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Photonic Greenberger-Horne-Zeilinger (GHZ) states serve as the central resource for a number of important
applications in quantum information science, including secret sharing, sensing, and fusion-based quantum
computing. The use of photon-emitter entangling gates is a promising approach to creating these states that
sidesteps many of the difficulties associated with intrinsically probabilistic methods based on linear optics.
However, the efficient creation of high-fidelity GHZ states of many photons remains an outstanding challenge
due to both coherent and incoherent errors during the generation process. Here, we propose an entanglement
concentration protocol that is capable of generating perfect GHZ states using only local gates and measurements
on imperfect weighted graph states. We show that our protocol is both efficient and robust to incoherent noise
errors.
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I. INTRODUCTION

Photonic Greenberger-Horne-Zeilinger (GHZ) states play
a central role in a number of quantum information applica-
tions, including quantum sensing [1–3], secret sharing [4], and
fusion-based quantum computing [5]. However, since photons
do not interact with one another directly, creating such highly
entangled states is a very nontrivial task; it in fact remains
one of the most challenging problems in photonic quantum
computation and communication.

One way to generate photon-photon entanglement is
through quantum interference and measurement [6–8]. Knill
et al. [6] showed that it is possible to entangle photons proba-
bilistically using only linear optical elements such as beam
splitters and single-photon detectors, an approach that has
been implemented in experiments [9,10]. However, because
the approach is probabilistic, the likelihood of successfully
creating a multiphoton entangled state is exponentially small
in the number of photons [6,11]. Although the success rate can
be improved by recycling failure states and using Bell states
as building blocks [12–14], the resource requirements of this
approach continue to limit the size and fidelity of GHZ states
that can be produced in this way.

A possible solution to these challenges is to employ entan-
glement generation methods that are deterministic, at least in
principle. One such approach is to create all of the needed
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entanglement during the photon emission process [15,16].
For example, Lindner and Rudolph proposed to use photon
emission combined with single-qubit gates on the emitter
to generate one-dimensional photonic cluster states [17], an
approach that was subsequently demonstrated experimentally
[18,19]. More recently, protocols for generating more com-
plex multiphoton entangled states, e.g., two-dimensional (2D)
cluster states [20–24], repeater graph states [25–27], and tree
graph states [26,28,29], have been proposed based on similar
principles and experimentally demonstrated [30–34]. In fact, a
general algorithm for finding protocols that produce any target
graph state [35] from a minimal number of quantum emit-
ters has recently been developed [36]. However, to generate
photonic graph states with low error, this approach requires
nearly perfect photon emission from quantum emitters, which
remains technologically challenging.

This limitation can be overcome using a second deter-
ministic approach to generating multiphoton entangled states.
Instead of creating all the entanglement during emission,
this approach leverages nonlinearities to directly implement
entangling gates between photons. Taking advantage of the
nonlinearity induced by strongly coupled cavity-QED sys-
tems [37,38], a photon-photon controlled-Z (CZ) gate can
be achieved between two incoming photons scattered by the
cavity-QED system [39,40]. Given access to such CZ gates,
photonic graph states can be generated on demand via time-
delayed feedback [41]. In experiments, the phase on photonic
qubits induced by the nonlinearity from the cavity-QED sys-
tem is not yet fully controllable [38,42–46]. Instead of a
CZ gate, the gate that is applied to the photonic qubits is
a controlled-phase (CP) gate [47–52]. Unlike CZ gates, CP
gates are not maximally entangling when the phase is not π .
When the CZ gates in the graph state generation procedure are
replaced by CP gates, the resulting state is called a weighted
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graph state [53–57]. This then leads to the question of whether
or not such states are still useful; in particular, is it possible to
efficiently concentrate their entanglement [58–63] to obtain
high-fidelity GHZ states?

In this paper, we show that it is indeed possible to
efficiently extract high-fidelity GHZ states from weighted
graph states using only local gates and measurements.
Entanglement concentration methods for imperfect graph
states that maximize the entanglement in the final state
have been studied extensively [60–62,64–69]. However,
such works usually focus on generating small maximally
entangled states. In our case, we propose a general pro-
tocol that can create GHZ states of any number of
qubits. Our approach is also distinct from entanglement
purification techniques [70–77], which require a large number
of copies of the imperfect state, as well as the application
of entangling gates between copies. In contrast, our protocol
uses only single-qubit measurements and single-qubit gates
applied to a single copy of a one-dimensional (1D) weighted
graph state to construct a perfect GHZ state with fewer qubits.
This approach can be realized in existing photonic systems
with low experimental cost.

This paper is organized as follows. In Sec. II, we present
our protocol for generating photonic GHZ states from 1D
weighted graph states using single-qubit measurements and
gates. We give the explicit example of generating a three-
qubit GHZ state. In Sec. III, we investigate how possible
experimental errors will affect our protocol. Specifically, in
Sec. III A, we consider coherent errors on the CP gates, while
in Sec. III B, we focus on depolarizing errors on the weighted
graph state. In Sec. IV, we summarize our main results.

