are measured jointly with
a physical LOBSM. qa

2,n and qb
2,n are both measured indi-

vidually in the X basis if the BSM on qa
1,n and qb

1,n has
succeeded; otherwise they are both measured in the Z
basis. A logical BSM then succeeds if the following two
conditions are satisfied:

(1) at least one BSM succeeds,
(2) all the single-qubit measurements succeed.

Indeed, as shown in Eq. (15), supposing that both the BSM
on qa

1,i and qb
1,i and the X measurements on qa

2,i and qb
2,i

have succeeded, allows us to retrieve XaXb (through the X
measurements of all the qubits from a block). Moreover,
from the BSM on qa

1,i and qb
1,i, we have access to Za

1,iZ
b
1,i

too. With that information and with all the individual Z
measurements on all the other blocks (or the joint ZZ mea-
surements if the corresponding BSM has succeeded), we
can thus retrieve also ZaZb and thus implement a complete
logical BSM.

At least one out of the n BSMs succeeds [condition
(1)] with probability 1 − (1 − (1 − εa)(1 − εb)/2)n, which
can be made arbitrarily close to 1 by increasing the num-
ber of blocks n. In addition, we use an encoding with
sufficiently strong loss tolerance so that all the 2n single-
qubit measurements succeed [condition (2)] with arbi-
trarily high probability. This is possible as long as εi <

min[ε{X ,Z}
X , ε{X ,Z}

Z ] for i = a, b. Since QECCs fulfilling this
condition exists with a loss threshold 1

2 , we conclude that
by opting for this encoding, we obtain a logical LOBSM
with maximum loss-tolerance reaching 1

2 .

B. Loss-tolerant linear-optical decoder

We show now that we can design a linear-optical
decoder with maximum loss tolerance εD = 1

2 , bounded
by the fundamental limits of Theorem 1. The architecture
of this decoder is based on quantum teleportation and is
already known, it was, for example, investigated in Ref.
[19,20]. However, given the new results from the previ-
ous subsection, it can now operate for a larger amount of
internal losses in the decoder.

Corollary 2.—∀C, the loss tolerance of a linear-optical
decoder, ε(LO)

D , has a tight upper bound of 1
2 .

Proof.—Since we are processing quantum information
only using linear-optical components and detectors, i.e.,
only destructive photon measurements and probabilis-
tic two-qubit gates, designing such a decoder is not as
straightforward as without the linear-optical constraints.

To build such a linear-optical decoder, we need not only
to measure the state (with destructive measurements) but
also to recover it. This is typically how quantum telepor-
tation works. We consider a quantum state |ψ〉a embedded
on a physical qubit a, and two other qubits b and c prepared
in a Bell state

∣∣�+〉
bc. By performing a physical BSM onto

FIG. 13. A linear-optical decoder based on quantum telepor-
tation. The logical LOBSM can be any of the one depicted in
Fig. 11. The unitary U corresponds to the corrections that need
to be applied to the qubit depending on the LOBSM outcome.

qubits a and b, the quantum state of qubit c after measure-
ment is projected into the quantum state |ψ〉c, up to some
known single-qubit gates depending on the BSM outcome.
Here, we see that in a linear-optical setting, the qubit a,
which was the initial support of the quantum state |ψ〉 is
not existing anymore but the quantum state has been main-
tained and transferred onto qubit c during the quantum
teleportation.

However, acting on physical qubits, the quantum tele-
portation scheme described previously is not loss tolerant.
Yet, we can easily convert it into a loss-tolerant linear-
optical decoder by encoding qubits a and b logically and
by replacing the physical BSM with a logical LOBSM.
This is illustrated in Fig. 13. The success of this decoder
depends on the success of the logical LOBSM, which
can be performed with loss tolerance of 1

2 . Therefore, the
upper bound for linear-optical decoder is also 1

2 . Note that
this bound is tight since we have already found a logical
LOBSM with similar tight upper bound.

