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TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser circuit Ansätze
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Adaptive quantum variational algorithms are particularly promising for simulating strongly correlated systems
on near-term quantum hardware, but they are not yet viable due, in large part, to the severe coherence time
limitations on current devices. In this paper, we introduce an algorithm called TETRIS-ADAPT-VQE (tiling
efficient trial circuits with rotations implemented simultaneously adaptive derivative-assembled problem-tailored
Ansatz variational quantum eigensolver), which iteratively builds up variational Ansätze a few operators at a time
in a way dictated by the problem being simulated. This algorithm is a modified version of the ADAPT-VQE
algorithm, in which the one-operator-at-a-time rule is lifted to allow for the addition of multiple operators with
disjoint supports in each iteration. TETRIS-ADAPT-VQE results in denser but significantly shallower circuits,
without increasing the number of controlled-NOT gates or variational parameters. Its advantage over the original
algorithm in terms of circuit depths increases with the system size. Moreover, the expensive step of measuring
the energy gradient with respect to each candidate unitary at each iteration is performed only a fraction of the
time compared with ADAPT-VQE. These improvements bring us closer to the goal of demonstrating a practical
quantum advantage on quantum hardware.
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I. INTRODUCTION

It is widely hoped that noisy intermediate-scale quantum
(NISQ) devices can find applications in the field of quantum
simulation, where the archetypal problem is to find the eigen-
values of a given Hamiltonian [1]. To avoid the large resource
overhead of the quantum phase estimation algorithm (PEA)
[2], which involves a large number of qubits coherently evolv-
ing under very deep circuits [3] and is thus not expected to
offer an advantage over classical simulation in the near future,
a hybrid quantum-classical algorithm, the variational quan-
tum eigensolver (VQE), was introduced and experimentally
realized for small chemical systems; this algorithm aims to
shorten quantum circuits by leveraging the power of classical
optimization [4].

Based on the variational principle, the VQE prepares a
parametrized guess wave function (known as an Ansatz) using
a quantum circuit on the quantum processor. It then iteratively
optimizes the variational parameters in order to minimize an
objective function, usually the energy of the system being
simulated. In each iteration, any evaluation of the objective
function and/or its gradient is realized by measurements on the
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quantum processor, and some classical optimization scheme
is chosen to update the parameters on the classical proces-
sor. Since in the VQE the quantum processor is only needed
for measuring observables of the Ansatz state, the quantum
circuits involved are shorter compared with the PEA. The suc-
cess of VQEs crucially depends on a good choice of Ansatz.
On the one hand, the Ansatz should be expressive enough so
that the ground state of the Hamiltonian can be accurately ap-
proximated, and on the other hand it should be special enough
so that classical optimization of the variational parameters can
be efficiently carried out. Finally, the Ansatz should also be
hardware friendly so that the trial state can be successfully
prepared as a quantum circuit on a NISQ processor.

Depending on which of the above properties they are
designed to address, the most commonly used Ansätze can
be roughly divided into two families: the hardware-efficient
[5–7] and the chemically inspired Ansätze [8–10]. The former
include circuits consisting of repeating layers of parametrized
single-qubit rotation gates and entangling gates, which are
easy to implement on a given quantum processor. Such
designs take very general forms to ensure expressivity. Never-
theless, it has been shown that a completely problem-agnostic
VQE Ansatz would hinder the classical optimization [11].
In contrast, the latter are inspired by classical computational
chemistry and consist of much more complicated circuits. A
widely used Ansatz in this category is the unitary extension of
coupled-cluster singles and doubles (UCCSD), which forms
the basis of many others. They are known from classical
computational chemistry to possess several desirable features
(such as being both variational and size extensive); however,
they correspond to relatively deep circuits that are difficult to
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realize on devices with limited coherence times [12], and their
performance is sensitive to the specific Trotterization used in
their implementation [13].

Among the numerous strategies to find a middle ground
between the two extremes [5,14], some adaptive approaches
seek to construct the Ansatz based on information gath-
ered while running the algorithm. The earliest such al-
gorithm was developed by Grimsley et al. [15], where,
in contrast to conventional VQEs, the Ansatz is grown
dynamically instead of chosen a priori. This algorithm, adap-
tive derivative-assembled problem-tailored Ansatz variational
quantum eigensolver (ADAPT-VQE), directly incorporates
problem features into the Ansatz, foregoing the maximum
level of expressivity in favor of greater efficiency in the classi-
cal optimization, while at the same time retaining some degree
of flexibility to avoid deep circuits.