II. ENTANGLEMENT CONCENTRATION
WITH LOCAL MEASUREMENTS

A graph state of N qubits is defined based on a graph with
a set of vertices (V ) and a set of edges (E ):

|ψ〉 =
∏

α,β∈V,{α,β}∈E

CZα,β |+〉⊗N , (1)

where |+〉 is the +1 eigenstate of the Pauli-X operator, and
the CZ gate is defined by

CZα,β := |0〉〈0|(α) ⊗ I (β ) + |1〉〈1|(α) ⊗ Z (β ), (2)

where I and Z are the identity and Pauli-Z operator, respec-
tively. In the presence of coherent errors, the CZ gate becomes
a CP gate:

CPα,β := |0〉〈0|(α) ⊗ I (β ) + |1〉〈1|(α) ⊗ S(φα,β )(β ), (3)

where S(φα,β ) is

S(φα,β ) =
(

1
eiφα,β

)
(4)

in the computational basis with arbitrary φα,β .
In the graph state generation procedure, if the CZ gates

are replaced by CP gates (2), the state becomes a weighted
graph state (WGS). The weights of edges inside the WGS
correspond to the phases of the CP gates (φα,β). In general,
the weights of different edges can be different. In this paper,

FIG. 1. (a) Uniform WGS with weights φ. (b and c) The entan-
glement concentration protocol: (b) Start with a 1D uniform WGS
containing 2n + 1 qubits and perform optimized single-qubit mea-
surements M̂φ [see Eq. (5)] on all even qubits. (c) After performing
single-qubit measurements, apply a Pauli-Z rotation on qubit number
2n + 1. The final graph state is a (n + 1)-qubit GHZ state.

we focus on the case in which the edges have the same weight
φα,β = φ, and we refer to this type of WGS as a uniform WGS.
An example of such a state is presented in Fig. 1(a), where the
qubits form a linear 1D uniform WGS with weight φ.

Here, we consider a 1D uniform WGS with 2n + 1 qubits.
We show that by performing single-qubit measurements on
all even sites (n qubits in total) and single-qubit rotations
on the other qubits, the entanglement can be concentrated to
probabilistically generate a (n + 1)-qubit GHZ state, which
is local unitary equivalent to a star-shaped graph state (see
Fig. 1). Our protocol has the following two steps:

(1) Measure the qubits on even sites of the 1D uniform
WGS with 2n + 1 qubits [Fig. 1(b)] in the following basis:

M̂φ := Rz(φ)X̂R†
z (φ), (5)

where Rz(φ) = exp(−iφẐ/2) is a Pauli-Z rotation, φ is the
edge weight of the WGS, and X̂ is the Pauli-X operator. The
projective measurement basis states are given in Eq. (A2).
The Kraus operators for each single-photon measurement are
shown in Appendix A.

(2) If the measurement outcomes are all −1, the concen-
tration succeeds. We then apply a Pauli-Z rotation Rz[n(π −
φ)] on one of the surviving qubits to turn the final state
into a (n + 1)-qubit GHZ state. Otherwise, the concentration
process failed, and we are left with a less-entangled state.

We note that the protocol succeeds only if all the measure-
ment outcomes are −1. Therefore, the success probability is

Ps,n = 1

2n
| sin(φ/2)|2n. (6)

We stress that when the phase φ = π , the uniform WGS
turns into a 1D cluster state, and the measurement in (5) in
step 1 changes into a Pauli-X measurement. In this case, there
is no failure as the “failure” outcomes can be corrected by
single-qubit gates on other qubits, and our protocol converts a
1D cluster state to a GHZ state deterministically. It should be
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FIG. 2. The success probability of constructing the three-qubit
GHZ state from a five-qubit uniform WGS. Here, the horizontal
red dashed line marks the 1/32 probability of getting a three-qubit
GHZ state using linear optical methods. When φ = π , the success
probability is unity (not shown in the plot).

noted that there exist schemes that produce GHZ states from
perfect 1D cluster states using fewer measurements [78,79].
However, these more efficient methods do not apply when
starting from a WGS. Therefore, in the rest of our paper, we
focus on the case φ �= π .