�
We should also note that this is at the core of most all-

photonic quantum repeater schemes [19–21,24,25]. These
protocols are based on performing LOBSMs on logical
Bell states to propagate a quantum state through a lossy
channel. In that case, we just need to also logically encode
qubit c in our linear-optical decoder.

Moreover, with our framework and our proposal for
a linear-optical decoder based on quantum teleportation,
we straightforwardly find lower bounds for the best log-
ical LOBSMs solely based on adaptive or static physical
LOBSMs.

Corollary 3.—∀C, the fundamental limits for linear-
optical decoders based on adaptive and static physical
LOBSMs are, respectively,

ε
(ABSM)
D ≤ 1

2
, and ε

(SBSM)
D ≤ 1

1 + p
.
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(a) (b)

FIG. 14. (a) Summary of the fundamental bounds for logical BSMs in a linear-optical setting. The best loss tolerance is achieved
for schemes using LOBSM and single-qubit measurements (SQM). (b) Overall single-photon detection probability 1 − ε for a fiber of
distance L0 (in km) given some source (ηb) and detection (ηd) efficiencies. Fundamental bounds are taken for εa = εb = ε.

Interestingly, we can find codes for which ε(ABSM)
D =

ε
(LO)
D , this is a consequence of the fact that a physical

LOBSM on qubit a and b works with the same proba-
bility for transmissions ηa, ηb and for transmission η′

a =
ηaηb, η′

b = 1 (see Fig. 9).

VII. OVERVIEW OF THE RESULTS

In the previous sections, we have proposed a framework
to find fundamental bounds on the overall loss-tolerance
thresholds and the loss tolerance of some operator mea-
surements for general codes. We applied this framework
to investigate the fundamental loss-tolerance bounds of
BSMs on logical qubits. We have first derived that while
it is possible, in principle, to perform a logical BSM in
the presence of arbitrarily high qubit loss on qubits within
the same QECC, the codes where this is possible may
not be of practical interest. Indeed, these QECCs do not
exhibit loss tolerance for decoding and thus a quantum
state cannot be protected against loss using such a QECC.
Moreover, the BSM should act on qubits which are logi-
cally encoded within the same QECC and thus cannot be
prepared remotely, potentially reducing their interest, e.g.,
for long-distance communications.

We then proceeded by showing that BSMs on logical
qubits encoded remotely have a fundamental loss tol-
erance of at best 1

2 , corresponding to the fundamental
limit imposed by the measurement postulate. Furthermore,
we derived loss-thresholds in different contexts where
we focus on photonic implementation and linear-optical
quantum information processing. We showed that

• for static logical LOBSMs, the loss probabilities,
εa, εb, of physical qubits within each code a and b should
meet the condition (1 − εa)(1 − εb) >

2
3 ,

• for logical BSMs based on adaptive physical LOB-
SMs, the loss-tolerance condition increases to (1 −
εa)(1 − εb) >

1
2 ,

• for logical BSMs based on adaptive physical LOB-
SMs and single-qubit measurements, we reach the funda-
mental bounds of logical BSMs: max[εa, εb] < 1

2 .

Furthermore, we have shown the tightness of each of
these bounds. In particular, the last bound may look sur-
prising given that Lee et al. [20] stated that the best
achievable loss tolerance for LOBSMs should be (1 −
εa)(1 − εb) >

1
2 . Our framework helps to understand why

this limit can be overcome by highlighting that the authors
made one hypothesis for the derivation of this result, which
turned out to be incomplete. This hypothesis was that a
logical LOBSM should always be decomposed onto physi-
cal LOBSMs. We provide a simple counterexample, which
shows that this is not always the case, and that a bet-
ter loss tolerance is achievable. An overview of all the
results is displayed in Table I and in Fig. 14(a). More-
over, we have also shown that the results in terms of loss
tolerance for logical BSMs directly translate into a loss-
tolerant decoder with similar performances, using a logical
quantum teleportation scheme.

We now discuss the importance of these fundamental
bounds. Improving the loss-tolerance of QECCs, and in
particular logical BSMs is particularly important for pho-
tonic implementations where losses are the main source of
errors.

