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Error-correcting entanglement swapping using a practical logical photon encoding
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Several emerging quantum technologies, including quantum networks, and modular and fusion-based quantum
computing, rely crucially on the ability to perform photonic Bell state measurements. Therefore, photon
losses and the 50% success probablity upper bound of Bell state measurements pose a critical limitation to
photonic quantum technologies. Here, we develop protocols that overcome these two key challenges through
logical encoding of photonic qubits. Our approach uses a tree graph state logical encoding, which can be
produced deterministically with a few quantum emitters, and achieves near-deterministic logical photonic Bell
state measurements while also protecting against errors including photon losses, with a record loss-tolerance

threshold.
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I. INTRODUCTION

Photons play a unique role in quantum information tech-
nologies. They are the only qubits that can travel over long
distances, making them central to applications such as quan-
tum networks and the envisioned quantum internet [1]. The
basic building blocks of quantum networks are quantum re-
peaters [2-5], nodes designed to overcome the challenge
of photon loss. Repeaters rely on Bell state measurements
(BSMs) between photons to extend entanglement through the
network in a process known as entanglement swapping [4,5].
This in turn enables quantum cryptographic [6], computing
[7], and sensing [8] protocols.

For distributed quantum computing [9,10], photonic BSMs
are also critical to compose a large-scale quantum computer
[11,12] from small modules of a networked matter-based
quantum processor, by enabling intermodule entangling gates,
through gate teleportation [13].

Finally, BSMs are the key primitive of a newly introduced
model for silicon-photonic quantum information processing,
fusion-based quantum computing [14]. This can be thought of
as a temporal analog of cluster-state quantum computing, with
the advantage that the required resource states are much more
modest (constant in the size of the computation). During the
computation, pairs of photons coming from different resource
states are Bell measured.

While photonic BSM plays an essential role in all these
technologies, unfortunately, there is a fundamental limita-
tion in its success probability: it succeeds 50% of the time
[15-20]. This is a major obstacle in realizing quantum net-
works, distributed quantum computing, and photonic quantum
computing. An additional challenge with photonic quantum
technologies is photon loss. Photons can be absorbed, leading
to an irreversible loss of the information they encode. This is
particularly problematic for long-distance quantum networks.
These two shortcomings, together severely impede photonic
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quantum information processing, and often lead to proposals
with daunting resource overheads.

Prior work has proposed ways to boost the BSM probabil-
ity through the use of ancillary photons [21-24], nonlinear
interaction with an atom [25-27], or hyperentanglement
[28-32] to achieve (near) deterministic photonic BSMs.
Nonetheless, these solutions are not tolerant to photon losses
and errors. Error reduction requires either photon purification
[3,33] or the logical encoding of a qubit on many photons
[34].

In the context of quantum repeater (QR) protocols, error
correction is used by third-generation repeaters for loss and
error tolerance [5]. Any quantum error correcting code could
in principle be used [35] but they usually require hundreds of
matter qubits at each node and efficient light-matter interac-
tions to transfer quantum states between photonic qubits and
matter qubits in an efficient way, and these resources have not
yet been experimentally demonstrated [36]. All-photonic QRs
[37-40] either remove these requirements entirely in the case
where they are generated using linear optics, or significantly
reduce them when they are produced using a deterministic
approach based on a few matter qubits [41,42]. A logical
photonic BSM has been proposed in Refs. [39,40,43], ini-
tially using a quantum parity code [44] and subsequently
extended to arbitrary Calderbank-Shor-Steane codes [45,46].
However, large highly entangled states of photons that serve
as error-correcting codes are generally difficult to produce
[47], largely for the same reason that makes photonic BSMs
probabilistic.

In this paper, we simultaneously address both challenges,
the probabilistic nature of BSMs and photon loss, through
two protocols, which we call “static” and “dynamic,” that
allow error-corrected photonic BSMs on logical qubits, with
a record loss-tolerance threshold for the dynamic protocol.
We use a tree graph state logical encoding [48,49], which
can be generated deterministically with a few matter qubits
[42,50]. These generation procedures build on an experimen-
tally demonstrated protocol [41,51] to produce linear cluster
states.

©2021 American Physical Society
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FIG. 1. Two-way (top) and one-way (bottom) QR protocol using
deterministic tree graph state generation [42,50,52] with a few matter
qubits and the logical BSM protocols studied in this paper (see
Appendix A for the deterministic generation procedure).

Our results directly apply to two-way and one-way all-
photonic QRs [5], making the original proposal [37] both
resource efficient and fully error correctable. In the two-way
QR scheme displayed in Fig. 1, a logical Bell pair is produced
with a few matter qubits at each source node using the gener-
ation sequence detailed in Appendix A, and each logical qubit
is sent to an adjacent measurement node where a logical BSM
is performed. In the one-way QR scheme, the source nodes
and measurement nodes are the same, and one logical qubit is
Bell measured at this node while the other one is sent to the
next node.

In the remainder of this paper, we describe how to perform
a logical BSM, which is the cornerstone, not only of these
QR schemes, but also of fusion-based quantum computing.
The paper is organized as follows. In Sec. II, we introduce
the stabilizer formalism to describe two-photon BSMs using
linear optics. In Sec. III, we introduce the logical encoding
that we are using. In Sec. IV, we show how to use this encod-
ing to produce logical BSM protocols in a measurement-based
setting. Finally, in Sec. V, we evaluate the performances of the
two protocols introduced in this paper.