The central idea of ADAPT-VQE is to add one operator
at a time to the Ansatz, with each new addition followed by
classical optimization of the current Ansatz as in conventional
VQEs. Each new operator is selected from a predefined opera-
tor pool based on the gradient of the objective function, which
is determined by the problem Hamiltonian together with the
previously optimized state. This makes the Ansatz inherently
specific to the problem. It was shown that ADAPT-VQE
results in shorter Ansätze with fewer variational parameters
than UCCSD, except for certain strongly correlated molecules
for which UCCSD fails to reach chemical accuracy. Using
a more hardware-friendly operator pool, qubit-ADAPT-VQE
[16] requires even shallower circuits and fewer controlled-NOT

(CNOT) gates. Moreover, by constructing a problem-specific
Ansatz, ADAPT-VQE is less prone to obstacles in the classi-
cal optimization compared with more hardware-efficient but
problem-agnostic Ansätze [17].

Despite the considerable reduction in circuit depth it of-
fers compared with other VQEs, ADAPT-VQE still requires
circuit depths on the order of tens of thousands to accurately
estimate ground-state energies of small molecules, which lies
beyond the capacity of most quantum devices to this day
[18,19]. This is due in part to the fact that each pool operator
acts on only a small subset of qubits, leaving most qubits
idle and unexploited at any given point in the construction
of the state preparation circuit. Moreover, the Ansatz con-
struction introduces additional overhead costs. Specifically,
in each iteration of the algorithm, the gradient of the objec-
tive function needs to be measured for each operator in the
pool. While this overhead is unlikely to be the bottleneck
in near-term applications, it is desirable to reduce it in the
long run, when the system size of the computation task grows
significantly.

In this paper, we propose a variant of ADAPT-VQE, named
tiling efficient trial circuits with rotations implemented si-
multaneously (TETRIS)-ADAPT-VQE. We achieve the goal
of further reducing the circuit depth by allowing unitary op-
erators that act on disparate sets of qubits to be added to
the Ansatz simultaneously at each iteration. This results in a
faster reduction of the objective function. We demonstrate this
protocol using numerical simulations for a range of molecules
with different geometries. We show that despite the much
shallower quantum circuits, TETRIS-ADAPT can success-

fully produce results with the same accuracy as the original
ADAPT-VQE.

The rest of the paper is organized as follows. In Sec. II, we
review in detail the procedure of ADAPT-VQE, as it makes up
the backbone of the algorithm we propose. We then present
the strategy proposed here, including a discussion of what
operator pools to use and how to translate the sequence of uni-
taries in the Ansatz to a circuit with quantum gates. Section III
contains the details and results of the numerical simulations
that demonstrate the improvement TETRIS-ADAPT-VQE can
provide. Compared with ADAPT-VQE, it further reduces the
resources needed to reach a certain level of accuracy while
keeping the advantages of ADAPT-VQE. Finally, we conclude
in Sec. IV.

II. ALGORITHM DETAILS

Although our algorithm is quite general, in this paper we
focus on its application to problems in quantum computational
chemistry. Computational chemistry is largely concerned with
finding the ground-state energy of the electronic part of
molecular Hamiltonians:

Ĥ =
∑
p,q

hp
qa†

paq + 1

2

∑
p,q,r,s

hpq
sr a†

pa†
qaras, (1)

where hp
q and hpq

sr are single- and two-electron integrals, re-
spectively, and a† and a are the second-quantized fermionic
creation and annihilation operators, respectively. Our algo-
rithm takes the same adaptive procedure as in ADAPT-VQE,
with an alternative strategy of selecting the operators that con-
tribute to the VQE Ansatz. Like ADAPT-VQE, the operator
pools draw inspiration from the UCCSD Ansatz, which is
briefly reviewed in Sec. II A. Readers familiar with the topic
can jump to Sec. II B.

