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Fast high-fidelity single-qubit gates for flip-flop qubits in silicon
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The flip-flop qubit, encoded in the states with antiparallel donor-bound electron and donor nuclear spins in sil-
icon, showcases long coherence times, good controllability, and, in contrast to other donor-spin-based schemes,
long-distance coupling. Electron spin control near the interface, however, is likely to shorten the relaxation time
by many orders of magnitude, reducing the overall qubit quality factor. Here, we theoretically study the multilevel
system that is formed by the interacting electron and nuclear spins and derive analytical effective two-level
Hamiltonians with and without periodic driving. We then propose an optimal control scheme that produces fast
and robust single-qubit gates in the presence of low-frequency noise without relying on parametrically restrictive
sweet spots. This scheme increases considerably both the relaxation time and the qubit quality factor.
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I. INTRODUCTION

Quantum computation promises to revolutionize the sci-
entific world, from fundamental science to information
technology [1]. In the ongoing race to build the first fully
operational quantum computer, donor spin qubits in isotopi-
cally purified silicon (28Si) [2] are promising candidates due to
their long coherence times and their integrability with metal-
oxide-semiconductor structures [3–9]. Donor spins present
coherence times reaching around half a minute (half a second)
for the nuclear (electron) spin [10,11], up to hours in bulk
ensembles [12], and a high degree of controllability [13–15].
However, the implementation of two-qubit gates has proven
to be quite challenging. Most of the approaches for two-qubit
operations are based on Kane’s seminal proposal [16], where
the qubit coupling is achieved via the exchange interaction
between donor-bound electrons. The use of such short-range
interactions requires near-atomic precision in the placement
of the donors [17,18]. And, even though recent works have
shown more relaxed requirements on the precision of donor
placement [19–21], long-distance coupling is still challenging
without inserting intermediate couplers [22–24].

A recent proposal by Tosi et al. [25] circumvents the pre-
cise donor placement limitation by using the electric dipole,
created when the electron is shared between the donor and
the Si/SiO2 interface, as a long-range coupling between a
pair of qubits, each encoded in the flip-flop states of the
donor-bound electron and donor nuclear spins. These qubits,
hereafter called flip-flop qubits, can be fully controlled by
microwave electric fields through hyperfine modulation. A
constant (dc) electric field induces qubit rotations about the
z axis, while an oscillating (ac) electric field implements x
and y gates. The gate control of the electron near the inter-
face, however, may cause flip-flop relaxation via spontaneous
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phonon emission, as shown in Ref. [26], resulting in a relax-
ation time T1 approximately eight orders of magnitude shorter
than in bulk [27], and a few orders of magnitude shorter than
the T1 predicted in Ref. [25]. This lowers the qubit quality
factor (T1/τ with τ being the qubit gate time), which gives
the number of available qubit operations before coherence is
lost. A high-quality factor is one of the main requirements for
fault-tolerant quantum computing [28]. One way of improving
the quality factor would be to increase T1 by reducing the
external magnetic field B0 [25]. However, the magnetic field
strength used in the experiments is usually between 0.4 T and
1.4 T . This is because the qubit readout via spin-dependent
tunneling [29] requires the qubit Zeeman splitting to be larger
than ∼5kBTe, which is the thermal broadening of the electron
reservoir at temperature Te (usually between 100 mK and
200 mK) [30]. Therefore, lowering the magnetic field strength
is not desirable. Another approach would be to use optimal
control pulses that implement faster qubit gates in the mag-
netic field range used in the laboratory, which is the approach
we take here.

In this paper, we propose optimally designed control pulses
for fast high-fidelity single-qubit gates, i.e., arbitrary z and x
rotations, for flip-flop qubits. We use both time-independent
and time-dependent Schrieffer-Wolff (TDSW) transforma-
tions [31] to derive effective qubit Hamiltonians for both ac
and dc driving. The former, required to implement x rota-
tions, is studied in the strong driving regime using Floquet
perturbation theory [32]. With the analytical effective qubit
Hamiltonian, we are able to produce single-qubit gates that
are much faster and more robust than previous proposals, with
fidelities above 99.99%. Moreover, our scheme does not rely
on restricting parameters to operational sweet spots, like clock
transitions [25], allowing us, for example, to find fast gates for
different magnetic fields strengths, increasing the relaxation
time and the qubit quality factor considerably.

The paper is organized as follows. In Sec. II, we analyze
the flip-flop qubit system and derive a simplified Hamilto-
nian in the combined spin and orbital eigenbases. Then, in
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FIG. 1. Schematic of the flip-flop qubit system. A phosphorus
donor is embedded in 28Si at a depth dz from the interface with a
thin SiO2 layer. A top metal gate controls the position of the wave
function of the donor unpaired electron via an electric field Ez. The
electron orbit is quantized into a |d〉 state at the donor and a |i〉 state
at the interface. The wave functions of these states are schematically
shown in gray.

Sec. III, we introduce an effective qubit Hamiltonian with
no oscillating driving and use it to produce fast high-fidelity
z rotations. In Sec. IV, we use TDSW perturbation the-
ory (which is discussed in detail in Appendix A) to derive
an effective two-level Hamiltonian with oscillating driving
and, via Floquet perturbation theory, present analytical ex-
pressions for the resonance and Rabi frequencies, which are
used to produce fast high-fidelity x rotations. We conclude
in Sec. V.

II. SPIN AND ORBITAL HAMILTONIANS

The setup of the system follows the experimental proposal
from Ref. [25], where the wave function of the donor-bound
electron of a phosphorus donor (31P) embedded in isotopically
purified 28Si is controlled by a vertical electric field Ez applied
by a metal gate on top (Fig. 1). The donor is at a depth
dz from the interface with a thin SiO2 layer. The electron
(nuclear) spin S = 1/2 (I = 1/2) has a gyromagnetic ratio
γe/2π = 27.97 GHz/T (γn/2π = 17.23 MHz/T) and basis
states {|↑〉 , |↓〉} ({|⇑〉 , |⇓〉}). For an isolated 31P donor atom
in unstrained Si, the isotropic Fermi-contact hyperfine in-
teraction A in the nonrelativistic limit is proportional to the
probability amplitude |ψ (0, 0, dz )|2 of the unpaired electron
wave function at the nucleus. Under a large magnetic field B0

(B0(γe + γn) � A) along the z axis, the spin Hamiltonian is

Hspin = γeB0Sz − γnB0Iz + A	S · 	I, (1)

where Sz = h̄
2 (|↑〉 〈↑| − |↓〉 〈↓|) (Iz = h̄

2 (|⇑〉 〈⇑| − |⇓〉 〈⇓|))
is the z component of the electron (nuclear) spin operator.
The flip-flop states {|↑⇓〉 , |↓⇑〉} are effectively decoupled
from the other states. Consequently, our analysis is henceforth
focused on the Hilbert space spanned by the flip-flop states,
but all the numerical results reported in thispaper are obtained
keeping the full Hilbert space.