In the following, we discuss an explicit example: We gen-
erate a three-qubit GHZ state from a five-qubit uniform WGS.
According to our protocol, we measure qubit 2 and qubit 4
in the M̂φ basis. When our protocol succeeds, the other three
qubits are in the state

|ψ3〉 = 1√
2

(|000〉 + ei2φ |111〉), (7)

which can be turned into a GHZ state by applying a single
Pauli-Z rotation Rz(φ) on any of the three qubits. In this ex-
ample, the success probability is given by Eq. (6) with n = 2,
which is shown in Fig. 2. Compared with linear optics-based
methods for generating GHZ states, for which the success
probability of constructing the three-qubit GHZ state starting
from single photons is 1/32 (red dashed line in Fig. 2) [11,12],
Fig. 2 shows that starting from a five-qubit uniform WGS and
employing our protocol is more efficient over a wide range of
weights φ (φ > π/2). Furthermore, we stress that as long as
the weights of the WGS are nonzero, there will be a nonzero
probability for our protocol to succeed.

Before we move on, we comment on the implementation
of the photonic CP gates in realistic experiments. Such gates
are implemented either directly using linear optics or indi-
rectly by interfering photons with quantum emitters to first
create emitter-photon entanglement and then photon-photon
entanglement upon measurement of the emitter. The weights
φα,β of emitter-photon CP gates reported in experiments span
a wide range of values. These weights are highly sensitive to
emitter-photon couplings and to detunings relative to the emit-
ter transitions. However, accurate control of the weight has
been demonstrated through interaction with a quantum dot or
Rydberg atom emitter, where the resulting weights range from
0 to π depending on the photon detuning [38,42–46]. On the
other hand, in the case of direct photon-photon gates imple-
mented via linear optics, the weights depend on other factors.
As discussed in Ref. [80], for example, we can change the
weight by sweeping the duration of the incoming pulse or by
changing the time difference between the two-photon pulses

[47]. The resulting CP weights range from 0 to ∼0.55π ,
corresponding to weakly entangled final states. Regardless of
which method is used to create photon-photon entanglement,
our protocol can concentrate entanglement so long as there is
entanglement shared between the photons (φ > 0). Moreover,
our protocol enjoys a higher success probability compared
to the direct, linear-optics entanglement generation approach
when φ > π/2.

Apart from the weight φ, the success probability of the
protocol is also affected by the detector’s efficiency, η. The
overall success probability is proportional to η.

III. NOISE IN THE PROTOCOL

In this section, we consider the robustness of our protocol
to the presence of noise. As demonstrated in Refs. [38,42–
46], the photon-photon gates implemented in experiments can
achieve a large range of phases; however, precisely controlling
the phase is demanding, and coherent errors in the gener-
ated WGSs are common. On the other hand, the polarization
mixing of photons during their emission causes the photonic
qubits to suffer from depolarization errors as well [81,82].
Therefore, in this section, we study two types of errors: co-
herent errors in the weights of the given uniform WGS and
incoherent errors that occur during the construction of the
uniform WGS.

In our protocol, a single measurement on one of the
qubits in the WGS only affects its nearest neighbors (see
Appendix A). Therefore, we first focus on the example of
constructing a two-qubit GHZ state (a Bell state) starting from
a three-qubit linear WGS to understand the effect of noise
on a single measurement. We find the optimal measurement
basis that maximizes the entanglement between the nearest
neighbors of the measured qubit to the extent possible. We
show this explicitly by calculating the concurrence of the two
unmeasured neighbors. Concurrence is a well-known entan-
glement measure for two qubits [83–86], but to the best of
our knowledge, there does not exist a natural generalization
of concurrence for n-qubit systems, where n > 2. Thus, for
n > 2, we instead calculate correlation functions to quantify
the entanglement. In particular, to show that our entangle-
ment concentration protocol continues to work well for larger
system sizes even in the presence of noise, we calculate ZZ
correlation functions on multiple pairs of qubits in target GHZ
states containing up to 16 qubits. We also compute the fidelity
relative to a perfect GHZ state for states of up to nine qubits.

A. Coherent error

So far, we have restricted our attention to uniform WGSs.
However, due to experimental errors, the CP gates can have
different phases (φα,β). The created photonic WGS may not
be uniform. In this subsection, we consider the performance
of our protocol when there are coherent errors on the two
weights of a three-qubit WGS (φ1,2 �= φ2,3). We also consider
the impact of errors on the concentration of larger GHZ states
containing up to 16 qubits.

To check whether a GHZ state can still be prepared from
a three-qubit WGS with coherent error, we numerically op-
timize the concurrence of the outer two qubits after the
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FIG. 3. Constructing a two-qubit entangled state from a three-qubit uniform WGS with coherent error that causes the weights to differ:
φ1,2 �= φ2,3. (a) The concurrence of the resulting two-qubit state when our protocol succeeds. (b) The success probability Ps of our protocol.
(c) Concurrence (blue) of the two-qubit state after a successful measurement in our protocol in the special case of a three-qubit WGS where
φ1,2 is fixed to 0.55π and φ2,3 can vary from 0.3π to 0.9π . For comparison, we also show the concurrence of a two-qubit WGS with weight
φref = Max(0.6π, φ2,3) (orange).

measurement of the middle qubit by adjusting the measure-
ment basis (M̂φ) of the latter. The concurrence of a given
two-qubit mixed state ρ is defined as [85]

C(ρ) = max(λ1 − λ2 − λ3 − λ4, 0), (8)

where λ1, λ2, λ3, and λ4 are the singular values of the matrix√
ρ
√

ρ̃ with

ρ̃ = (Y1 ⊗ Y2)ρ∗(Y1 ⊗ Y2). (9)

ρ∗ is the complex conjugate of the density matrix ρ in the
computational basis. We find that the concurrence is maxi-
mized when the measurement is M̂φ′ with phase φ′ = (φ1,2 +
φ2,3)/2 in Eq. (5).