A. Unitary coupled cluster

The UCCSD Ansatz has the form

|�UCCSD〉 = eT̂1+T̂2 |�ref〉 , (2)

where

T̂1 =
∑
i,a

τ̂ a
i =

∑
i,a

τ a
i (a†

aai − a†
i aa), (3)

T̂2 =
∑

i, j,a,b

τ̂ ab
i j =

∑
i, j,a,b

τ ab
i j (a†

aa†
baia j − a†

j a
†
i abaa). (4)

In practice the unitary is Trotterized to first order:

|�tUCCSD〉 =
∏

c∈{ia}
eτ̂c

∏
d∈{i jab}

eτ̂d |�ref〉 , (5)

where i, j (a, b) represent occupied (virtual) orbitals and
the reference state |�ref〉 is usually the Hartree-Fock state.
From classical simulations, UCCSD is known to be a reliable
Ansatz, although it was recently shown [13] that the low-order
Trotterized form is not chemically well defined as it fails
to reach chemical accuracy for certain operator orderings.
Furthermore, due to the large number of exponential factors,
it is too expensive to prepare on quantum processors. Lastly,
for strongly correlated systems, UCCSD often fails to reach
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chemical accuracy (error < 1 kcal/mol) for the ground-state
energy [20].

B. ADAPT-VQE

The ADAPT-VQE algorithm grows problem-tailored An-
sätze by appending one unitary at a time to the trial state
[15]. The user begins by defining an operator pool P = {Pi},
a collection of anti-Hermitian generators, such as the τ̂ a

i and
τ̂ ab

i j in Eqs. (3) and (4), from which the Ansatz is to be
constructed. In addition, a reference state is chosen, usually
the Hartree-Fock (HF) ground state. At each iteration, the
expectation value of the commutator of the Hamiltonian and
each pool operator is measured. This is equivalent to adding
each candidate operator to the Ansatz, setting its variational
parameter equal to zero, and computing the energy gradient
with respect to it. The operator with the largest gradient norm
is appended to the Ansatz. For example, at the (k + 1)th layer,
with the previously optimized state |� (k)〉, the energy gradient
for the candidate operator Pi with respect to its parameter θi is

∂E

∂θi

∣∣∣∣
θi=0

=
[

∂

∂θi
〈� (k)| e−θiPi HeθiPi |� (k)〉

]∣∣∣∣
θi=0

= 〈� (k)| [H, Pi] |� (k)〉 , (6)

using the anti-Hermiticity P†
i = −Pi. The algorithm proceeds

as follows:
(1) On the classical device, compute one- and two-body

integrals and transform the fermionic Hamiltonian to a qubit
Hamiltonian using a suitable mapping, e.g., Jordan-Wigner
(JW) mapping.

(2) On the quantum device, prepare the current Ansatz and
measure the energy gradient ∂E

∂θi
|θi=0 for every candidate pool

operator Pi with respect to its variational parameter θi.
(3) If the pool gradient norm is smaller than a prede-

termined threshold, ADAPT-VQE has converged, and the
algorithm terminates.

(4) Add the operator with the largest gradient norm from
step (2) to the Ansatz, with its variational parameter set to
zero.

(5) Perform a VQE subroutine to update all parameters in
the current Ansatz.

(6) Repeat steps (2)–(5) until convergence.

C. TETRIS-ADAPT-VQE

In TETRIS-ADAPT-VQE, we add not only the operator
associated with the largest gradient, but also the operator
associated with the next-largest gradient norm that is sup-
ported on qubits different from the support of the first added
operator. We continue this process of adding operators with
successively smaller (or equal) gradients and with support that
is disjoint from that of all previously added operators, until no
further operators satisfying these criteria are found. Note that
this can be done without measuring any additional gradients
compared with ordinary ADAPT-VQE since the gradient of
each pool operator need only be measured once per iteration
of the algorithm as usual. This modification of the algorithm
amounts to replacing the original step (4) from above with the
following subroutine for adding operators to the Ansatz:

FIG. 1. Schematic diagram of the Ansatz preparation circuits
produced by ADAPT-VQE (left) and TETRIS-ADAPT-VQE (right).
TETRIS-ADAPT-VQE grows Ansätze prepared by shallower and
denser circuits compared with ADAPT-VQE, by adding multiple
operators at each iteration. The dark violet rectangles represent gates
implementing the largest-gradient operator, whereas lighter tones
correspond to operators beyond the highest-gradient one, added in
TETRIS-ADAPT-VQE.