Our results clarify the requirements a logical BSM
scheme should fulfill to reach optimal loss tolerance using
linear optics. In particular, we show that such a logical
BSM should first exploit feedforward. Otherwise, its loss
tolerance is limited by the orange region in Fig. 14(a).
Moreover, a logical BSM with maximal loss tolerance
should also use both physical LOBSMs and single-qubit
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TABLE I. Table of results (for equal losses εa = εb). Fun-
damental loss thresholds using standard LOBSMs, ancillary-
state-assisted LOBSMs (with success probability p) and for
deterministic BSMs (not using linear optics). We consider the
case where the logical measurements are performed using a static
or an adaptive protocol and in the case of adaptive measurements,
when we perform either BSMs only or a combination of BSMs
and single-qubit measurements (SQM).

Static Adaptive

Physical BSMs BSM BSM BSM + SQM

LOBSM
(

p = 1
2

)
1 −

√
2
3

1 − 1√
2

1
2

LOBSM (assisted) 1 − 1√
1 + p

1 − 1√
2

1
2

LOBSM (assisted p → 1) 1 − 1√
2

1 − 1√
2

1
2

Deterministic
1
2

1
2

1
2

measurements. Otherwise, its performance is necessarily
limited to the blue and orange regions in Fig. 14(a). We
hope highlighting these two necessary conditions will help
devise better photonic logical BSMs. Moreover, the loss-
tolerance threshold can be seen as the “loss budget” for
a practical photonic implementation. The overall photon
transmission should include every operation from its gen-
eration, its use, and its detection. Therefore, improving
the loss tolerance is crucial to increase the number of
operations that we can perform onto a photon before it
should be detected. The new logical LOBSM loss thresh-
old is thus a crucial improvement since the brightness ηb
of state-of-the-art single-photon sources [66–70] and the
single-photon detector efficiency ηd are sufficiently high to
reach this new regime of loss tolerance but not the previous
one: 1/2 < ηbηd < 1/

√
2.

For quantum communication applications, this result
could improve the implementation of quantum repeater
protocols, which aim at enabling long-distance quan-
tum communications. Indeed, the most advanced quantum
repeater schemes are based on quantum error correction,
including the newly investigated all-photonic quantum
repeater protocols [18–25]. For these QECCs, the princi-
pal objective is to enable communications through a lossy
channel, such as a telecom fiber, with typical attenua-
tion of 0.2 dB/km, leading to losses 1

2 after a distance
L 1

2
� (3 dB)/(0.2 dB km−1) = 15 km. The loss-tolerance

threshold of the QECC used imposes a lower bound on the
distance between two repeater nodes. Indeed, if the over-
all single-photon detection loss (including generation, fiber
transmission, and detection) is above the BSM loss thresh-
old the quantum repeater scheme cannot work. As a result,
a quantum repeater scheme based on a QECC with loss

threshold εBSM, can work only if the fiber transmission effi-
ciency ηt(L) is above (1 − εBSM)/(ηbηd). In Fig. 14(b), we
show how stringent this requirement can be for imperfect
photon sources and detectors (ηbηd < 1). For example, if
ηbηd = 0.8, a repeater scheme using logical BSMs based
on

• static LOBSMs cannot work;
• adaptive physical LOBSMs requires a very small

maximum internode distance of LO ≈ 2 km;
• adaptive physical LOBSMs and single-qubit mea-

surements requires a greater maximum internode distance
of ≈ 10 km.

The latter is thus much more practical for implemen-
tations. Here, we focused on quantum communication
applications because the internode distance of quantum
repeater schemes is a simple and intuitive number to maxi-
mize. However, we expect this result to be also of practical
interest for quantum computing applications, particularly
for FBQC [7]. Indeed, any operations made using photonic
integrated circuits are lossy, including delay lines. There-
fore, having greater tolerance to losses should increase the
number of operations that can be performed on a qubit
before it is measured.