Note that when φ1,2 �= φ2,3, the state after the measurement
is not a maximally entangled state. In Fig. 3(a), we plot the
concurrence of the two-qubit state after our protocol. When
φ1,2 = φ2,3 or φ1,2 = −φ2,3, the concurrence can reach 1. The
latter case is consistent with a previous finding regarding
entanglement concentration on WGSs with opposite-phase CP
gates [87,88]. Our protocol targets the situation in which the
CP gate is close to a CZ gate but has systematic phase shifts
away from a perfect CZ. Therefore, in Fig. 3(b), we consider
the success probability of our protocol when φ1,2 and φ2,3 are
in the range of 0 to π . We can see that as the entangling power
of the CP gate decreases, i.e., φ1,2 and φ2,3 decreases to 0, the
probability to get a highly entangled state decreases as well.

In Fig. 3(c), we focus on the case in which the CP weights
are centered at ∼0.6π (corresponding to the approximate
value of the photon-photon correlations in Ref. [80]). We
compare the concurrence of the state prepared by our protocol
[blue line in Fig. 3(c)] with a two-qubit WGS generated by
a CP gate with phase φref = max(0.6π, φ2,3) [orange line in
Fig. 3(c)]. We notice that there is a region, especially when
φ2,3 ∼ 0.55π , where our protocol improves the resulting en-
tanglement compared to directly applying a CP gate with φref.
Note that even if the concurrence of the resulting state is not
sufficiently high for a given application, our protocol could be
combined with standard purification techniques to achieve a
target value. Using our protocol to produce the initial imper-
fect Bell pairs could significantly reduce the number of copies
and iterations needed for the purification process.

Next, we examine the impact of coherent errors when our
protocol is scaled to larger GHZ states containing up to 16
qubits. As a concrete example, we consider starting from a
linear WGS with alternating phases φmean ± 
φ. Via numer-
ical search, we find that the state fidelity relative to a perfect
GHZ state is optimal when the measurement basis is chosen
as in Eq. (5) with φ = φmean. Furthermore, we find that the
single-qubit unitaries that maximize the fidelity in the case
of successful measurement outcomes are always Z rotations,
which commute with the ZZ stabilizers of the GHZ state.
Therefore, to quantify how the entanglement decreases as the
GHZ state grows to larger numbers of qubits, we consider the
decay of the 〈Z1Zj〉 correlation function, where j ranges from
2 to n, where n is the number of qubits in the GHZ state.

Figure 4(a) shows the decay of the 〈Z1Zj〉 correlation func-
tion with increasing j for three different values of φmean and
with 
φ = 0.1π . It is evident that the correlation function
decays exponentially as the system size grows. This is because
the coherent errors on the CP gates degrade the projective
measurements on the even qubits of the WGS, which grad-
ually decrease the long-range entanglement in the resulting
GHZ-like state. Note that while all qubits can be viewed as
nearest neighbors in a perfect GHZ state, the fact that here we
start from a noisy, linear WGS produces an asymmetry and
effective spatial ordering of the qubits in the final GHZ-like
state. We fit the correlation function and extract its decay
length. For comparison, results for the direct construction
of GHZ-like states are shown as well. In particular, the fig-
ure shows 〈Z1Zj〉 correlation functions of GHZ-like states
generated by starting from a linear array of qubits in the
state |+〉⊗16 and sequentially applying CP gates with angle
φmean between all pairs of neighboring qubits, followed by
Hadamard gates on one qubit in each pair [see Fig. 4(b) for a
three-qubit example circuit]. It is evident from the figure that
the correlation functions decay much more quickly in this case
compared to using our entanglement concentration protocol.

In Fig. 4(c), we plot the decay lengths extracted from fits
like those shown in Fig. 4(a) as a function of φmean and 
φ.
When the mean phase φmean is close to π , the decay length
decreases more slowly as 
φ increases.