(a) Sort pool operators according to the norms of their
gradients, in descending order.

(b) Identify the operator with the highest gradient norm act-
ing on qubits not acted on by any previously added operator in
the current ADAPT iteration. Add the operator to the Ansatz,
with its variational parameter set to zero.

(c) If the operators added in the current ADAPT iteration
collectively cover all qubits, proceed to step (5).

(d) If the list of operators with nonzero gradients and
disjoint support with operators already added in the current
ADAPT iteration has been exhausted, proceed to step (5).

(e) Go to substep (b).
We illustrate this strategy in Fig. 1, showing the locations

of the gates implementing the operators chosen by the orig-
inal ADAPT-VQE and TETRIS-ADAPT-VQE. Note that the
highest-gradient operators coincide for the two versions of the
algorithm in the first layer but differ in the subsequent layers,
as a consequence of the diverging Ansätze.

D. Operator pools

The original ADAPT-VQE paper [15] compared ADAPT
Ansätze with the commonly used, fixed UCCSD Ansatz,
and as such it used pools of anti-Hermitian sums of single
and double fermionic excitation-deexcitation operators of the
forms T̂i j = a†

i a j − a†
j ai and T̂i jkl = a†

i a†
j akal − a†

l a†
ka jai. In

the Jordan-Wigner mapping, which we use in the remainder
of this paper, T̂i j and T̂i jkl , for spin-orbital (and qubit) indices
i < j < k < l , can be written in terms of sums of Pauli strings
as

T̂i j = i

2
(XiYj − YiXj )

j−1∏
p=i+1

Zp, (7)

T̂i jkl = i

8
(XiYjXkXl + YiXjXkXl + YiYjYkXl

+ YiYjXkYl − XiXjYkXl − XiXjXkYl

− YiXjYkYl − XiYjYkYl )
j−1∏

p=i+1

Zp

l−1∏
r=k+1

Zr, (8)
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where the Pauli strings are tensor products of Pauli matri-
ces on the corresponding qubits, and identities are implied
on qubits with omitted indices. Although chemically sound,
the large number of terms and linearly increasing number of
qubits involved in these operators translate into deep circuits
with large numbers of two-qubit gates (see Sec. II E) and make
fermionic operators challenging for NISQ simulation.

In an effort to construct even more hardware-efficient
Ansätze, Tang et al. [16] showed that decomposing the Jordan-
Wigner mapped fermionic operators into individual Pauli
strings and using those as pool operators results in shallower
circuits, an approach dubbed qubit-ADAPT-VQE. In the same
work, it was found that omitting the trailing Pauli-Zs from
the Pauli strings did not affect convergence. At the expense of
additional variational parameters, qubit-ADAPT-VQE yielded
Ansätze with up to an order of magnitude fewer CNOT gates for
the systems studied.

In a similar spirit, Yordanov et al. [21] introduced the qubit-
excitation-based (QEB)-ADAPT-VQE, which uses single and
double qubit excitations, obtained by replacing the fermionic
creation and annihilation operators by the corresponding qubit
operators Q†

i = (Xi − iYi )/2 and Qi = (Xi + iYi)/2 satisfying

{Qi, Q†
i } = 1, [Qi, Q†

j ] = 0 for i �= j, (9)

[Qi, Qj] = [Q†
i , Q†

j ] = 0. (10)

In light of Eq. (9), in the Jordan-Wigner mapping, this is
equivalent to omitting the Pauli-Z strings in Eqs. (7) and
(8). Using the optimized circuits in Ref. [22] to implement
the qubit excitation (QE) evolutions resulted in Ansätze with
CNOT counts similar to or lower than those of qubit-ADAPT-
VQE and numbers of variational parameters comparable to
those of fermionic ADAPT-VQE.