The shifting of the electron wave function by the electric
field Ez creates an electric dipole μd = d e, where e is the
electron charge and d is the distance between the center-of-

mass positions of the donor-bound (|d〉) and interface-bound
(|i〉) orbitals (see Fig. 1). Following Ref. [25], we can use
these two well-defined positions as two orthogonal quantum
states, and describe the electron orbital dynamics with a sim-
ple two-level Hamiltonian:

Horb = −d e �E

2h̄
τ id

z + Vt

2
τ id

x , (2)

where �E = Ez − E0 is the deviation of the vertical electric
field away from the ionization point E0 (electric field value
where the stationary electron charge is equally distributed
between |i〉 and |d〉), Vt is the tunnel coupling between the
orbital states |i〉 and |d〉, and τ id

z = |i〉 〈i| − |d〉 〈d|, τ id
x =

|i〉 〈d| + |d〉 〈i| are Pauli operators. In this paper, the qubit is
operated with electric field Ez near the donor ionization field
E0 or Ez < E0, where the valley splitting between the lower
|i〉 and upper |v〉 valley interface states is much larger than the
tunnel coupling Vt [25] and far from the anticrossing between
|d〉 and |v〉.

Given the hyperfine dependence on the electron position,
the hyperfine interaction A(E ) changes from the bulk value
A/2π ≈ 117 MHz to A ≈ 0 when the electron is fully dis-
placed to the interface. The electron gyromagnetic ratio also
differs from its value at the donor when the electron is con-
fined at the Si/SiO2 interface; the difference �γ can be up to
0.7% [25,33]. The orbital position dependence of these two
energies can be incorporated in the Hamiltonian by treating
them as projection operators in the orbital Hilbert space, i.e.,
A(|d〉 〈d|) and γeB0�γ |i〉 〈i|.

The total Hamiltonian combines the spin and
orbital degrees of freedom and, in the basis
{|g⊗↑⇓〉 , |g⊗↓⇑〉 , |e⊗↑⇓〉 , |e⊗↓⇑〉}, has the following
form:

H = −ε0

2
σzi + εz

2
σiz + �εz

4
(σiz + sin θ σxz + cos θ σzz )

+ A

8
(2σix − 2 sin θ σxx − 2 cos θ σzx

+ sin θ σxi + cos θ σzi ), (3)

where |g〉 (|e〉) is the ground (excited) eigenstate of the or-
bital Hamiltonian Eq. (2), ε0 =

√
(d e �E/h̄)2 + V 2

t and εz =
B0(γe + γn) are the orbital and Zeeman energy splittings,
�εz = B0γe�γ is the Zeeman energy shift when the electron
is at the interface, tan θ = Vt h̄/(d e �E ) is a mixing angle,
and σpq = τp ⊗ ζq is the Kronecker product of Pauli operators
with σzz = (|g〉 〈g| − |e〉 〈e|) ⊗ (|↑⇓〉 〈↑⇓| − |↓⇑〉 〈↓⇑|).

The Hamiltonian acquires a simpler form in the
basis formed by the orbital and hyperfine eigenstates,
{|∗〉 g ↑̃⇓, |∗〉 g ↓̃⇑, |∗〉 e ↑̃⇓, |∗〉 e ↓̃⇑}. In this basis, the spin
energy splitting is conditioned on the orbital state and is given
by εs(∓) = √

(A(1 ∓ cos θ )/2)2 + (εz + �εz (1 ± cos θ )/2)2,
where (−) and (+) corresponds to the orbital ground and
excited eigenstates, respectively. Owing to the orbital (ε0),
Zeeman (εz), and spin energy splittings being much larger
than the hyperfine interaction (A) and Zeeman energy shift
(�εz ), we neglect terms of the form η/ε where η ∈ {A,�εz }
and ε ∈ {ε0, εz, εs(∓)}. The simplified Hamiltonian in the basis
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{|∗〉 g ↑̃⇓, |∗〉 g ↓̃⇑, |∗〉 e ↑̃⇓, |∗〉 e ↓̃⇑} is

H̃ =

⎛⎜⎜⎜⎝
− ε0−εs(−)

2 + A cos θ
8 0 (A+2�εz ) sin θ

8 −A sin θ
4

0 − ε0+εs(−)

2 + A cos θ
8 −A sin θ

4
(A−2�εz ) sin θ

8
(A+2�εz ) sin θ

8 −A sin θ
4

ε0+εs(+)

2 − A cos θ
8 0

−A sin θ
4

(A−2�εz ) sin θ

8 0 ε0−εs(+)

2 − A cos θ
8

⎞⎟⎟⎟⎠. (4)

The flip-flop qubit is encoded in the two lowest-energy
eigenstates of the total Hamiltonian, which are approxi-
mately |∗〉 g ↓̃⇑ and |∗〉 g ↑̃⇓. The eigenenergies of the system
Hamiltonian are shown in Fig. 2(a). Note that the qubit states
{|0〉 , |1〉} are effectively {|g ↓⇑〉 , |g ↑⇓〉} for �E � 0 (θ ≈
0), which corresponds to fully displacing the electron to the
interface. Moreover, at |�E | � 0 (θ ≈ {0, π}) the electron
is fully displaced either to the interface or to the donor, and
as the flip-flop qubit is effectively decoupled from electric
fields, these are referred to as idling regions. Conversely, the

FIG. 2. (a) Energy-level diagram of the flip-flop system. The
flip-flop qubit is encoded in the two lowest-energy eigenstates, with
εff being the transition energy between the two qubit levels. More-
over, note that for Ez � E0 (�E � 0) the qubit states |0〉 and |1〉
are effectively equal to the states |g ↓⇑〉 and |g ↑⇓〉, respectively.
Similarly, for Ez � E0 (�E � 0) the excited levels are effectively
equal to |e ↓⇑〉 and |e ↑⇓〉. (b) The numerically calculated transition
energy εff (blue curve), where the kink in the curve near �E = 0
is the clock transition (reduced dephasing). The white dashed curve
overlaying the blue one is obtained with the analytical expression for
the effective flip-flop transition energy εff, Eq. (7), showing excellent
agreement with the numerical result. The system parameters used to
plot both figures are B0 = 0.4 T, Vt/2π = 11.44 GHz, d = 15 nm,
and �γ = −0.002.

electron must be displaced to the region around the ionization
point �E = 0 (θ = π/2) to implement any quantum gate.
This is also the region, however, where the qubit is most
sensitive to electrical noise and leakage. The latter can be re-
duced by applying slow-varying pulses to retain adiabaticity.
The main source of noise in this type of system is charge
noise, usually stemming from defects and electron traps at
the Si/SiO2 interface. Given that the qubit gates for donor
qubits take less than a microsecond, the charge noise is usu-
ally static within a single gate and, therefore, we can model
it as quasistatic noise. For this noise, Ref. [25] shows the
presence of clock transitions in the flip-flop transition energy,
i.e., regions where the transition is noise insensitive up to a
certain order. This is clearly shown in Fig. 2(b), where, for a
specific set of parameters, a second-order clock transition is
found at �E ≈ 0.4 kV m−1. However, as we will show in the
following sections, it is possible to implement robust rotations
that do not use the clock transition as an operating point. This
can soften experimental requirements and improve the quality
of gates at the same time.