II. TWO-PHOTON BELL STATE MEASUREMENT

A BSM is a joint measurement of two qubits, a and b, in
one of the four Bell states:

1 (Z.Z)) =
035 = 510,00 £ La1s)) {<X“Xb> o
_ 1 (ZaZp) = —1
W35 = = (0u10) £ 11,0,)) & {<X0Xb> 1

As shown on the right-hand side of Eq. (1), using the stabilizer
formalism [53], a BSM can also be interpreted as the measure-
ment of the two operators X, X, and Z,Z;,, where X, Y, and Z
are the usual Pauli matrices, and the subscript indicates on
which qubit the operator is applied. Experimentally, a linear
optical BSM [15-17] measures one of these operators, and,
depending on the outcome of this measurement, +1 or —1,
the second operator is measured or not. In the following, we
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FIG. 2. (a) Tree graph state and notations. NV, and C, denote
the set of neighbor qubits and child qubits of vertex v. Indirect
Z measurements are also illustrated. (b), (c) Logical BSM at the
logical level (left panel) and at the physical level (right panel) for
the static (b) and the dynamic (c) protocols. (SPM: single-photon
measurements. )

consider a setup where we can discriminate Z,Z, unambigu-
ously and X, X, half of the time (when Z,Z, has parity 1),
even though all configurations of operators and measurement
outcomes are experimentally feasible.

Hence, denoting by 1 the detection probability of each pho-
ton, a two-photon linear optical BSM can yield three different
results: a complete measurement (with probability n?/2), i.e.,
X.Xp and Z,Z;, are measured; a partial measurement (with
probability %/2), i.e., only Z,Z, is measured; or a failed
measurement (with probability 1 — »?), i.e., no outcome is
measured, if at least one photon is lost.

III. LOGICAL BELL STATE MEASUREMENTS

To avoid this limitation and to enable loss tolerance and
error reduction, we are using a tree graph state encoding which
is a stabilizer error-correcting code. A graph state |G) is the
unique quantum state described by a graph G = (V, E'), with a
set of vertices V corresponding to qubits, and edges E, which
is stabilized by the |V| stabilizers K, for v € V [54]:

K,|G) = (X [z )lG G), )

weN,

where NV, = {w|(v, w) € E} is the set of qubits neighboring
qubit v [see Fig. 2(a)].

More specifically, we are interested in tree graph states
of depth d that are defined by a branching vector b=
(bo, b1, ...,bs_1), which can encode a logical qubit [48] (see
Appendix B for more details). In this encoding, the physical X
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and Z operators are replaced by logical operators X; and Z;:

XL =X, l—[ Zy, Zp = l_[Z"’

weC, ueCy

3)

where v is any qubit from level 1 of the tree (v € Cp), and C,
denotes the set of child qubits of v (i.e., the qubits from level
2 that are neighbors of v).

It directly follows from Eqs. (1) and (3) that a complete
BSM on two logical qubits encoded with trees requires the
measurement of both X;X; and Z,Z; (we use a prime to
denote the second tree):

XX =XX) [ @z,
(w,w)e(Cy,Cyr)
)
zz,= [l @z,

(v,v")€(Co,Cy)

where v € Cy is any qubit from the first level of one tree,
and v’ € Cy is its counterpart from the other tree. In this
expression, we have paired the operators X, X,y and Z,Z,  to
highlight that these logical measurements can be implemented
by physical two-photon BSMs that combine each photon from
one tree with its counterpart from the second tree.

In Fig. 2(b), we illustrate this strategy, which we call the
“static” protocol, with two trees with branching vectors b=
(3, 2). If a physical BSM on level 1 qubits, say a and «/, is
complete (thus yielding a measurement of X,X,), and if the
BSMs on all the child qubits of @ and &' are at least partial
(thus yielding a measurement for Z,, Z, and Z,,Z,), we have
performed a successful logical X; X; measurement on the two
logical qubits. A successful logical Z, Z; measurement would
also require all the remaining physical BSMs on the first-level
qubits, b, b’ and ¢, ¢/, to be at least partial to yield Z,Z, and
Z.Z.. In the absence of photon losses (n = 1) and errors, all
physical BSMs are at least partial, and only one BSM on the
level 1 qubits should be complete. This already boosts the
overall success probability to 1 — 27%, which can be made
arbitrarily close to 1 by increasing the number by of first-level
qubits in the tree encoding.

At this point, it is worth clarifying some subtleties related
to replacing logical two-qubit measurements with a series of
physical BSMs. If the goal is to project the logical qubits onto
one of the four logical Bell states, then the static protocol
will not work, because the physical measurements provide
too much information about the state, collapsing the logical
qubits to a separable state. However, for applications such as
qubit or gate teleportation and entanglement swapping, which
are the main applications of photonic BSMs, this is not an
issue. In such applications, one or both logical qubits are
initially entangled with additional qubits. Upon success, the
static protocol will still generate all the same entanglement
links or teleported states on the unmeasured qubits that one
would expect from a BSM. This is explained in detail in
Appendix C.

IV. CORRECTING LOSSES AND ERRORS IN LOGICAL
BELL STATE MEASUREMENTS

The loss-tolerance and error-correcting properties of this
logical BSM naturally arise from the counterfactual error-

correction properties of the tree graph states that were already
demonstrated in Refs. [37,48] for single logical qubit mea-
surements. Below, we show that these properties can be
extended to logical BSMs. Before we explain this, we first
recall that single-qubit counterfactual error correction is based
on indirect measurements of a single qubit v in a tree,
performed by measuring other qubits using the stabilizing
properties of the graph. The loss tolerance builds on the fact
that a measurement can be realized even if the qubit is lost,
while error correction is based on multiple indirect measure-
ments of the same single qubit and the use of a majority vote
to reduce errors.

From Eq. (2), it indeed follows that a qubit » € A, can
be indirectly measured in the Z basis by measuring Z,K,, =
X, ]_[;Z\/ Z,, i.e., an X measurement on w and Z measure-
ments on all its neighbors except r. It is therefore possible
to indirectly Z measure a qubit r of a tree graph state by
measuring one of its child qubits w and the qubit set C,, [see
Fig. 2(a)].