In this paper we use the qubit and QE pools because their
operators act nontrivially on fewer qubits compared with those
of the fermionic pool. In general, more operators can therefore
be added at each TETRIS-ADAPT-VQE iteration. The qubit
pool has generators of the form

iXiYj, iXiXjXkYl , iYiYjYkXl , (11)

and we include all combinations of qubit indices such that
their sum is an even number; that is, each qubit operator acts
nontrivially on an even number of α (β) spin-orbitals. In the

QE pool, the qubit-excitation generators for T̂ i j = Q†
i Q j −

Q†
j Qi and T̂ i jkl = Q†

i Q†
j QkQl − Q†

l Q†
kQjQi in the Jordan-

Wigner mapping have the form

T̂ i j = i

2
(XiYj − YiXj ), (12)

T̂ i jkl = i

8
(XiYjXkXl + YiXjXkXl

+ YiYjYkXl + YiYjXkYl − XiXjYkXl

− XiXjXkYl − YiXjYkYl − XiYjYkYl ), (13)

where we include all combinations of indices such that no spin
flips are allowed. For both pools it is implied that i �= j �= k �= l ,
and many index permutations in the operators above differ
only by an overall sign and need not be included in practice.

FIG. 2. Example circuit of the exponential map implementing
e−i θ

2 YiYjYk Zl Xm .

E. Quantum circuits

To obtain the CNOT gate counts and circuit depths, we
compile circuits effecting the operator evolutions in QISKIT

[23]. For the qubit pool, which consists of individual Pauli
strings, the exponentiation is performed with the usual expo-
nential map circuit. For example, suppose that the operator
Za ⊗ Zb ⊗ Zc is to be exponentiated. Then a “CNOT staircase”
computes the parities of the three qubits in the computational
basis, an Rz(θ ) gate applies the phase shift, and an inverse
CNOT staircase uncomputes the parity. If the tensor product in
the exponent contains X or Y Paulis, then those are rotated
to the Z basis by H and Rx( π

2 ) gates, respectively. Figure 2

shows the circuit performing e−i θ
2 YiYjYkZl Xm .

For the QE pool, we use the optimized circuits intro-
duced in Refs. [21,22], derived by sequentially decomposing
into opposite half rotations the multiqubit-controlled gates
in exchange-interaction-type circuits, noting that single and

double qubit excitation operators T̂ i j and T̂ i jkl continu-
ously exchange states: |1i0 j〉 with |0i1 j〉 and |1i1 j0k0l〉 with
|0i0 j1k1l〉. We show two example circuits in Fig. 3 taken from
Ref. [21]. Throughout this paper, we assume all-to-all qubit
connectivity; so CNOT gates between non-neighboring qubits
can be performed.

III. RESULTS

We numerically simulate the performances of TETRIS-
ADAPT-VQE and the original ADAPT-VQE for the tasks
of finding the ground-state energy and preparing the ground
state of the following molecules: H4 (1.0–5.0 Å), LiH (1.0–
4.0 Å), H6 (1.0–5.0 Å), and BeH2 (2.0–3.0 Å) at 1.0 Å
bond length increments, all in the linear configuration, and
using the STO-3G basis set (Slater-type orbital with three
Gaussian orbitals). We will show that TETRIS-ADAPT-VQE
provides additional improvement on both circuit depth and
measurement overhead, without sacrificing the merits of
the original ADAPT-VQE. The results in this section were
produced using PYTHON code written by the authors. The
classical optimization scheme used throughout this paper is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method as
implemented in SCIPY [24], with a gradient norm tolerance of
10−10. The ADAPT convergence criterion was a pool gradient
norm threshold of 10−7. All energies are in units of hartrees.
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FIG. 3. Example circuits performing (a) a single qubit excitation, ei θ
2 (XiYk−YiXk ), and (b) a double qubit excitation evolution, eθ T̂ i jkl , as in

Eq. (13).

A. Circuit depth reduction

The main motivation of TETRIS-ADAPT-VQE is circuit
depth reduction. Since ADAPT-VQE only adds the largest-
gradient operator at each iteration, one may speculate that
adding operators with smaller gradients alongside it would
result in suboptimal Ansätze with a greater total number of
parameters and CNOT gates. On the other hand, the magnitude
of the operator gradient, which is measured about the point
in parameter space where the VQE converged in the previous
iteration, contains only local information about the ability of

a candidate operator to reduce the value of the cost function.
Put another way, the operator with the highest gradient is not
guaranteed to be the operator that causes the greatest energy
reduction. In Ref. [21] the authors explored the possibility of
separately appending the n largest-gradient operators to the
Ansatz at each ADAPT iteration, performing the VQE on all
n trial Ansätze, and updating the main Ansatz with only the
operator that resulted in the lowest energy. Moreover, adding
operators beyond the highest-gradient one may enable further
adjustments to the Ansatz that would otherwise appear in later

FIG. 4. Resources required by ADAPT-VQE (orange lines) and TETRIS-ADAPT-VQE (blue lines). Circuit depths and CNOT gate counts
as functions of energy error for linear (a) H4, (b) LiH, (c) H6, and (d) BeH2 with internuclear distances of 3.0 Å and the QE pool.