To provide further evidence that our protocol can gener-
ate better GHZ states compared to direct generation, even
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Number of qubits n

FIG. 4. Effect of correlated errors on the entanglement and fi-
delity of concentrated GHZ states containing up to 16 qubits. (a) ZZ
correlation functions of 16-qubit GHZ states obtained from measur-
ing the even qubits of 31-qubit linear WGSs with alternating CP
weights φmean ± 
φ with 
φ = 0.1π . 〈Z1Zj〉 correlation functions
with j = 2, ..., 16 are shown for three different values of φmean. The
solid lines are fits of the data to exponential decays. For comparison,
the 〈Z1Zj〉 correlation functions of GHZ-like states directly generated
by starting from a linear array of 16 qubits in the state |+〉⊗16

and applying CP gates with angle φmean between neighboring qubits
and Hadamard gates are also shown (dashed lines). (b) Three-qubit
example circuit used to create the directly generated reference states
in (a) and (d). (c) The decay lengths of the correlation functions
〈Z1Zj〉 with j = 2, ..., 16 as a function of φmean and 
φ obtained
from fits to exponential decays like those shown in (a). (d) Fidelity
of concentrated GHZ states containing n = 2 to 6 qubits (blue dots)
relative to a perfect GHZ state. Here, the initial linear WGS has
alternating weights with φmean = 0.55π and 
φ = 0.05π , which are
values quoted in Ref. [80]. For comparison, fidelities of imperfect
GHZ states directly constructed using circuits as in (b) with φ =
0.55π and initial states |+〉⊗n for n = 2–6 are also shown (orange
squares). Each point is obtained by applying arbitrary single-qubit
gates to all qubits and adjusting gate parameters until the fidelity of
the resulting state relative to a perfect GHZ state is maximized.

when coherent errors on the CP gates are included, we also
compute the fidelity relative to a perfect state starting from
a linear WGS with alternating weights, with φmean = 0.55π

and 
φ = 0.05π , which is shown in Fig. 4(d) (blue dots).
For comparison, we also show fidelities for directly generated
GHZ-like states constructed using circuits like that shown
in Fig. 4(b). In each case, we optimize the fidelity relative
to a perfect GHZ state by performing arbitrary single-qubit
gates on all qubits and adjusting gate parameters. The optimal
fidelity is shown in Fig. 4(d) (orange squares). Even with
coherent errors, our protocol can generate GHZ states with
better fidelity, especially as the size of the target state grows.

B. Photon depolarization error

Here, we study the performance of our protocol by consid-
ering possible incoherent errors on the initial linear, uniform

WGS. Due to photon scattering and frequency fluctuations
of quantum emitters, the photonic qubits are likely to suffer
from dephasing and depolarization errors during the graph
state generation process. The depolarizing error for a single
qubit is described by the channel [89]

E (ρ) = (1 − p)ρ + p

3
(XρX + Y ρY + ZρZ ), (10)

with error probability p, while a dephasing error can be mod-
eled by a single Pauli-Z error on the qubit, such that the
impact of dephasing errors is contained in the analysis of the
depolarizing error. Therefore, here we focus on the case of
depolarizing error and leave the discussion of dephasing errors
to Appendix B. In this section, we investigate the impact of
such errors on the concentration of GHZ-like states involving
up to 12 qubits.

To incorporate depolarizing errors into our calculations, we
apply the same depolarizing error model to all the photonic
qubits before applying the CP gates that prepare the initial
linear WGS. This is because we assume the errors are equally
likely to happen on all photonic qubits, which can be though
of as the worst-case scenario.

To gain an understanding of how depolarizing errors affect
the measurement basis in our protocol, we first consider the
simple case of a three-qubit linear WGS in which the middle
qubit is measured to produce an approximate Bell state. We
numerically optimize the concurrence of the two unmeasured
qubits by adjusting the measurement basis, as the concur-
rence [Eq. (8)] is still a good measure of entanglement for
two-qubit mixed states. Our numerical analysis reveals that
the optimal measurement basis is not affected by the depo-
larizing error. However, the two-qubit state is mixed and no
longer a maximally entangled state regardless of the CP angle
φ ∈ (0, π ).

To further understand how depolarizing error affects our
protocol, in Fig. 5(a), we show the best concurrence of the
final two-qubit state after applying our protocol. We sweep the
uniform WGS weight φ and the depolarizing error probability
p on the photonic qubits. Notice that even with moderate
depolarizing error (p < 0.02), our protocol can still gener-
ate a decent amount of entanglement (C > 0.9) over a wide
range of weights φ. In Fig. 5(b), we show the success prob-
ability of our protocol. In the range φ > 0.6π , the success
probability is weakly dependent on the depolarizing error
probability p. Our protocol is more robust against depolariz-
ing error in the regime where φ is close to π . As φ decreases,
i.e., the CP gate generates less and less entanglement di-
rectly, the entanglement generated by our protocol drops
significantly with stronger depolarizing error [see Fig. 5(a),
φ ∼ 0.1π , for example]. This is because the symmetry of
the depolarization process does not prefer a special mea-
surement basis. However, the depolarizing error makes the
final state mixed, which decreases the entanglement of the
state.