Regarding two-qubit measurements and following the no-
tations in Fig. 2(b), if the BSM on qubits ¢ and ¢’ fail, we
can still recover Z.Z. indirectly using the deeper level qubits,
by measuring either ZCKC,ZCrKCrl = XCIXC; or ZCKCZZCrKCr2 =
X, X, - In addition, by performing the same measurement in-
directly multiple times, we can use a majority vote to allow for
error correction. We introduce here the static protocol, where
the logical BSM is recovered by performing two-photon
BSMs jointly on each qubit from a tree and its counterpart
from the second tree. In the following, we calculate the suc-
cess probability of such a logical BSM and demonstrate its
loss tolerance. The error analysis is included in Appendix D.

Static protocol.We use the notations for a measurement
event of the W observable at the tree level k:

(1) Dy 4 is a direct measurement.

(2) Sw i is a single indirect measurement event, using only
one stabilizer K,, with v one of its child qubits (at level
k+ 1), e.g., the indirect measurement of Z.Z. through the
measurement of X, X+ in the previous example.

(3) Zw,x is an indirect measurement event that can be re-
alized on a collection of Sy, e.g., when we can try either
XCIXC/1 or XCZXH2 to perform the Z.Z. measurements.

(4) My is a measurement event (direct or indirect).

We denote by Pr[A] the probability of an event A.
For example, Pr[Dyx ;] = Pr[Dz ] = n for single-qubit mea-
surements and Pr[Dxx ] = Pr[Dzz x]1/2 = n*/2 for a two-
photon BSM. Since these probabilities do not depend on the
level of the photons in the tree, we simplify the notation by not
specifying the level k of the photon for a direct measurement
event, Dy = Dy .

In the following, we consider measurements in the W basis
at level k for W =Z or ZZ'. W = ZZ' is useful for the static
protocol, and W = Z is useful not only for the logical single-
qubit measurement [37,48] but also in the case of the dynamic
protocol that will be introduced next. The success probability
of a direct or indirect measurement event is therefore given by

Pr[Mw ] = Pr[Dw ] + (1 = Pr[Dw « DPr[Zw ], (5)
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which states that a measurement is successful if its direct
measurement Dy ; is successful or, if not, if its indirect mea-
surement Zy ; is successful.

We should also note that the qubits at the last level of
the tree, i.e., k = d, can only be measured directly such that
PI‘[IW,d] =0.

An indirect measurement of a qubit at level k # d can
in principle be performed b; times, and only one needs to
succeed:

Pr[Zw ] = 1 — (1 — Pr[Sw])™. (6)

Sw.r depends on the measurements that are realized. For a
W = Z measurement (or, respectively, ~for aW= Z7Z' mea-
surement), we should directly measure W = X (W = XX’) on
one of its child qubits v at level £ + 1 and measure directly
or indirectly Z (ZZ’) all the child qubits of v at level k + 2.

J

(©) —
PrMygy ] =
m© 4+ m® ;! = bo
m© >1
m?, mH >0

where

Therefore,
Pr[Swi] = Pr[DVv,kH]Pr[Mw,Hz]b"*‘- (7N

As we can see, this set of equations, Egs. (5)—(7), is re-
cursive since the measurement probability of My, depends
on the probability of My x4>. This explains why the success
probability can be increased, and as shown in Appendix D, the
error probability can be reduced.

With this set of equations we can compute success and
error probabilities for the static logical BSM protocol. Indeed,

Pr[Mx, x;1 = PrlZzz ol (8)

PriMz,z 1= PriMzz (1. )

However, the probability of realizing a complete log-
ical BSM, denoted M;;S)M,L’ is not the product of
Pr[Myx,x/] and Pr[Mz, ] since there are correlations be-
tween these events (Pr[MgS)M,L] = Pr[My,x; "Mz, z1=
Pr[Mx,x; |Mz, 7 IPt[Mz, 2 ]):

> Pasm(m©, m?, m\Pr[ Mz, 7, |m P |Pr(My, x, [m )], (10)

Pasn (m© . m®, my =

is the combinatorial probability of having m(®) complete, m®
partial, and m failed BSM outcomes at the first level, with

Pr[Mz,z mP] = Pr(Zzz 1", (12)

the probability to completely measure Z;Z; given that m/)
BSMs failed at the first level, and with

Pr[ My, [m©] = 1 — (1 = PrIMzz o), (13)

the probability to completely measure X; X, given that m®
BSMs at the first level were complete. With this set of equa-
tions, it is possible to calculate the performance of the static
protocol.

Dynamic protocol. If we allow adaptive measurements,
i.e., the measurement basis now depends on the outcomes
of previous measurements, we can also build an improved
“dynamic” logical BSM protocol. We first note that while
we can use the child qubits to perform indirect Z, or Z,Z,
measurements, it is impossible to use them to perform indirect
X, or X, X,y measurements, since measurements on the parent
qubits would also be needed. Therefore, instead of using in-
direct BSMs to achieve complete BSMs, the objective is to
upgrade failed BSMs to partial BSMs by indirectly measuring
Z,Z, via single-qubit measurements on their child qubits as
illustrated in Fig. 2(c). Thus, in the dynamic protocol, BSMs
(single-qubit measurements) are performed on child qubits if
the BSM on the parents is complete (partial or failed). Taking
the example of Fig. 2(c) where the BSM on qubits ¢ and ¢’

(m© + m® + mOY ([ p? (mO4+m®) e
1 P N <_) (1=n)

5 (1)

(

fails, we can replace the indirect measurement of Z.Z. by
individual indirect measurements Z. and Z.. These measure-
ments would succeed with higher probability because they can
succeed, for example, even if qubits ¢; and ¢}, are lost, thus
resulting in a better loss tolerance of the dynamic protocol
compared to the static protocol. We can also show that it
performs better in terms of error correction. The mathematical
framework of the dynamic protocol is detailed in Appendix E.