Donor spin qubits are among the most coherent solid-state
quantum systems, and the flip-flop qubit is not expected to be
an exception [25]. Nonetheless, a theoretical description [26]
of the phonon-mediated relaxation of the flip-flop qubit shows
that when the electron is at the ionization point (�E = 0),
the flip-flop relaxation time T1 is a few orders of magnitude
shorter than what Ref. [25] predicts and around eight orders
of magnitude shorter than what was predicted for a P donor
in bulk silicon [27]. This can be counteracted, however, by
increasing the tunnel coupling Vt which, according to Tosi
et al.’s proposal [25], should be able to be tuned by at least
two orders of magnitude. Evidently, the ratio T (i)

1 /T ( j)
1 (i, j

referring to two different sets of system parameters) given by
[26]

T (i)
1

T ( j)
1

=
[

ε2
0

(
ε2

0 − (γeB0)2
)2

V 4
t (γeB0)3

](i)[
V 4

t (γeB0)3

ε2
0

(
ε2

0 − (γeB0)2
)2

]( j)

,

(5)
with ε0 =

√
(d e �E/h̄)2 + V 2

t , shows that increasing the tun-
nel coupling in (i) relative to ( j) and keeping the other
parameters equal does indeed increase the relaxation time of
(i) with respect to ( j). In the following sections, we show that
it is possible to implement fast high-fidelity single-qubit gates
with different magnetic field strengths and tunnel coupling
values, improving the qubit quality factor.

For the analysis and results reported in this paper, unless
stated otherwise, we use the same parameters reported in
Ref. [25]. Accordingly, the distance d is equal to 15 nm, and
�γ = −0.002.
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FIG. 3. (a) Example of a pulse using Eq. (6) with arbitrary pa-
rameters. The pulses (solid blue curves) in both panels have the
same ramp time tr/T = 0.1 (and same gate time T ) but different
values for ς . Note that for larger ς , the pulse slope of the region
between the inflection point and the plateau is lowered, which is
evidenced by the pulse first derivative curve (dashed red line). The
pulse first derivative curves in both panels are reduced in amplitude
for visualization purposes. (b) Estimated flip-flop qubit dephasing
rate, assuming electric field noise δEz,rms = 100 V m−1. In the region
around �E = 10 kV m−1 and also at �E ≈ 0.4 kV m−1 (clock tran-
sition), the qubit dephasing rate is at least two orders of magnitude
smaller than near the ionization point �E = 0.

III. Rz(φ) GATES AND EFFECTIVE HAMILTONIAN
WITHOUT OSCILLATING DRIVING

Qubit rotations about the z axis in the flip-flop system
are implemented by displacing the electron from an idling
point �Eidle (preferably near the interface where the hyperfine
interaction is effectively null) toward an operating point �Eop

in the region around the ionization point, parking there for
a certain amount of time, and then returning to the initial
point �Eidle. We consider two operating points, one at the
clock transition �E = 0.4 kV m−1 (as proposed in Ref. [25]),
and the other beyond the ionization point and closer to the
donor (�E = −12 kV m−1), both under the same magnetic
field strength, B0 = 0.4 T, and tunnel coupling, Vt/2π =
11.44 GHz. We also consider larger magnetic fields and
larger tunnel couplings, {B0 = 0.8 T,Vt/2π = 22.55 GHz}
and {B0 = 1.2 T,Vt/2π = 33.71 GHz}, both with operating
points closer to the donor, �E = −20 kV m−1 and �E =
−30 kV m−1, respectively. The operating points closer to the
donor produce high-fidelity gates but are not unique: any
operating point closer to the donor could also produce high-
fidelity gates. This is because in that region the flip-flop qubit
dephasing rate is much lower than near the ionization point.
As shown in Fig. 3(b), the dephasing rate in the region closer

to the donor is as low as or lower than the dephasing rate at the
second order clock transition. Now, if �Eop is too close to the
ionization point (�E = 0), the applied electric field must vary
slowly when approaching the fast dephasing region around
the ionization point to preserve adiabaticity and avoid leakage
to unwanted excited states. This can be accomplished with a
smooth pulse, a modified Planck-taper window function [34]:

�(t ) = ξ0 +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ f −ξ0

1+exp[ tr
t + tr

t−tr
]/ς

t0 < t < tr

ξ f − ξ0 tr � t � (T − tr )
ξ f −ξ0

1+exp[ −tr
t−T +tr

− tr
t−T ]/ς

(T − tr ) < t < T

0 t � t0 or t � T .

(6)

Here, t0 is the time at the start of the pulse, tr is the ramp time,
T is the gate time (T > 2tr), ξ0 is the value of the control field
at the start and end of the pulse, ξ f is the control field value at
the pulse plateau, and ς > 0 modulates the pulse slope such
that for ς > 1 it is decreased in the region between the pulse
inflection points and plateau, see Fig. 3(a). The latter is useful
for preserving the adiabaticity when the pulse plateau is in
a region in close proximity to excited states. For the control
of the donor electron position, we use ξ0 = �Eidle � 0 such
that the electron is at or near the interface and ξ f = �Eop

is the electric field magnitude that places the electron at the
operating point.

The amount of time the electron should remain parked at
the operating point to implement some desired qubit rotation
can be determined with an analytic effective Hamiltonian
in the qubit logical space. Noting that the off-diagonal el-
ements of the Hamiltonian Eq. (4) are smaller than the
diagonal ones, we use a TDSW transformation [31] (aka van
Vleck or quasidegenerate perturbation theory [35–37]; see
Appendix A) up to fourth order to diagonalize the Hamilto-
nian Eq. (4). We consider up to fourth order because we will
need an expression for the transition energy as precise as pos-
sible to find the optimum conditions to generate high-fidelity
Rx(φ) rotations with an oscillating magnetic field. Note that
the off-diagonal elements are non-negligible only near the
ionization point �E = 0 (θ = π/2), and in this region the
orbital-conditioned spin energy splittings are effectively equal
(εs(−) ≈ εs(+) ), which is assumed in the SW transformation.
The resulting effective Hamiltonian in the qubit space is
Hff = − 1

2εffσz (with σz = |0〉 〈0| − |1〉 〈1|) and the flip-flop
transition energy εff is given by

εff = εs(−) − A sin2 θ

(
�εz

8ε0
+ Aεs(−)

8�2
os

× A2ε0εs(−) cos θ

16�4
os

− A3ε2
0εs(−) sin2 θ

32�6
os

)
, (7)

where �2
os ≡ ε2

0 − ε2
s(−) . Figure 2(b) shows excellent agree-

ment between the analytical expression for the flip-flop
transition and the numerical result.