To see whether and to what extent we can still benefit from
using our protocol, we calculate the concurrence advantage
(
C) of our protocol in Fig. 5(c). We define the concurrence
advantage as the difference between the concurrence of the
two-qubit state generated by our protocol and the reference
concurrence, which is the concurrence of a two-qubit state
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FIG. 5. The performance of our protocol in the presence of depolarizing errors on the initial linear WGS. (a) The concurrence C of the
two-qubit state after successfully applying our protocol on a three-qubit WGS with depolarizing error. The concurrence is shown as a function
of CP weight φ and depolarizing error probability p. (b) The success probability of our protocol as a function of φ and p. (c) Comparison
of the concurrences of the state from our protocol with that of a two-qubit uniform WGS in the presence of the same depolarizing error. The
concurrence advantage (
C) is shown as a function of φ and p.

FIG. 6. Effect of depolarization errors on the entanglement and
fidelity of concentrated GHZ states containing up to 12 qubits. (a) ZZ
correlation functions of 12-qubit GHZ states obtained from mea-
suring the even qubits of 25-qubit linear WGSs with uniform CP
weights φ = 0.55π . 〈Z1Zj〉 correlation functions with j = 2, ..., 12
are shown for three different values of the depolarization probability
p. The solid lines correspond to fits of the data to exponential decays.
(b) Fidelity of concentrated GHZ states containing n = 2–6 qubits
relative to a perfect GHZ state. Here, the initial linear WGS has the
same depolarization probability p = 0.02 on all photons. Results are
shown for two different values for the CP gates: φ = 0.55π [80]
(blue solid lines) and 1.05π [49] (orange solid lines). For compar-
ison, fidelities of the imperfect GHZ state directly constructed by
sequential applying CP gates with the same CP gates are also shown
(dashed lines). The generation circuit is shown in Fig. 4(d), where
the initial states of photonic qubits experience the same depolar-
ization error (p = 0.02). (c) The critical CP angle (
ϕc ≡ π − φc)
at which our protocol and the direct (reference) approach have the
same fidelity as a function of the depolarizaton error probability p
in the case of n = 2 qubits. Results with (blue dots) and without
(orange squares) optimization of the reference state with respect to
single-qubit gates are shown. The orange line is an analytical result
obtained using perturbation theory.

generated by directly applying a CP gate with phase φ on
a pair of depolarized photonic qubits with the same error
probability. We notice that over a large range of parameters
[the region with warm colors in Fig. 5(c)], our protocol will
result in more entanglement between the two photonic qubits.
Specifically, in the region where φ ∼ 0.8π , our protocol can
generate more entanglement even with p ∼ 5% [Eq. (10)].
Although the two-qubit state is mixed and does not have
maximal entanglement, the state with more entanglement can
help to increase the efficiency with further entanglement pu-
rification.

To investigate the effect of depolarizing errors on con-
centrating GHZ states with more photons, we calculate ZZ
correlation functions of the outcome state of our protocol as in
the case of coherent errors discussed above. The results for a
12-qubit GHZ-like state concentrated from an initial 25-qubit
linear WGS are shown in Fig. 6(a) for three different values
of the error probability p and a CPl angle φ = 0.55π . We
note that when p = 0, our protocol can generate perfect GHZ
states, which gives a constant correlation function 〈Z1Zj〉 = 1
for all j. As we increase the depolarizing error probability
p, the correlations start to decay exponentially with a char-
acteristic decay length. This is similar to the discussion in
Sec. III A. Note that as shown in Refs. [81,82], there is no
possibility of creating pure polarized photons, and we instead
have mixed polarization states. In quantum dot experiments,
the polarization mixing is around 2%–5%. We, therefore,
consider a depolarization error probability of p = 0.02 as a
concrete example. In Fig. 6(b), we calculate the fidelity of the
state generated from our protocol with CP weight φ = 0.55π

(blue dots). For comparison, we also calculate the state fidelity
(optimized over local gates) generated directly using the same
CP gates and with the same depolarization error p = 0.02,
which is shown as the blue diamonds on a dashed line in
Fig. 6(b). It is evident that our protocol yields substantially
better GHZ states even in the presence of realistic photon
polarization errors.

On the other hand, Fig. 6(b) also reveals that when the CP
weight is 1.05π as in Ref. [49], the reference state has better
fidelity. This is because the main source of error in the state
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produced from our entanglement concentration protocol is the
depolarizing error, while for the reference state, the imperfec-
tion in the CP gate plays a more important role. The relative
performance of our protocol versus direct state generation
thus depends on the relative importance of p and φ − π . For a
given value of the depolarizing error probability p, there is in
fact a critical value φc of the CP weight at which the fidelities
of the two state-generation methods exactly match. Our pro-
tocol does not provide any benefit when φ > φc. Figure 6(c)
shows the dependence of φc on p in the case of n = 2 qubits
in the final state, from which it is evident that our protocol
provides a benefit across a range of CP weights that shrinks
from φ < 0.98π to φ < 0.8π as p increases by two orders
of magnitude from 0.001 to 0.1. Further details about these
results can be found in Appendix C.