V. PERFORMANCES

We now investigate the performance of these protocols.
In Fig. 3(a), we evaluate their loss tolerance using trees
with branching vector b= (bg, b1, by) = (15, 15, 2) (below
we show that this tree structure yields good performances
for both loss and error correction). For high enough single-
photon detection probabilities, both protocols perform a
near-deterministic logical BSM. Notably, they overcome the
n? limit, which is the upper bound for BSMs with physical
qubits, evidencing that they are also loss tolerant. Further
numerical calculations show that there always exist tree struc-
tures that allow an arbitrarily high success probability as long
as 7 is above /2/3 for the static protocol, and 1/2 for the
dynamic protocol. The dynamic threshold 1/2 is significantly
lower than the generic loss-tolerance threshold n > 1 /2
established in Ref. [43] (derived from the bound nn’ > 1/2
for symmetric loss = r’). This is possible because Ref. [43]
assumes the logical BSM only uses linear optical BSM, an
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FIG. 3. (a) Success probability of a BSM as a function of the
single-photon detection efficiency 1 for the static and the dynamic
protocols for a tree of branching vector b= (15,15, 2). Dashed
curves correspond to Ppgy = n? (red), n = 1/2 (blue), and n =
/273 (green). (b) Logical BSM error as a function of the single-qubit
depolarization error rate £ for the static and dynamic protocols.
(c) Performance of the static (top) and dynamic (bottom) protocols
as a function of the number of photons in the tree, for n = 95% and
€ = 1073, Red point: smallest tree which is both error correcting
and loss tolerant. Green point: smallest tree which is loss tolerant.
Points circled in black (uncircled): depth-3 (depth-2) trees. In all
these figures, pink regions: no advantage over a two-photon BSM.

assumption broken by our dynamic protocol which also uses
single-qubit measurements. This dynamic threshold is in fact
the same as for single logical qubit measurements [48] and
corresponds to the actual maximum amount of loss that can be
corrected with a logical encoding according to the no-cloning
theorem.

Considering the same tree and only single-qubit depolar-
ization errors, £ > 0 but n = 1, we show in Fig. 3(b) that these
protocols are also error correcting, with a logical BSM error
reduced below the rate expected for a linear optical BSM.

As expected, both for loss tolerance and error correction, the
dynamic protocol outperforms the static protocol.

We now evaluate the performance of these protocols as a
function of the number of photons per tree, n. We consider a
single-photon detection probability of n = 95% and an error
probability of £ = 107>, Figure 3(c) represents the logical
BSM success probability and error rate for trees constituted of
n photons for the static and the dynamic protocols. Here, we
only present results for trees, found through a systematic nu-
merical search, which have improved performance for either
loss or error correction compared to smaller trees. Figure 3(c)
shows that the loss tolerance is easily achieved even with a
reduced number of photons; for example, only seven qubits
per tree are needed for a photon loss rate of 5%. However,
it takes a tree with n > 1185 photons [branching vector b=
(74, 15)] to achieve error correction in the static protocol.
The dynamic protocol also significantly reduces the amount of
resources required since error correction can be achieved with
n > 691 photons using a tree with b= (15,15,2) branching
vector. Notably, a larger number of trees are of interest for
the dynamic protocol compared to the static protocol. Our
calculations show that encodings using trees of depth 3 are
much more tolerant to losses and errors when using the dy-
namic protocol. Further calculations also show that the size of
the tree that achieves error correction strongly depends on the
single-photon detection probability 7.

Regarding the implementation of these logical BSM pro-
tocols, we should highlight that, in the static protocol, the
photons are always measured via two-photon BSMs. It can
therefore be implemented using a static standard linear-optical
setup. The dynamic protocol has better performance, but it
is also more challenging to implement since photons should
be measured in a given order (from the first levels to the
deeper levels) and the measurement setting depends on previ-
ous detections, thus requiring active components in the optical
detection setup that can quickly switch between single-qubit
X or Z measurements and the two-photon BSM.

We have shown that it is possible to perform a loss-tolerant
and error-corrected logical BSM on photonic qubits encoded
with tree graph states, a logical encoding that can be deter-
ministically generated with a few matter qubits. Our results
should impact the wide range of quantum technologies that
involve photons, including fusion-based quantum computing
[14], distributed quantum computing, and quantum networks.
The latter application includes a new all-photonic QR protocol
that builds on the original proposal of Ref. [37] and requires
significantly fewer resources while also enabling error correc-
tion, a feature that was lacking from the original proposal.
This QR protocol is based on Bell pairs of logically encoded
qubits as shown in Fig. 1. We leave the performance analysis
of such new all-photonic QRs to future work. In addition,
as the error correction is limited by the single-photon losses,
the performance of such a protocol may drastically increase
by using ancilla qubits or nonlinear interactions with atoms
to further improve the physical qubit BSM success rate. In
addition, the transversal nature of the static protocol should
allow its generalization to other stabilizer codes, hopefully
resulting in more efficient and more robust logical BSMs,
likely at the cost of a more demanding experimental state
generation.
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FIG. 4. Protocol for the deterministic generation of a logical Bell pair using matter qubits.
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APPENDIX A: EFFICIENT GENERATION OF THE
LOGICAL BELL STATE

To operate as a QR, we not only need to be able to per-
form logical Bell state measurements for the entanglement
swapping but we also need to efficiently generate the logical
Bell states encoded with tree graph states. An arbitrary-sized
logical Bell pair can be generated deterministically using a
few matter qubits, by using a variant of the generation pro-
cedures introduced in Refs. [42] or in [50]. We illustrate this
by adapting the generation procedure of Ref. [42] to produce
a logical Bell pair encoded with tree graph states of depth d,
following a given sequence based on four operations on matter
qubits: the emission of a photon maximally entangled with the
matter qubit Epy,, the Hadamard gate H, measurements in the
Pauli bases My, My, Mz, and the CZ gate. A logical Bell pair
of depth d with branching vector b= (bo, by, ...,by_1) is
produced using d + 1 matter qubits by the following sequence
(the operations are applied sequentially from right to left):

Mx 0,Mx.0,CZ0, 0,F (Qo, D)F (Q1, b). (A1)

Here, My o, corresponds to the measurement of qubit Q; in
basis A, CZg, o, corresponds to a CZ gate between qubits Q;

and Q;, and the sequence function F (Q;, l;) is defined such
that

F(Qi,b) = (Mz,0,Hp,Epn,0,CZg, 0, Gy)™,
with G; = (Mz.0,,,Ho,,, Epn.0..,CZ0,.0.,, Gi+ 1),
and Gd = (Eph,Q,H] )b"’l s

(A2)

where we have omitted the single-photon rotation for simplic-
ity. An illustration of this generation sequence is given for
b= (3,2,2)inFig. 4.