We should emphasize that the results that we derived
for linear-optics quantum information processing were
obtained with a simplified description where we have only
considered single-qubit measurements and probabilistic
BSMs. By considering more general linear-optical oper-
ations, better loss-tolerance thresholds may potentially be
found. However, the upper bound of 1

2 on linear-optical
logical BSMs and decoders reach the more general upper
bounds imposed by quantum mechanics, and thus cannot
be improved. Given the proof of the upper bound for adap-
tive logical BSMs based only on LOBSMs, ε(ABSM)

BSM , in
Ref. [20] shows that this upper bound is also fundamental.
The only improvement that may be found is in the static
LOBSM setting if we allow more general linear-optical
information processing. Proving whether this would be the
case or not could be an interesting extension of this work.
More generally, having a deeper understanding of the
linear-optical methods to process photonic qubits would
always be useful to find efficient ways to process quan-
tum information encoded onto photonic qubits, not only in
terms of loss thresholds but also in terms of the amount of
resources used.

Furthermore, the framework that we derived could be
extremely useful in itself if we can extend it to other types
of errors such as operation errors. This could greatly help
the derivation of better linear-optical schemes for quantum
information processing. Another aspect that is omitted here
but which is of important practical interest is an estima-
tion of the resource overhead, i.e., the number of physical
qubits used in these codes. Indeed, the current analysis

040322-15



PAUL HILAIRE et al. PRX QUANTUM 4, 040322 (2023)

only deals with loss threshold but does not say how many
qubits need to be used to reach a satisfactory success rate. It
would be also extremely valuable to investigate in a future
work the resource overhead induced by the probabilistic
LOBSMs compared to deterministic schemes, which are
not based on linear optics.
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APPENDIX: PROOF OF THE 1/1 + p THRESHOLD
FOR STATIC LOBSM

To prove this result we consider the case where a
physical LOBSM succeeds with intrinsic probability p
(multiplied by ηaηb to account for losses), therefore, the
best success probability for physical XX and ZZ measure-
ments on qubits labeled by i are linked by pXX ,i + pZZ,i ≤
1 + p . To complete the proof of the main paper, we should
also consider the case where the probabilities pXX ,i and
pZZ,i vary for different pairs of qubits i being measured.
Since we are considering static LOBSM, we should con-
sider vectors �pXX = (pXX ,1, pXX ,2, . . . , pXX ,n)

T and �pZZ =
(pZZ,1, pZZ,2, . . . , pZZ,n)

T, which follows the relation �pXX +
�pZZ ≤ (1 + p)�1. Including single qubit loss (ηa = 1 − εa,
ηb = 1 − εb), we have the relation

�pXX ηaηb + �pZZηaηb ≤ (1 + p)ηaηb�1,

where �1 is a vector of ones with length the number of qubit
pair n.

Using the relations with Eq. (5), we find that
P(XLXL | ηa, ηb, �pXX ) = P(XL | �pXX ηaηb) (and similarly for
Z). In that case, we consider different probabilities for
the measurement of each operator on each qubit by
using this vector representation. We can derive a similar
relation for single logical qubit operator measurements:
P(XL | ηaηb�pXX )+ P(ZL | �1 − ηaηb�pZZ) ≤ 1.

We show by contradiction the threshold for static linear
optics with p physical LOBSM success probability to be

(1 − ε
(SBSM)
A )(1 − ε

(SBSM)
B ) ≥ 1

1 + p
. (A1)

If we have single-photon detection probabilities follow-
ing the condition ηaηb ≤ 1/(1 + p), then �pZZηaηb ≤ �1 −
ηaηb�pXX and thus the previous relation implies that

P(XLXL | ηa, ηb, �pXX )+ P(ZLZL | ηa, ηb, �pXX ) ≤ 1.

Therefore, we cannot perform a complete logical BSM
measurement, which concludes that the loss threshold is
indeed bounded as in Eq. (13). Moreover, we can easily
show that this limit is tight using the same example of a
surface code as in the main paper using physical LOBSM
with success probability p .
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