The magnitude of εff/2π in the idling region (�E � 1) is
on the order of GHz, therefore, to have an identity operation
when the electron is at the idling point �Eidle, we move
to a frame rotating with a frequency equal to the flip-flop
qubit precession frequency at the idling point. Therefore, the
evolution operator in this frame is Ũ (t, t0) = U †

0 (t, t0)U (t, t0).
Here, U (t, t0) = T {exp ( − i

∫ t
t0

H (τ )dτ )} is the evolution

165302-4



FAST HIGH-FIDELITY SINGLE-QUBIT GATES … PHYSICAL REVIEW B 106, 165302 (2022)

operator with the time-dependent Hamiltonian given by
Eq. (3) and U0(t, t0) = exp(−iH0(t − t0)) is the evolu-
tion operator with the time-independent Hamiltonian H0 ≡
H (�Eidle ) = − 1

2εs(−) (�Eidle)σz, where the constant �Eidle is
chosen such that θ ≈ 0 in Eq. (3). Then the donor electron
displacement from the idling point to the operating point
implements a rotation about the z axis with an angle (phase
accumulated) given by

φ = −
∫ t

t0

(εff(τ ) − εs(−) (�Eidle ))dτ. (8)

We use Eq. (8) and the average gate fidelity to numerically
find the ramp and gate times for the control pulse Eq. (6) that
produces a high-fidelity z rotation about some target angle.
The average gate fidelity is defined as [38]

F = 1

m(m + 1)
(Tr[ŨŨ †] + |Tr[U†Ũ ]|2), (9)

where m is the dimension of both evolution operator Ũ
and target operation U . We find that using ξ0 = �Eidle =
60 kV m−1 and ξ f = �op = 0.4 kV m−1, i.e., the idling point
is near the interface and the operating point is at the clock
transition, a π z rotation can be generated in T = 70.35 ns
with a ramp time tr = 4.3 ns and ς = 70. The fidelity of this
rotation in the absence of noise is 99.999%. This is similar
to the result for a π z gate shown in Ref. [25] (it is not ex-
actly equal because we use a slightly different control pulse).
Alternatively, using the same idling point but a different op-
erating point closer to the donor [39], �Eop = −12 kV m−1,
we can implement a π z rotation with the same fidelity (in
the absence of noise) as before but with a much shorter gate
time T = 23 ns (tr = 0.9 ns and ς = 1). Figure 4(a) shows
that with the same pulse parameters, we can implement fast
high-fidelity z rotations by any arbitrary angle.

Charge noise is the main source of decoherence in quantum
devices based on isotopically purified silicon (28Si), and it can
be caused by nearby charge fluctuators [40]. Other sources of
noise, e.g., Johnson-Nyquist noise and high-frequency noise
due to voltage noise at the metallic gates, are expected to be
negligible or can be effectively suppressed via hardware mod-
ifications like inserting low-temperature attenuation along the
high-frequency lines, which ensures the metal gates are well
thermalized and substantially attenuates the noise of the room-
temperature electronics [25]. Charge noise typically has a
power spectral density that varies approximately as 1/ f over
a large range of frequencies f . In the flip-flop system, charge
noise introduces electrical fluctuations that affect the control
electric field Ez(t ). The tunnel coupling Vt can also be affected
by overlap variations between the donor and interface wave
functions due to fluctuations on the interface potential land-
scape, which can be caused by gate voltage noise or other
sources of charge noise. Owing to the large low-frequency
component of the noise spectrum, a general approach for
handling this type of noise influence on the system is to treat
the voltage noise and the averaged collective effect of the
nearby charge fluctuators as quasistatic perturbations, i.e., the
noise is assumed constant during the gate time. Accordingly,
we calculate the gate infidelity 1 − F , Eq. (9), of some of
the gates reported above for different strengths of the electric

FIG. 4. (a) Infidelity, 1 − F Eq. (9), in the absence of noise, and
gate times for z rotations about different angles. The pulse parameters
used are ξ0 = 60 kV m−1, ξ f = −12 kV m−1, tr = 0.9 ns, and ς =
1. The infidelity for each rotation is on the order of 10−6, and the rela-
tive variation between rotation infidelities is solely due to fluctuations
in the convergence of the numerical search algorithm for increasing
integration times. Finally, note that Rz(−φ) ≡ exp[iφσz/2] is equiv-
alent to eiπ Rz(ϕ) ≡ eiπ exp[−iϕσz/2], where ϕ ≡ 2π − φ. (b) Upper
part: Infidelity of π z rotations as a function of various electric field
noise strength values δEz,rms and fixed tunnel coupling noise δVt,rms.
The tunnel coupling noise and pulse parameters for each gate are
given in Table I. Lower part: Change in infidelity �1−F between
gate infidelity obtained with only electric field noise δEz and gate
infidelity obtained with noise on both electric field δEz and tunnel
coupling δVt .

field noise δEz,rms and a fixed tunnel coupling noise amplitude
δVt,rms. The latter is estimated from the simulation data for
Vt as a function of the top metal gate voltage Vr presented in
Fig. 2(g) of Ref. [25]. We assume a 10 μV rms noise [25,41]
in Vr to estimate δVt,rms. The upper part of Fig. 4(b) shows
π z-rotation infidelities averaged over the strength of the qua-
sistatic electric field and tunnel coupling noises by sampling
random perturbations δEz and δVt (linearly added to �E (t )
and Vt , respectively) over uniform distributions with range√

3[−δEz,rms, δEz,rms] and
√

3[−δVt,rms, δVt,rms]. The average
is taken over 200 samples for each value of δEz,rms, ranging
from 0.05 kV m−1 and 19.95 kV m−1, and 200 samples for

165302-5



CALDERON-VARGAS, BARNES, AND ECONOMOU PHYSICAL REVIEW B 106, 165302 (2022)

TABLE I. System and pulse parameters for each infidelity curve
in Fig. 4(b). For each curve, the stated average gate fidelity F is
calculated assuming electric field noise δEz,rms = 100 V m−1 and
tunnel coupling noise δVt,rms indicated in this table.