IV. CONCLUSIONS

In this paper, we addressed the problem of concentrat-
ing the entanglement of 1D weighted graph states through
single-qubit measurements. We proposed a protocol to proba-
bilistically construct GHZ states (or equivalently, star-shaped
graph states) using 1D uniformly weighted graph states.
The protocol only uses single-qubit measurements and gates,
which can be applied efficiently in photonic systems. We
showed that the protocol can efficiently generate small-sized
GHZ states with a large tolerance on WGS weights (the
controlled phase gate angles) compared to the generation of
GHZ states using linear optical methods. Our protocol can
generate more entanglement compared to other approaches in
the presence of moderate coherent two-qubit or single-qubit
depolarizing errors on the photonic qubits. Although the suc-
cess probability of the protocol decays exponentially as we
increase the number of qubits in the target GHZ state, the fact
that the number of measured qubits is relatively small results
in a much better scaling coefficient compared to previous
methods based on linear optics [6,11], making it promising for
paradigms that utilize moderately sized resource states such as
fusion-based quantum computing [5].
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APPENDIX A: KRAUS OPERATORS

In this section, we present the Kraus operators of our en-
tanglement concentration protocol. The elementary operation
in our protocol is the single-qubit measurement M̂φ on the
middle qubit in a three-qubit uniform linear WGS.

As we discussed in the main text, a three-qubit uniform
WGS can be generated by applying CP gates between neigh-

boring qubits:

|ψ〉 = CP1,2CP2,3|+ + +〉. (A1)

In our protocol, we perform a single-qubit measurement on
qubit 2, with M̂φ as shown in Eq. (5), which is a projective
measurement in the basis

|±φ〉 = 1√
2

(|0〉 ± e−iφ |1〉). (A2)

Therefore, the Kraus operators on qubits 1 and 3 correspond-
ing to ±1 measurement outcomes are

K± = 〈±φ|2CP1,2CP2,3|+〉2. (A3)

Using the expression for the CP gates [Eq. (3)], the Kraus
operators can be expressed as

K+ = cos

(
φ

2

)
(e−iφ/2|00〉〈00| + eiφ/2|11〉〈11|)

+ (|01〉〈01| + |10〉〈10|), (A4)

K− = i sin

(
φ

2

)
(e−iφ/2|00〉〈00| − eiφ/2|11〉〈11|). (A5)

When our protocol succeeds, i.e., the measurement result is
−1, the measurement effectively projects the state of qubits 1
and 3 into the even parity subspace, which creates a GHZ state
with probability sin2(φ/2)/2.

APPENDIX B: PHOTON DEPHASING ERROR

In the main text, we study the effect of depolarizing errors
on our protocol. Apart from depolarizing errors, dephasing
error also frequently arises in photonic systems. Therefore,
in this Appendix, we consider the effect of dephasing errors,
where the dephasing error for a single qubit is modeled by
[89]

E (ρ) = (1 − pz )ρ + pzZρZ, (B1)

where pz is the error probability, and ρ is the density matrix
corresponding to the qubit that experiences the dephasing
error.

We apply dephasing errors on photonic qubits before the
CP gate that generates the uniform WGS, just like we do for
depolarization errors. Similar to the argument in the main text,
dephasing errors are likely to happen on all three photonic
qubits in the WGS, which is used for our protocol to generate
a two-qubit maximally entangled state. So, we apply the same
dephasing error to all three photonic qubits, i.e., we use the
same pz for all three qubits.

With the dephasing errors, we numerically optimize the
measurement basis in our protocol to maximize the con-
currence of the two-qubit state. We find that the optimal
measurement basis is unchanged. In Fig. 7(a), we show the
concurrence of the resulting two-qubit state while sweeping
the three-qubit WGS weights φ and the strength of dephas-
ing errors pz. Our protocol can still achieve relatively high
entanglement (C > 0.9) with moderate dephasing error pz <

0.02. When the dephasing error strength increases, the en-
tanglement between the two remaining, unmeasured qubits
decreases. In Fig. 7(b), we show the success probability of
our protocol.
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FIG. 7. The performance of our protocol in the presence of dephasing errors on the initial linear WGSs. (a) The concurrence C of the
two-qubit state after successfully applying our protocol on a three-qubit WGS with dephasing error. The concurrence is shown as a function
of CP weight φ and dephasing error probability pz. (b) The success probability of our protocol as a function of φ and pz. (c) Comparison
of concurrences of the state from our protocol with that of a two-qubit uniform WGS in the presence of the same dephasing error pz. The
concurrence advantage (
C) is shown as a function of pz and φ.