013254-5



PANAGIOTIS G. ANASTASIOU et al. PHYSICAL REVIEW RESEARCH 6, 013254 (2024)

TABLE I. Summary of circuit depth and CNOT count results for
the four molecules and the two pools we study. The ADAPT-VQE to
TETRIS-ADAPT-VQE average (over different bond lengths) circuit
depth and CNOT count ratios calculated at ADAPT-VQE convergence
are given in the fourth and fifth columns. Geometries for which
either version of the algorithm failed to reach the ground state were
excluded.a The number of qubits required to simulate each molecule
is given in column 2. It is evident that the circuit depth ratio grows
with the system size and is consistently higher for the qubit pool. We
note that although TETRIS-ADAPT-VQE requires a higher number
of CNOT gates in the case of LiH, it also tends to converge to a lower
energy error and state infidelity as seen in Figs. 4(b) and 5(a).

Molecule Qubits Pool Depth ratio CNOT ratio

H4 8 qubit 1.64 0.99
H4 8 QE 1.58 1.00
LiH 12 qubit 2.08 0.90
LiH 12 QE 1.76 0.80
H6 12 qubit 2.32 1.02
H6 12 QE 2.25 1.02
BeH2 14 qubit 2.73 1.11
BeH2 14 QE 2.56 1.09

aFor the qubit pool, these are as follows: H4 at 3.0–5.0 Å and H6 at
4.0–5.0 Å. For the QE pool, this is H6 at 5.0 Å.

layers. In fact, we show below that TETRIS-ADAPT-VQE
achieves circuit depth reductions with numbers of variational
parameters and CNOT gates similar to those required by the
original ADAPT-VQE.

In this section, we compare ADAPT-VQE and TETRIS-
ADAPT-VQE in terms of CNOT counts and circuit depths.
Figure 4 shows the results for linear H4, LiH, H6, and BeH2

at an internuclear distance of 3.0 Å, using the QE pool.
CNOT counts and circuit depths are obtained from circuits
constructed as described in Sec. II E using built-in QISKIT

functions, and QISKIT optimization level 1 (back-to-back gate
cancellation). We note that for a fair comparison, when tran-
spiling ADAPT-VQE circuits, unitaries added in consecutive
layers but acting on disparate sets of qubits are performed
concurrently.

It is evident that TETRIS-ADAPT-VQE leads to Ansätze
prepared by much shallower circuits, while requiring roughly

the same number of CNOT gates as ADAPT-VQE. Further-
more, the larger the system size, the greater the advantage
of TETRIS-ADAPT-VQE as shown in Table I, because more
operators fit in the same ADAPT layer, in general.

Beyond ground-state energy estimation, ADAPT-VQE can
be used for ground-state preparation. The faster energy de-
scent of TETRIS-ADAPT does not come at the expense of
Ansatz quality, as the two versions of the algorithm yield
equally faithful Ansätze. Figure 5 shows that the TETRIS
version of the algorithm approximates the true ground state
significantly faster than the original implementation.

B. Measurement overhead reduction

In the NISQ era, the bottleneck for VQEs is the circuit
depth and number of gates required for state preparation,
rather than the number of state preparations and measure-
ments. Although ADAPT-VQE yields more compact and
accurate Ansätze compared with static ones such as the Trot-
terized UCCSD (tUCCSD), it does so at the additional cost of
repeatedly measuring the pool operator gradient expectation
values. The qubit and QE pools consist of operators acting on
up to four distinct orbitals; therefore they contain O(N4) oper-
ators each, where N is the number of orbitals (or qubits). Since
the molecular Hamiltonian, Eq. (1), contains up to N4 terms,
O(N8) observable expectation values are required to measure
the operator gradients for the entire pool, as can be seen from
Eq. (6) [25]. This step can be fully parallelized, assuming the
availability of multiple quantum processors. Still, we would
like to reduce the quantum resource requirements associated
with the gradient measurement step, by reducing either the
cost of a single iteration or the total number of iterations.
One way to go about the first is to reduce the number of
operators in the pool by removing redundancies and exploit-
ing known symmetries of the system under study [16,27].
Furthermore, methods for estimating the gradients by approx-
imately reconstructing the three-body reduced density matrix
(3-RDM) from the 2-RDM [26] and by reusing information-
ally complete positive operator-valued measure (IC-POVM)
data obtained for energy estimation [28] have been used to
remove the overhead altogether, albeit by sacrificing Ansatz
compactness to various degrees. Another recently proposed
scheme that markedly reduces the runtime of a single iteration