Rz(π )(α) Rz(π )(β ) Rz(π )(γ ) Rz(π )(δ)

B0 (T) 0.4 0.4 0.8 1.2
Vt/2π (GHz) 11.44 11.44 22.55 33.71
�Eop (kVm−1) 0.4 −12 −20 −30
tr 4.3 0.9 0.9 0.8
ς 70 1 1 1
δVt,rms/2π (MHz) 2.7 2.7 3.3 3.5
T (ns) 70.35 23 12.36 24.04
F (%) 99.95 99.994 99.992 99.993

the value of δVt,rms in Table I associated to each z rotation.
The lower part of Fig. 4(b) presents the change in infidelity
�1−F when only electric field noise is taken into account. This
shows that the impact of the tunnel coupling noise on the gate
infidelity is, on average, an order of magnitude lower than the
estimated infidelity when only electric field noise is consid-
ered, e.g., if 1 − F is on the order of 10−4 with only electric
field noise, then including the tunnel coupling noise in the
calculation would modify 1 − F on the order of 10−5 or less.
Now, in the particular case of the flip-flop system, Ref. [25] es-
timates that the rms amplitude of the quasistatic electric field
noise affecting the system along the z axis is ∼100 V m−1.
In Fig. 4(b), the first curve Rz(π )(α), which has the clock
transition as the operating point, presents a ∼99.95% fidelity
at δEz,rms = 0.1 kV m−1 and δVt,rms/2π = 2.7 MHz, and a
gate time of T = 70.35 ns. The overall fidelity, however, can
be bumped up by choosing an operating point even closer
to the donor. For example, Rz(π )(β ) in Fig. 4(b) is gener-
ated by a pulse Eq. (6) with an operating point closer to
the donor ξ f = �Eop = −12 kV m−1 and has a 99.994% fi-
delity under realistic noise amplitudes δEz,rms = 0.1 kV m−1

and δVt,rms/2π = 2.7 MHz, and a much shorter gate time
T = 23 ns. Fast high-fidelity gates can also be produced
with a stronger magnetic field and an operating point closer
to the donor, e.g., the third curve in Fig. 4(b) Rz(π )(γ ) has
�Eop = −20 kV m−1 as the operating point and a magnetic
field B0 = 0.8 T; it has a 99.992% fidelity and a gate time
T = 12.36 ns at the noise amplitudes δEz,rms = 0.1 kV m−1

and δVt,rms/2π = 3.3 MHz, which is much shorter than the
gate with the clock transition as the operating point. Similarly,
for a magnetic field B0 = 1.2 T we predict π z rotations
with a 99.993% fidelity and a gate time T = 24.04 ns at

the noise amplitudes δEz,rms = 0.1 kV m−1 and δVt,rms/2π =
3.5 MHz. Finally, for each z rotation in Fig. 4(b), we find
that variations in the control pulse length of less than ±0.1 ns
have a negligible effect on the fidelity, but variations greater
than ±0.2 ns can reduce the fidelity by at least one order of
magnitude (see Appendix E for more details).

The use of an operating point closer to the donor results
in faster and high-fidelity z rotations because of the relative
magnitude and shape of the flip-flop transition energy εff as
it gets closer to the donor (see Fig. 2). In this region, the
magnitude of εff is larger than its value at the clock transition,
which speeds up the rotation [see Eq. (8)] and raises the qubit
quality factor. Also, its slope (∂�Eεff) decreases as it gets
closer to the donor and the time spent near the ionization point
is minimal, factors which combine to minimize the dephasing
errors. Another advantage of using smooth pulses and �Eop

closer to the donor is that fast high-fidelity z-] rotations can
be generated with rather low tunnel coupling values. In Ap-
pendix D, we show numerical results demonstrating that with
tunnel couplings of just a few GHz, it is possible to generate
fast high-fidelity Rz gates in the presence of noise. Moreover,
without the need of a clock transition, there is more freedom
to explore different sets of parameters that may lead to an
overall better qubit performance. This has a direct impact on
the relaxation time, since using an operating point closer to
the donor increases the magnitudes of both ε0 and T1 consider-
ably. For example, for B0 = 0.4 T and Vt = 11.44 GHz, using
�Eop = −12 kV m−1 as the operating point instead of the
clock transition �Eop = 0.4 kV m−1 increases the relaxation
time five orders of magnitude.

IV. Rx(φ) GATES AND EFFECTIVE HAMILTONIAN
WITH OSCILLATING DRIVING

The implementation of an x rotation about an arbitrary
angle [Rx(φ)] requires the use of an oscillating electric
field to drive transitions between the flip-flop qubit states.
The electric field, then, is given by �E (t ) = �E (dc)(t ) +
E (ac)(t ) cos(ωt + ϕ), where �E (dc)(t ) [E (ac)(t )] is the dc (ac)
amplitude of the electric field. The use of an oscillating field
incorporates the following energy term to the system Hamil-
tonian [Eq. (3)]:

H (ac)
orb = −εac

2
cos(ωt + ϕ)(sin θ σxi + cos θ σzi ), (10)

where εac = d e E (ac)/h̄. In the basis {|∗〉 g ↑̃⇓, |∗〉 g ↓̃⇑,

|∗〉 e ↑̃⇓, |∗〉 e ↓̃⇑}, the simplified Hamiltonian Eq. (4) with
ac driving has the following form:

H̃ (ac) =

⎛⎜⎜⎜⎝
−(ε0−εs(−) )

2 + �(t ) cos θ 0 �
(+)

(t ) sin θ − 1
4 A sin θ

0 −(ε0+εs(−) )
2 + �(t ) cos θ − 1

4 A sin θ �
(−)

(t ) sin θ

�
(+)

(t ) sin θ − 1
4 A sin θ

(ε0+εs(+) )
2 − �(t ) cos θ 0

− 1
4 A sin θ �

(−)
(t ) sin θ 0 (ε0−εs(+) )

2 − �(t ) cos θ

⎞⎟⎟⎟⎠, (11)

where �(t ) = 1
8 A − 1

2εac cos(ωt + ϕ) and �
(±)

(t ) = 1
8 (A ±

2�εz ) − 1
2εac cos(ωt + ϕ). Let δε be the smallest difference

between diagonal energy levels from different diagonal blocks
in H̃ (ac). Then, given that the nonoscillating elements and
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the oscillating amplitude εac in the off-diagonal blocks of the
Hamiltonian Eq. (11) are smaller than δε, we can use the time-
dependent SW (TDSW) transformation to find an analytical
effective Hamiltonian in the qubit space. However, as further
explained in Appendix A, the driving frequency at resonance
is comparable in magnitude to the dominant energy scales
in the Hamiltonian and, as a result, a system of differential
equations must be solved to find the transformation matrix
[42]. This is in contrast to other approaches found in the
literature [43,44], where the transformation matrix is found
by solving a system of algebraic equations.