APPENDIX B: LOGICAL ENCODING WITH TREES

Here, we express the logical states |0y) and |1;), using a
tree logical encoding, introduced by Ref. [48].

A tree graph state |T}) is defined by a tree with branch-
ing vector b. By using the notations Bi = (bi, bis1, ..., ba-1),
with l;o = band I;d = 6, we can construct |7;) recursively:

Ty = ‘TB >’
I;) =105 ® |7, )

1>|)

|T,,) 0), + |1),

where here and in the following, we omit the normalization
factors.

The second line of Eq. (B1) expresses that a tree of depth
i with branching vector b= (bo, ..., bi—y) is composed of
a root qubit in state |+) attached to bo trees of depth i — 1
with branching vector b= by, ..., bi—1), with CZ gates.
|T~ ) is the same state as |T~ ) except that a Z operator has been
apphed on its root qubit i. The fourth line ends the recursion
to generate a tree of depth d.

We use the first recursion to express that the tree graph state
described by b, is a root qubit O attached to by tree graph states
of branching vector b, by CZ gate:

T 1), ®|b,+1) SR

®by = \®by
IT;) = 10)o ® |T;;,) +|1)0_®}T5]) , B2)
=100 ®IT) + 1) ®IT),
where we have used the simplifying notation |T') = |T} y®bo,

Using the construction method presented in Fig. 5, we log-
ically encode a physical qubit state |¢), = «|0), + B|1), =
(@ + B)I+), + (@ — B)|—), onto a graph state |T;) by per-
forming a CZ gate onto the physical qubit and the root qubit
of the tree and by measuring these two qubits in the X basis.
After the CZ gate operation, we obtain the state

CZIT) ®19), = 10)o ® IT)[(« + B)I+), + (a — B)|—))]
+1)o ® IT)[(e + B)I=), + (@ = B)I+),]
(B3)
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(a) (b) Bell state analyzer
Tree logical encoding \ Dety; Dety; Dety, D;t:H2

% ‘ .

Logical qubit

1
Single-photon meas:

FIG. 5. (a) Tree encoding of a qubit. Left panel: The target qubit
is attached to a tree via a CZ gate and then X measurements are
performed on the target qubit and the root qubit. Middle panel:
The resulting graph and (right panel) graphical notation used for a
tree-encoded logical qubit. (b) Optical setup that actively switches
between a two-photon BSM, which measures ZZ' unambiguously
and XX’ partially, and two single-photon X or Z measurements.
The two photons arrive in inputs 1 and 2. BS: beam splitter; PBS:
polarization BS; HWP: half wave plate (rotated by 45°); Det: single-
photon detectors.

132

After the measurement of the root “”’ and physiscal “p”
qubits in the |1) basis, we obtain the logical qubit |¢):

I4+) s 1400 = 10) = (@ + BIT) + (@ — BIT).  (B4)

For different outcomes, we can recover the same state by
applying first X, if the root qubit measurement outcome is
|—)o and then Z; if |—),, with Z;, X; the logical operations as
described in the main text.

The logical state, encoded onto the tree graph state is |¢) .
It follows that

1 _ 1 _
0), = —=(T) +IT))11), = —(T) — T)),
10}, ﬁﬂ ) +IT): 1) ﬁﬂ ) —1T))
[+ =1T) =), = IT),

with |T) = |7; ™. (B5)

Note that this logical encoding is compatible with indirect
Z measurements of qubits, for qubits at the first level and

J

deeper. Indeed, any K, for qubit v at the second level of the
initial tree or deeper stabilize both |T) and |T'), and thus any
logical state |¢) .

An alternative description of a logical code (which encodes
one logical qubit) is through its logical operators Z;, X, and
its n — 1 stabilizers, where 7 is the number of physical qubits
of the code. As stated before, for any physical qubit v at level 2
or deeper in the tree, the graph stabilizer K, is also a stabilizer
of the code. Therefore, there remains by — 1 stabilizers to find.
Since the X operator can be applied using each of the by first-
level qubits of the tree, we can rewrite it by denoting which
qubit we are using to apply this operator:

Xw=X [] 2o (B6)
weN,

From this, we can find the remaining by — 1 independent sta-
bilizers of the code, which are given by the products X; ;X; ;
for any pair of first-level qubits, i and ;.