In order to understand whether our protocol can generate
better entanglement compared to directly generating entangle-
ment using CP gates between photon qubits with dephasing
error, we calculate the entanglement advantage 
C = C −
Cref, where C is the concurrence from our protocol, and Cref is
the concurrence of the directly generated photonic states with
CP gates with the same phase, which is shown in Fig. 7(c).
We see that with moderate dephasing errors, our protocol can
still generate more entanglement.

APPENDIX C: CRITICAL CP WEIGHTS
IN THE PRESENCE OF DEPOLARIZATION ERRORS

In the main text, we show that with depolarization error
p = 0.02, and CP weight φ = 1.05π , the GHZ states gen-
erated by our protocol do not have higher fidelity compared
with the GHZ state directly generated by the imperfect CP
gates [see Fig. 6(c)]. In this section, we investigate when
our protocol can perform better and why our protocol can
sometimes fail to provide an improvement. For illustrative
purposes, we consider a three-qubit uniform WGS from which
we concentrate a two-qubit GHZ state.

Note that for the reference state, we construct an imperfect
GHZ state directly using the CP gates according to the gate se-
quence shown in Fig. 4(b). After applying the gate sequence,
we numerically optimize the state fidelity by adjusting the
parameters of single-qubit gates applied to all the qubits. We
stress that even without the single-qubit gates, the reference
state can still achieve better fidelities when the CP gate is close
to π .

In our protocol, as discussed in the main text, when there
is no depolarization error on the measurement qubit, a “suc-
cessful” measurement outcome results in a perfect parity
projection on the other qubits (see Appendix A) regardless
of the CP gate angle. However, when there are depolarization
errors, the operation is imperfect. This imperfection will be
mainly affected by the depolarization error and weakly depend
on the CP gates. On the other hand, the main imperfection
in the reference state comes from the CP gate between the
two qubits. Therefore, we expect there to be a critical CP
gate angle beyond which our protocol performs worse than
the reference case.

In Fig. 8, we plot the difference in fidelity between our
protocol and the reference case. Similar to the results shown
in the main text, in the reference case, we apply single-qubit
gates on both qubits to numerically optimize the state fidelity.
We see that, depending on the value of the depolarization
error probability p, there is a critical value φc of the CP
weight above which our protocol performs worse than the
direct-generation approach.

To obtain a quantitative understanding of the relation be-
tween φc and p, we compute the fidelities analytically using
perturbation theory. We first note that for our concentration
protocol, we can apply a single-qubit gate U on one of the two
unmeasured qubits to maximize the state fidelity to a perfect
GHZ state, where

U =
(

e−i(π−φ)

1

)
. (C1)

The optimal state fidelity is

F =
(

3

3 − 2p
+ 24p

9 + (3 cos φ + 4p)(4p − 3)

)−1

, (C2)

FIG. 8. The difference in fidelity 
F of our entanglement con-
centration protocol minus that of the reference state in the presence
of photon depolarization error of probability p in the case where the
target state is a two-qubit GHZ state. 
F is shown as a function of
the CP gate angle φ.
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where p is the depolarization error probability shown in
Eq. (10), and φ is the CP gate angle.

In the reference case, as it is hard to find an analytical
expression for the numerically optimized single-qubit gate
parameters, we focus instead on the state directly generated
using the circuit shown in Fig. 4(b) (without single-qubit gates
after the circuit). The fidelity relative to a two-qubit GHZ state
with photon depolarization errors is

Fno-opt = 1
72 [18 + (4p − 3)(4p − 9)(1 − cos φ)]. (C3)

Note that in the reference case, when φ → π , the fidelity is

Fno-opt = 1
9 (9 − 12p + 4p2) ∼ 1 − 4

3 p, (C4)

which is caused by the depolarization error on two photonic
qubits. However, in our protocol, when the CP gate is close to
π , and p is small, the state fidelity is

F = 1
27 (3 − 2p)(9 − 12p + 8p2) ∼ 1 − 2p, (C5)

which suffers more from the depolarization error on the mea-
sured qubits.

In Fig. 6(c), we plot the critical phase (φc) above which
our protocol cannot improve the state fidelity. Specifically,
the critical phase φc corresponding to unoptimized reference
states is plotted as orange squares. With Eqs. (C2) and (C3),
we can further expand the expression F − Fno-opt in the regime
where p → 0 and φ → π and solve for the critical phase φc:


ϕ2
c ∼ 32

9 p, (C6)

where 
ϕc ≡ π − φc. This result is shown as the orange line
in Fig. 6(c), which matches well with the numerical solution.
For comparison, we also calculate the critical phase when the
reference state fidelity is optimized using single-qubit gates
[blue dots in Fig. 6(c)]. We notice that the parametric depen-
dence is the same relative to the unoptimized reference case,
and the parameter dependence from our analysis still applies.
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