Given that the coupling between the orbital ground and
excited eigenstates is only non-negligible near the ionization
point where θ ≈ π/2, in the TDSW transformation we neglect
the Hamiltonian elements ∝ cos θ . Moreover, the general so-
lution to the system of differential equations that gives the
TDSW transformation matrix eS(t ) also contains terms ∝ eiε0t ,
whose prefactors are set to zero owing to the requirement that
S(t ) should be time independent in the absence of oscillating
driving (εac = 0). The effective ac-driven Hamiltonian in the
qubit space is, therefore, given by

H (ac)
ff = 1

2

3∑
j=1

[(�x,0 + �x, j cos j (ωt + ϕ))σx

− (�y, j−1 cos j−1(ωt + ϕ)) sin(ωt + ϕ)σy

− (εff,0 + εff, j cos j (ωt + ϕ))σz], (12)

where �x,i, �y,i, and εff,i are given in Appendix B. We
can go a step further and use Floquet perturbation the-
ory [32] to derive the effective Hamiltonian in the rotating
frame and obtain analytical expressions for the Rabi fre-
quency and resonance frequency. The Floquet method, in
short, transforms a time-dependent Schrödinger equation of
a periodically driven finite-dimensional Hamiltonian H(t )
into a time-independent Schrödinger equation of an infinite-
dimensional Floquet Hamiltonian HF defined by [32,43]

〈α′m′|HF |αm〉 = mωδα′αδm′m +
∞∑

n=−∞
〈ψα′ |H(n)|ψα〉δm′,n+m,

(13)
where |ψα〉 with α = 1, . . . , dH (dH is the Hilbert space
dimension) is an arbitrary basis of the Hilbert space and
H(n) are the Fourier components of the Hamiltonian, H(t ) =∑∞

n=−∞ H(n)einωt . In our case, the diagonal elements of
the Floquet Hamiltonian HF , obtained from applying the
Floquet transformation to Eq. (12), form degenerate pairs
when ω = −εff,0 − εff,2/2. For each of these pairs, the cor-
responding subspace is weakly coupled to the other diagonal
elements and, therefore, it can be treated perturbatively using
a time-independent SW transformation. To first-order, SW
perturbation theory gives an effective 2 × 2 Floquet Hamil-
tonian,

H̃F = 1

2

( −� �Re−iϕ

�Reiϕ �

)
, (14)

where �R = 1
8 (4�x,1 + 3�x,3 − 4�y,0 − �y,2) and

� = 1
2 (2εff,0 + εff,2 + 2ω). If � = 0, then the qubit is

being driven at resonance and, therefore, the resonance and

Rabi frequencies are ωres = −εff,0 − εff,2/2 and �res = |�R|,
respectively. This result is exactly equal to the one obtained by
neglecting the diagonal oscillating terms in the Hamiltonian
and applying RWA. The effective Floquet Hamiltonian
Eq. (14) is, therefore, in a rotating frame defined by
U = exp(−iωt σz ).

The amplitude of the oscillating field, E ac, should not be
too large that it leads to leakage to higher states, nor should
it be too small that the gate time becomes too long. We want
a simple expression that can be used to tune E ac to produce
fast high-fidelity x rotations. We can use the the ratio between
the energy coupling logical states to higher states and the
energy gap between those same states. This ratio should be
�1 to prevent leakage when using the smooth pulses in-
troduced in the previous section. In the rotating frame, the
flip-flop Hamiltonian with ac driving with electric field near
or at the ionization point (�E = 0) presents small energy
gaps between the logical states |∗〉 g ↑̃⇓ and |∗〉 g ↓̃⇑ and
the higher state |∗〉 e ↓̃⇑. On one hand, the coupling energy
between |∗〉 g ↑̃⇓ and |∗〉 e ↓̃⇑ does not depend on E ac and
is much smaller than their energy gap, and thus undesired
transitions are highly unlikely. On the other hand, the cou-
pling energy between |∗〉 g ↓̃⇑ and |∗〉 e ↓̃⇑ does depend on
E ac and can lead to leakage. We need analytic expressions
for the E ac-dependent coupling energy and the energy gap
between |∗〉 g ↓̃⇑ and |∗〉 e ↓̃⇑. We can get those analytic
expressions using H̃ (ac) Eq. (11) in the rotating frame with the
approximation ωres ≈ εff. We use this approximation since the
effective flip-flop transition energy εff Eq. (7) is, by far, the
dominant term in ωres and, in contrast to the Rabi frequency,
the correcting terms for the resonance frequency obtained
with TDSW and Floquet theory are much smaller than εff.
After some simplifications, we find the following expression
for the ratio between the |∗〉 g ↓̃⇑− |∗〉 e ↓̃⇑ coupling energy
and energy gap:

εac sin(θ )

4(ε0 − εff )
= R, (15)

where we set the ratio equal to R with 0 < R < 0.5. Depend-
ing on the system parameters, one can try different values for
R and use Eq. (15) to find the value for E ac that would produce
fast high-fidelity x rotations.

We find it convenient to use the same parameters {ς =
1000, ςac = 2, tr = 1, R = 0.23} in all the calculations for x
rotations presented in Figs. 5(a)–5(c) and Appendix C. The
large value for ς suitably decreases the dc pulse slope in
the region between the pulse inflection points and plateau of
the control pulses, �E (t ) and E (ac)(t ),that produce the desired
x rotation (ϕ = 0). Hereafter, all the parameters for the ac
pulse (E (ac)) are labeled (ac). For the dc pulse, we use the
same idle point that was used in the previous section �Eidle =
60 kV m−1. The ac pulse always starts at E (ac)(t = 0) =
0 kV m−1 with a ramp time given by t (ac)

r = (T − 2tr )/ρ
with ρ = 2.1, which ensures that the drive amplitude E ac

is nonzero only when the electron is at the operating point.
We use Eq. (15), the analytical expressions for the reso-
nance ωres ≈ εff and Rabi �res frequencies, and the objective
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FIG. 5. Infidelity maps and average gate times of Rx (π/2) gates for different magnetic field strengths: (a) B0 = 0.4 T, (b) B0 = 0.8 T,
(c) B0 = 1.2 T. The pulse operating point (tunnel coupling) is on the horizontal (vertical) axis of each infidelity map. We use two pulses, given
by Eq. (6), one for the dc component [dashed blue curve in (d)] of the electric field and one for the ac component [solid red curve in (d)], the
pulse parameters corresponding to the latter are labeled (ac). All dc (ac) pulses start at ξ0 = 60 kV m−1(ξ (ac)

0 = 0 kV m−1) and have ς = 1000
and tr = 1. The ac ramp time is given by t (ac)

r = (T − 2tr )/ρ, with ρ = 2.1 being a scale factor, and all ac pulses have ςac = 2. Each point
in the fidelity map is the result of averaging 100 samples taken from a uniformly distributed noise in the range

√
3[−δEz,rms, δEz,rms] with

δEz,rms = 100 V m−1. For the ac pulse, ξ
(ac)
f is easily obtained by solving Eq. (15) with R = 0.23. The plots to the left of each infidelity map

depict the average gate time (horizontal axis) under different values of the tunnel coupling (vertical axis). (d) Electric field dc amplitude �E
(dashed blue curve) and ac amplitude E (ac) (solid red curve) pulse shapes used to implement Rx (π/2)(α) in (e). (e) Upper part: Infidelity of
π/2 x rotations as a function of various electric field noise strength values δEz,rms and fixed tunnel coupling noise δVt,rms. The tunnel coupling
noise and pulse parameters for each gate are given in Table II. Lower part: Change in infidelity �1−F between gate infidelity calculated with
only electric field noise δEz and gate infidelity calculated with noise on both electric field δEz and tunnel coupling δVt .

function

�(T ) =
∣∣∣∣mod

[∫ T −tr

tr

�res(t )dt, 2π

]
− φ

∣∣∣∣ (16)

to find the corresponding gate time T . Here, φ is the target ro-
tation angle, and mod is the modulo operation. This procedure
gives a full set of parameters which produces high-fidelity x
rotations with the ac Hamiltonian in the dc eigenbasis.