APPENDIX C: REPLACING A LOGICAL MEASUREMENT
BY PHYSICAL MEASUREMENTS

In this section, we discuss why the measurement of logical
operators such as X; or Z, Z; , which are multiqubit operators,
can be replaced by many single-qubit or two-qubit measure-
ments. We begin by illustrating the problem with a minimal
example using two simple trees with branching parameters
b= (2) (depth-1 tree with only three physical qubits). In that
case, |T) = | + +). An arbitrary product state of two logical
qubits is

W) ) = w14+ + ++) + ' [+ 4+ ——)
+ou|— — ++) +vy|— — —=). (C1)

We need to do physical Bell measurements on pairs of
qubits taken from [ ) and [} ), and so to facilitate this, we
switch the order of qubits 2 and 3:

W)L = w4+ + +4) + |+ — +=) + o=+ —+) +ov]— = ——)
= (ui' + o)) G™) + 1 DY) + (ui’ = o)UY ) + [y DI ™))
+ (v + o)) e T) + YY) + (o' = wv) ()Y ™) + 1Y 7)o ). (C2)

In this case, Z,Z, = Z,Z,Z3Z4 and we have two op-
tions for X, X/: X, X/ = X;X, or X, X, = X3X,. In the static
protocol, we reconstruct the outcomes for these logical mea-
surements from measurements of Z,7Z,, X\ X2, Z3Z4, X3X4,
which are obtained from physical Bell measurements. An
ordinary linear-optical Bell measurement on two photons only
successfully yields the outcome for both ZZ" and XX’ with
probability 1/2. For concreteness, we can account for this
by assuming that the XX’ measurement only succeeds if ZZ’
yields +1. As an example, suppose the physical Bell measure-
ments yield the following outcomes: Z;Z, — +1, X; Xo —

[
+1, Z3Z4 — —1, X3X4 — failed. The logical two-qubit state
collapses:

) ly) — 16Dy, (C3)

On the other hand, the outcomes of the logical operators in this
case are Z, Z; — —1 and X; X, — +1, and the corresponding
logical Bell state is

W), =ITT) = |TT) = |+ +++) — |- — =), (C4)

which remains the same if we switch the ordering of qubits
2 and 3. Obviously, this is not the state we obtained above
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in Eq. (C3). A similar finding occurs regardless of what the
outcomes of the physical measurements are. This can be seen
from the fact that every term in Eq. (C2) combines two Bell
states with the same XX’ eigenvalue, so that only one of these
eigenvalues is needed to uniquely identify a single term in this
state. Thus, so long as one of the physical Bell measurements
succeeds, the state collapses to a single term, and it does not
get projected onto a logical Bell state. The only way to project
onto a logical Bell state is to measure Z;Z,Z3Z, without
separately measuring Z,Z, and Z3Z. If we performed a true
717,757, measurement and obtained outcome —1 (and also
obtained X; X; — +1), then the state would instead collapse
to

W)L = 1)y ™) + 1y )T
=l++++) —-——-), (©5)

which is the desired logical Bell state. Thus, if the goal is
to project the system onto a logical Bell state, physical Bell
measurements on pairs of qubits do not suffice.

However, in practice, the photonic qubits are generally
absorbed by the photon detectors and the question of the
outcome state becomes irrelevant since it cannot be used again
after a measurement. Therefore, we consider that a set of
single-qubit or two-qubit measurements is a measurement of
a logical operator if the following conditions are met. The
set of measurements should have the same outcome proba-
bilities as the logical operator measurements, and the total
state after the set of measurements should be a product state
[Wour) ® [Wqubie) Where [Wqypit) corresponds to the measured
qubit (or qubits) subspace and |Wq,) corresponds to the state
of the other qubits that were not measured. After the set of
single- or two-qubit measurement, the state |W,,) should be
the one expected by the measurement of the logical operator.
In other words, a set of many single-qubit and two-qubit
measurements is a measurement of a logical operator if it acts
the same way on the qubits outside of the logical subspace.

To see that this is the case here, we keep track of the
qubit subpsace state while progressively realizing the mea-
surements of the protocol. When all but one qubit in the
operator is correctly measured, we see that the measurement
of the logical operator is mapped onto this last physical qubit
measurement. Let us take Z; and a general quantum state
[0)2 | Wour) + |1)2|Wou), as an illustration. This can be easily
generalized to two-qubit measurements. The qubit subspace
is described by the logical operators and by the stabilizers:

7z =[] 2.

UEC()

XL = XU 1_[ Zw,VU € C(), (C6)

weC,

K, =X, [] 2. vuev\C.
reN,

where the stabilizers are for all the vertices of the tree, except
the first-level qubits.

After one qubit measurement, say Z, with outcome m =
+1, we can recover the new qubit subspace by following these
rules:

(1) For all the operators S that act on qubit v trivially (with
identity operator I,), S is not modified by the measurement.

(2) For all S containing Z, (i.e., the measurement basis),
S is converted into §" = mZ,S (similar to S except that Z, is
replaced by ml,).

(3) The remaining operators contain X, (if there are op-
erators containing Y,, we can multiply them by a previous
operator containing Z,). If there is only one such operator, we
can replace it by mZ,, stating that after the measurement the
qubit is in state |0), or |1),. Considering destructive measure-
ments, we can also discard this operator since the measured
photon does not exist anymore. If there is more than one
operator containing X,, we denote them by Sy, Sy, ..., Sn.
S0, S0S1, S0S2, ..., , SoSn is another set of independent stabi-
lizers where only Sy contains X,, (the others contain /). After
the measurement we replace Sy by mZ, and we keep the other
one containing /,,.

We illustrate this with a three-qubit linear clus-
ter state: |¢¥) =|4+0+)+|—1-—), stabilized by
{(X\ 2,13, Z, X275, 1 Z,X3}. If we measure the second qubit in
Z, and apply these rules, we obtain as expected the stabilizers
{mX\ L1z, ml1 Z,1s, mI11,X3} corresponding to the states
[¥m=1) = | +0+) or |Yu=—1)=1]—1-). If we perform
an X, measurement on the second qubit instead of a Z,
measurement, the stabilizer set is {mZ,1,Z3, X1 L X3, ml1 X;15},
which corresponds to |[¥,,=1) =|0+0)+ |14+ 1) or
[Ym=—1) =10 — 1) + |1 = 0).

Going back to the calculation of Z;, on a tree [see Eq. (C6)]
and measuring all but one qubit v’ in the first level, we obtain

Zy = ( 1_[ mv)Zu’s
veCo\{v'}

X=Xy [] Zw.
weCy
K. =X []z. Vu € V\(L1 U L2), (C7)
reN,
K, = myX, 1_[ Z,, Yv € Co\v/, Yu € C,,
reC,
Ki=27sX, [ ] 2. Yu € Cy,
reC,

where m, is the measurement outcome of Z,, and we used Ly,
to denote the set of all the qubits at level k (e.g., £; = Cp).
After all of these measurements, we observe that Z; is indeed
mapped onto the measurement of the last physical qubit (up to
a sign that depends on the previous measurements). Therefore,
when all the other qubits were correctly measured, the effect
of this last Z,, physical measurement yields the same effect
as Z; on the remaining qubits outside of the logical qubit
subspace.

APPENDIX D: ERROR ANALYSIS
1. Error of a two-photon BSM

The following error and performance analyses depend on
the type of two-photon linear optical setup. We use the one
presented in Fig. 5(b), which allows one to actively switch
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between single-photon measurements and a two-photon BSM
that measures ZZ’ unambiguously and XX’ only when ZZ' —
1. Note that the static protocol only requires the central part
of this setup (in yellow), and the active switches and single-
photon measurements can be removed.

We assume that the photons in each tree have a single-qubit
depolarization error rate ¢, i.e., E[Dy] = ¢, for W = X or Z.
It corresponds to a depolarization channel:

E(p) = (1 — £4)p + %”’(pr +YpY +ZpZ). (D)

with g5 = %8.

We now derive the Bell state measurement error for two
qubits from these two trees.

The error induced on the density matrix that characterizes

the two qubits is therefore
Eol'(p)=(—ea)l —ea)p
&
+(- Sd)?d(XPX Y YpY +ZpZ)

&d ) / /oy 1t
+(1—€d)?(XpX +Y' oY +27ZpZ")

2

W e {X,Y, 2}
W e XY Z}

2

48 WW pW'W, (D2)

where we use the prime to distinguish operators acting on the
second qubit.

To understand better the effect of the depolarization on a
BSM, we summarize here the effect of the Pauli operators on
the stabilizers ZZ' and X X":

X(XX)HX = XX';
Y(XX)Y = —-XX';

Z(XXZ = —XX';

XZZ)X = -77',
Y(ZZ)Y = -77/,
2(ZZVZ = 77/,

(D3)

and similarly for X', Y’, Z'.

For these different terms, if only one Pauli matrix is
applied, this leads to at least one error in the stabilizer mea-
surement (ZZ' or XX') of the Bell state measurement. The
error on the two qubits can compensate themselves only if the
Pauli matrices applied are the same for the two qubits (i.e., for
XX'pX'X,YY ' pY'Y,or ZZ' pZ'Z). The term in £ o £'(p) that
is errorless is therefore [(1 — e4)(1 — &4) + %] p, correspond-
ing to an error rate of

4 2
EBSM = 28d — % = 38(1 — 8).

(D4)

For the XX’ measurement of the BSM only, due to the
way these measurements are realized, both the ZZ" and the
X X’ measurements should succeed, as otherwise it leads to an
indeterminate result, so

E[Dxx] = eBsm.- (D5)

For the ZZ' measurement, however, an error on the XX’
parity measurement does not lead to an error on the ZZ’' mea-

surement. So the error should be smaller than eggy. If there
is only one single-qubit error (a single Pauli matrix applied
on p), this does not lead to errors if this Pauli matrix is either
Z or Z'. For errors applied on two qubits, as in the first case,
there is no error if the Pauli matrices applied on the two qubits
are the same, but also if the XY’ or Y X’ matrix is applied. The
errorless term in that case is therefore

€ 2e,42
E[Dzz] = epsm — 2(1 — )= — =L
3 9
2
= 3EBSM- (D6)

Similarly to Eq. (10), the error probability for the complete
logical BSM is

E[ Mo = EMaz ]+ (1 = E[Mzz ) E[ M, ]
(D7)

2. Logical qubit error analysis

We denote by E[A], the error probability of the event A. The
error correction is based on the fact that the error of indirect
measurements can be reduced thanks to a majority vote on
indirect measurements.

Therefore, for the error correction to work, the error of
an indirect measurement must be lower than that of a direct
measurement E[Zy ;] < E[Dw]. Consequently, we should
rely preferably on the indirect measurement outcomes:

E[Mwi] = PrlZy x| Mw ,1E[Tw ]
+ (1 = Pr[Zy « IMw x DE[Dw k],

where Pr[A|B] denotes the conditional probability of A
given B:

(D8)

Pr[Z,
Pr[Zy « | Mw.i] = i i)

= — D9
Pr[ My «] (b9)

since Pr[My x|Zw ] = 1.
The qubits situated at the last level k = d can only be
directly measured:

E[Mw.q] = E[Dw al.

In addition, the error of an indirect measurement Zy j is
given by

(D10)

by
> PriZw s, mIE[Tw k., myl, (D11

mg=1

S[IW,k] = m

where Pr[Zy x, my] denotes the probability of having m; indi-
vidual indirect measurements Sy, that have succeeded:

b

Pr{Ziy k., m] = ( ¢

m

)

)Pr[Sw,k]’”“(l — Pr[Sw )™ (D12)

and E[Zy x, my] is the error probability for my indirect indi-
vidual measurements. We use a majority vote to reduce this
error. Given that m, indirect measurements are successful, an
error still occurs in the majority vote if more than half of the
indirect measurements (m,/2) are faulty:
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my

ElTwiml= )
i=[my/2]

my—1

i=mg/2

=1 ‘ L
> (’" )S[SW,k]l(l—e[sw,m =i m, even.
l

(":S)S[Sw,k]"(l — ESwiD™ ™, myodd

(D13)

For the even case, the sum goes only up to m; — 1 because we cannot do better than randomly removing one result and return

to the odd case.