Figures 5(a)–5(c) show the infidelity maps for π/2 x ro-
tations for three different magnetic field strengths (0.4 T,
0.8 T, 1.2 T) commonly used in the laboratory and average
gate times corresponding to different tunnel coupling values.
The infidelities are averaged over the strength of a qua-
sistatic noise by sampling a random perturbation δEz, which
is linearly added to �E (t ), over a uniform distribution in
the range

√
3[−δEz,rms, δEz,rms] with δEz,rms = 100 Vm−1. In

Figs. 5(a)–5(c) we see that with an external magnetic field of
(i) 0.4 T (ii) 0.8 T (iii) 1.2 T and �E = 0, a Vt less than (i)
11.35 GHz, (ii) 22.55 GHz, (iii) 33.8 GHz leads to an average
fidelity less than (i) 99.4%, (ii) 98.9%, (iii) 99.7% for noise
level δEz,rms = 100 Vm−1. In the upper part of Fig. 5(e), we
present the gate infidelities of three π/2 x rotations, each with
different magnetic field strength, for different strengths of the
electric field noise δEz,rms and a fixed tunnel coupling noise
amplitude δVt,rms. The system and pulse parameters for these
three gates are given in Table II. The control pulse shapes for
�E (t ) and E (ac)(t ) that are used to implement Rx(π/2)(α) in
Fig. 5(e) are shown in Fig. 5(d). In contrast to the infidelity
maps in Figs. 5(a)–5(c), the average gate infidelity in Fig. 5(e)
is obtained by sampling random perturbations δEz and δVt

over uniform distributions with range
√

3[−δEz,rms, δEz,rms]
and

√
3[−δVt,rms, δVt,rms], respectively. The infidelity average
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TABLE II. System and pulse parameters for each infidelity curve
in Fig. 5(e). For each curve, the stated average gate fidelity F is
calculated assuming electric field noise δEz,rms = 100 V m−1 and
tunnel coupling noise δVt,rms indicated in this table. The ac ramp time
is the same for each gate and is given by t (ac)

r = (T − 2tr )/2.1.

Rx (π/2)(α) Rx (π/2)(β ) Rx (π/2)(γ )

B0 (T) 0.4 0.8 1.2
Vt/2π (GHz) 12.5 24.5 34.5
�Eop (kVm−1) 0 0 1.5
tr 1 1 1
ς 1000 1000 1000
ς (ac) 2 2 2
R 0.38 0.4 0.4
E (ac) (kVm−1) 0.55 0.94 0.62
δVt,rms/2π (MHz) 2.9 3.3 3.5
T (ns) 23.86 23.42 24.23
F (%) 99.98 99.98 99.96

is taken over 200 samples for each value of δEz,rms, and the
same amount of samples for the value of δVt,rms given in
Table II. The lower part of Fig. 5(e) shows the change in
infidelity �1−F that happens when only electric field noise is
taken into account. Similarly to the z rotation case in Sec. III,
�1−F shows that including tunnel coupling noise in the gate
infidelity calculation produces a change that is at least an order
of magnitude lower than the infidelity value obtained with

only electric field noise. Lastly, for each x rotation in Fig. 5(e),
we find that shifts in the control pulse length of less than ±1 ns
can at most reduce the gate fidelity by an order of magnitude
(see Appendix E for further details).

The numerical results presented in Fig. 5 show that our
pulses can easily generate fast high-fidelity x rotation for
any magnetic field strength and a wide combination of tun-
nel coupling energies and electric field values. Moreover, in
Appendix C we present an extended version of the maps pre-
sented in Fig. 5, which show that fast high-fidelity x rotation
can be implemented with large tunnel coupling energies and
electric fields not necessarily close to the ionization point. The
use of large tunnel coupling energies can also increase the
relaxation time by a few orders of magnitude, even more if the
best operating point is not near the ionization point like it is in
the case with B0 = 1.2 T and Vt > 34 GHz [see Fig. 6(c)].

V. CONCLUSIONS

We have presented control schemes to produce fast high-
fidelity z and x rotations for flip-flop qubits in silicon. Using
both time-independent and TDSW transformations and Flo-
quet perturbation theories, we derived analytical expressions
for the effective qubit Hamiltonian in the presence or absence
of periodic driving. With these analytical expressions, we
numerically optimized the parameters of a modified Planck-
taper window function such that it implements high-fidelity
single-qubit gates in the shortest possible time. We proposed

FIG. 6. Extended infidelity maps and average gate times corresponding to the maps in Fig. 5 of the main text.
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fast z and x rotations with fidelities around 99.99% in the
presence of realistic noise levels of 0.1 kV m−1, and gate
times much shorter than previously reported. Moreover, since
our method does not rely on sweet spots (clock transitions),
we presented fast high-fidelity single-qubit gates with mag-
netic fields stronger than what was previously proposed and
closer to what is commonly used in the laboratory. Finally, the
flexibility of our method allows the implementation of single-
qubit gates with relaxation times and qubit quality factors five
(one) orders of magnitude larger than those corresponding to
clock-transition-based z rotations (x rotations).
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APPENDIX A: TIME-DEPENDENT SCHRIEFFER-WOLFF
PERTURBATION THEORY

Before introducing the TDSW perturbation theory, we
briefly review the time-independent version of it [31,45].