1
ElSwal =Y _EDg (1 = ED 0y D'

i=0

b ) 4
2 ( ?1>5[MW””2]"(1 — E[My 2],
j=0,

(D14)

i+ jodd

In this equation, we only consider odd numbers of errors
because in a parity measurement even numbers of errors com-
pensate each other.

For logical measurements, we therefore have

E[Myx; | = ElZzz 0], (D15)
b p ‘ .
E[Mzz]= ) (i())g[/\/lzz’,l]l(l—E[MZZ/,l])hO_l,
il==1[12]
(D16)

where the index i takes odd values (i = 1 [2]), since even
numbers of parity errors lead to a correct global parity mea-
surement outcome.

APPENDIX E: DYNAMIC PROTOCOL

In the dynamic protocol, the type of measurements per-
formed depends on the measurement outcome of the parent
qubits. We need to discriminate the three BSM outcomes:
complete (c), partial (p), and failed (f). Now the ZZ' mea-
surement probabilities at level k are given by

PriMzz ]l =n" + (1 — n*)Pr[Izz k. f1. (B1)

Indeed, if the measurement is complete or partial (with prob-
ability n%), ZZ' is measured but if the measurement has
failed (f), we should indirectly measure it with probability
Pr[Zzz i, f1. If a two-photon BSM fails (f) or is partial (p),
it is impossible to recover indirectly the XX’ components.
But in that case, the indirect ZZ’' measurement at level k can
also be performed with higher probability via two single-qubit
measurements, which have success probabilities Pr[Z; ;] and
Pr[Zz x] and errors £[Zz ] and E[Z 1], respectively. There-

J

2
PrSzacl="2 Y

m© + m®P + m) = brs1
m©, m® m >0

(

fore,

Pr[Zzz k., f1=Pr[Zzz i, pl = Pr[Zz,1Pr[Z 241,
ELzz k. f1 = ElLzz k. Pl
= E[Lz1 ) = E[Lz i ]) + E[Lz1)(A = E[Lz 1])

= ELz i) + E[Zz k] — 261 L2 1 )E[ L7 1]
(E2)

Here again, we consider that a combination of two errors
would yield the correct outcome. For a complete measure-
ment, the indirect ZZ' measurement probability is again given
by

Pr(Zzz 4, cl = 1 — (1 — Pr[Szz ™. (E3)

The error analysis in the case of a complete measurement
is more complicated since we need to keep track of all the
measurement probabilities at each level.

Because we are performing BSMs on the child qubits, once
again we have three different outcomes: complete (both X X’
and ZZ' are measured), partial (only ZZ’), or failed (no out-
come). For a successful BSM on child qubits denoted B and
B’ atlevel k 4+ 1, BSMs are also performed on all the pairs of
child qubits of B and B’. An indirect measurement of the qubit
at level k thus requires that all the children of B are measured
at least in ZZ'. An individual indirect measurement of ZZ’ at
level k, Szz k., in this setting thus requires the successful BSM
of B and B’ (with probability Pge) and the measurements of
ZZ' on all the child qubits of B and B’. Let us denote by
m©, mP and m'") the number of complete, partial, and failed
BSMs performed on the child qubits of B and B’. A successful
indirect measurement of ZZ' (with or without errors) occurs
with probability:

Pasm(m©, m®, mD)(Pr{Zy 4 421Pr[Zz 2 )™ . (E4)

Here 1%/2 signifies that the BSM on B and B’ has to succeed, the sum goes through all the possible BSM outcomes on the
child qubits, and (Pr[Zz, k+2]Pr[I’z,k+2])m(/) accounts for the fact that when the BSMs fail, these child qubits should be indirectly

measured.
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The error of an individual indirect measurement with m‘“) complete and m? partial measurements is given by

m© )
c i 1—i
E[Szz kM), m E E E E egen’ (1 — €gen)
i=0 j=0 k=0 =0,
i+j+k+1=1[2]

m© o
x (. )EIMzz ki, V(1 — EIMzz 142, )"

J
m® Pk
“\ ElMzz 2. PY (1 = E[Mzz 142, P))
) o
“\ ElMzz k42, f1' (1 = ElMzz 442, f]) - (E5)
The individual indirect error probability is therefore
ElSzz: ] = > Pasm(m'), m?, m)ES 7 lm ), mP mD, c]. (E6)

m© 4+ mP 4+ ;) = biy1
m©, m®»), mH >0

If m; indirect measurements are performed, the error is therefore

my,

ElTzz ilmi, 1= )

m . .
< l.k)g[szz'.k, cl'(1 = E[Szz ke, D™, my odd,

i=[my /2]
m—1 e — 1
=2 ( ‘ )5[Szz,k, I'(1 = ElSzz > D)™, my even. (ET)
i=my /2 !
Finally, we find the error probability of an indirect measurement to be
1 i
ELzz ks cl = | kZ: Pr[Zzz: i, mi, c1€1Zzz i |my, cl, (EB)
with
b
Pr(Zzz k, mi, c] = ( k>Pr[Szzgk, ™ (1 = PrSzz k. )™, (E9)
My
and
by
Pr{Izz 4.l = Y PrlIzzpmp. el =1— (1= Pr[Szz 4. c])* (E10)

mk:I

APPENDIX F: “LOSS-ONLY” ADAPTIVE PROTOCOL

It is also worth noting that in principle, it is also possible
to realize a loss-tolerant BSM by performing single-qubit
measurements on all qubits below level 1, but this strategy
fails to enable error correction. Indeed, in that case, the child
qubits of a complete BSM (Z,Z, and X, X,/) at level 1 need

(

to be measured in the Z basis to measure X, X/ so that they
cannot provide an indirect Z,Z,, measurement of the qubit at
level 1, which is necessary for error correction of Z, Z; . Error
correction is therefore impossible with this protocol and the
improvement of loss tolerance is relatively small compared to
the dynamic protocol.
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