Let us consider a general Hamiltonian H = H0 + H′,
where H0 is purely diagonal and H′ = H1 + H2 is the per-
turbation. Assuming that the basis states of H are divided
into two weakly interacting, energetically well-separated sub-
spaces (diagonal blocks), then H1 is block diagonal with zeros
as diagonal elements and H2 is strictly block-off-diagonal.
The SW transformation aims to decouple these two subspaces,
transforming H into a block-diagonal Hamiltonian H̃. In
principle, H̃ can be obtained via a unitary transformation:
H̃ = e−SHeS , where S is a block-off-diagonal anti-Hermitian
operator. In most of the cases, however, S is not known and
must be constructed. This is done by first substituting eS in
the unitary transformation with its series expansion, obtaining

H̃ =
∞∑
j=0

1

j!
[H0 + H1, S]( j) +

∞∑
j=0

1

j!
[H2, S]( j), (A1)

with [H, S](m+1) = [[H, S](m), S] and [H, S](0) = H. Since
the block-off-diagonal unitary transformation eS must be close
to unity due to the weakly interacting subspaces, then S is
small and can be expanded as a power series in the pertur-
bation. Finally, each order of S is determined successively
by setting the block-off-diagonal part of H̃ equal to zero and
solving it order by order.

In TDSW, the block-off-diagonal anti-Hermitian operator
S is time dependent and, therefore, the unitary transformation
that, in principle, can be used to obtain H̃(t ) is now given by

H̃(t ) = e−S(t )H(t )eS(t ) + i
∂e−S(t )

∂t
eS(t ). (A2)

A time-dependent version of Eq. (A1) is obtained by plugging
the series expansion of eS into Eq. (A2),

H̃ =
∞∑
j=0

1

j!
[H0 + H1, S]( j) +

∞∑
j=0

1

j!
[H2, S]( j)

− i
∞∑
j=0

1

( j + 1)!
[Ṡ, S]( j), (A3)

where Ṡ(t ) = ∂t S(t ). Given that S(t ) is block-off-diagonal,
the block-diagonal part H̃diag of H̃ contains the terms [H0 +
H1, S]( j) with even j and the terms [H2, S]( j) and [Ṡ, S]( j)

with odd j. The same goes for the block-off-diagonal part H̃off

but with odd j instead of even j and vice versa:

H̃off =
∞∑
j=0

1

(2 j + 1)!
[H0 + H1, S](2 j+1)

+
∞∑
j=0

1

(2 j)!
[H2, S](2 j)

− i
∞∑
j=0

1

(2 j + 1)!
[Ṡ, S](2 j), (A4)

H̃diag =
∞∑
j=0

1

(2 j)!
[H0 + H1, S](2 j)

+
∞∑
j=0

1

(2 j + 1)!
[H2, S](2 j+1)

− i
∞∑
j=0

1

(2 j + 2)!
[Ṡ, S](2 j+1). (A5)

The expansion of S = ∑
j S j as a power series in the per-

turbation permits to solve H̃off = 0 order by order. Here, S j is
of jth order in the perturbation. It is not immediately obvious,
however, what order Ṡ j is. Since the driving frequency ω is
expected to characterize the time evolution of S j , then we can
assume that Ṡ j ∼ ωS j [43]. Now, in the particular case of the
flip-flop qubit, for most values of �E the driving frequency ω,
the spin energy splitting εs, the hyperfine interaction A, and the
driving amplitude energy εac are much smaller than the orbital
splitting ε0. However, around the ionization point, where the
fastest x(y) gates are obtained, ω ∼ εs ∼ ε0 and, therefore, ω

cannot be treated as a perturbation. As a result, Ṡ j and S j are
both of jth order in the perturbation.

The order-by-order expansion of H̃off = 0 gives a differ-
ential equation for each Sj matrix operator. The first few
equations are

[H0, S1] = −H2 + iṠ1,

[H0, S2] = −[H1, S1] + iṠ2,

[H0, S3] = −[H1, S2] − 1
3 [H2, S1](2) + iṠ3.

(A6)

These equations, apart from determining the operator S(t ) in
the transformation, can also be used to simplify Eq. (A5). The
first few terms, then, that form the effective block-diagonal
Hamiltonian H̃ = ∑

j H̃ j are

H̃0 = H0,

H̃1 = H1,

H̃2 = 1
2 [H2, S1],

H̃3 = 1
2 [H2, S2],

H̃4 = 1
2 [H2, S3] − 1

4 [H2, S1](3).

(A7)
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APPENDIX B: ANALYTICAL EXPRESSIONS FOR THE
ELEMENTS OF THE AC-DRIVEN HAMILTONIAN

The elements of the ac-driven Hamiltonian Eq. (12) in the
main text have the following form:

�x,0 = A sin2 θ

8
(
ε2

0 − ε2
s(−)

)(
−�εzεs(−) + A

(
2ε2

0 − ε2
s(−)

)
2ε0

−A2ε2
0 (5Aε0 − 8�εzεs(−) ) sin2 θ

32
(
ε2

0 − ε2
s(−)

)2

)

+ Aε2
ac sin4 θ

64
(
ε2

0 − ε2
s(−)

)3

(
�εzεs(−)

(
9ε2

0 − ε2
s(−)

)
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APPENDIX C: EXTENDED INFIDELITY MAPS

Figure 6 shows extended versions of the infidelity maps
and gate times for π/2 x rotations shown in Figs. 5(a)–5(c) of
the main text.

APPENDIX D: GATE INFIDELITY FOR Z ROTATIONS
WITH WEAKER TUNNEL COUPLINGS

We show in Fig. 7 gate infidelities and gate times for the
same z rotations from Fig. 4(b) in the main text. We calculate
the gate infidelities and gate times using lower tunnel coupling
values than those used in the main text. The gate infidelity
is the result of averaging 100 samples for δEz taken from a
uniform distribution in the range

√
3[−δEz,rms, δEz,rms] with

δEz,rms = 100 Vm−1. These results show that using an oper-
ating point �Eop closer to the donor instead of near to the
ionization point generates fast high-fidelity z rotations even
for tunnel coupling values of a few GHz.

APPENDIX E: GATE INFIDELITY SENSITIVITY TO
PULSE LENGTH PERTURBATION

Here we show the effect of pulse overshoot/undershoot
on the infidelities of the gates presented in the main text.
The gate infidelities shown in Fig. 8 were obtained with the
same system and pulse parameters of the z rotations and x
rotations given by Tables I and II in the main text. In each
case, to calculate the gate infidelity, we average 100 sampled
for δEz (electric field noise) taken from a uniform distribution
in the range

√
3[−δEz,rms, δEz,rms] with δEz,rms = 100 Vm−1.

For z rotations, variations in the pulse length of ±1 ns can
lead to an infidelity increase between one and three orders of
magnitude. For x rotations, on the other hand, variations in
the pulse length of ±2 ns can lead to an infidelity increase of
approximately one order of magnitude.
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FIG. 7. Gate infidelities and gate times for the z-rotations (a) Rz(π )(α), (b) Rz(π )(β ), (c) Rz(π )(γ ), (d) Rz(π )(δ), presented in Fig. 4(b). We
use the same system and pulse parameters, except for the tunnel coupling, given in Table I.

FIG. 8. Gate infidelities for (a) z rotations presented in Fig. 4(b) and (b) x rotations presented in Fig. 5(e), obtained after perturbing their
respective gate times by �t .
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