FIG. 5. Performances of ADAPT-VQE (green dotted and solid lines) and TETRIS-ADAPT-VQE (purple dashed and solid lines) in terms
of state infidelity as a function of circuit depth and CNOT count for (a) LiH, with 1.0 Å bond length, and (b) linear H6, with 2.0 Å bond length
and the qubit pool.
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TABLE II. Ratio of the ADAPT iterations and operator gradient
measurements of ADAPT-VQE to those of TETRIS-ADAPT-VQE
calculated at ADAPT-VQE convergence. Results are averaged over
all molecular geometries simulated, excluding those for which either
version of the algorithm failed to reach the ground state.

Molecule Qubits Pool Ratio

H4 8 qubit 2.1
H4 8 QE 2.2
LiH 12 qubit 2.8
LiH 12 QE 2.2
H6 12 qubit 3.1
H6 12 QE 2.9
BeH2 14 qubit 3.4
BeH2 14 QE 3.3

without restricting the size of the pool or resorting to approxi-
mations is to simultaneously measure commuting observables
[29]. It was shown that the O(N8) qubit and QE pool gradient
observables have a straightforward partitioning into commut-
ing sets of O(N3). That is, the entire pool gradient can be
measured in O(N5) measurements, and evaluating the qubit
and QE pool gradients is O(N ) times as expensive as a single
(naïve) energy evaluation. TETRIS-ADAPT-VQE, while be-
ing compatible with all aforementioned approaches, further
reduces the overall measurement cost of ADAPT-VQE by
reducing the number of times the pool gradients are measured.
Assuming that the Ansatz is dominated by double-excitation-
like operators, which act on four qubits each for the qubit and
QE pools in the JW mapping, TETRIS-ADAPT-VQE adds
roughly �N

4 � operators per iteration, while keeping the total
number of operators for a given level of accuracy roughly the
same. By extension, the number of times the operator pool
gradients are measured is reduced by about �N

4 �, an advantage
over ADAPT-VQE, linear in the system size. In Table II, we
list the ADAPT iteration and measurement overhead reduction
observed in the simulation of the four molecules.

C. Enhanced Ansatz expressivity

Simply by adding multiple operators acting on qubits dif-
ferent from the support of the highest-gradient operator, the
TETRIS strategy lends ADAPT-VQE the ability to explore a
larger part of the Hilbert space, at least at earlier stages of the
algorithm. The Ansatz can therefore overlap with some com-
ponents in the true ground state that are otherwise inaccessible
to a shallow Ansatz.

We now use a concrete example to illustrate this. We
consider the Ansätze grown for H4 at 3.0 Å using the qubit
pool, with the HF reference state, |�ref〉 = |11110000〉, where
orbitals are assigned to qubits in order of increasing energy,
and even (odd) indices correspond to α (β) spin-orbitals. The
optimized qubit-ADAPT Ansätze after one and two iterations
of the algorithm are

|φ1〉 = e0.5652iX2X3X6Y7 |�ref〉
= 0.8445 |11110000〉 − 0.5356 |11000011〉

FIG. 6. Number of Slater determinants in the Ansatz (equiv-
alently, computational basis states in the state of the quantum
processor) with coefficients of absolute value greater than or equal
to 10−3, as a function of ADAPT iteration for linear H6, bond length
of 1.0 Å, and the QE pool.

and

|φ2〉 = e−1.5708iX0X3X5Y6 e1.5708iX2X3X6Y7 |�ref〉
= |01010101〉 ,

respectively. In this specific example, qubit-ADAPT arrives
in the all-spin-down state, an excited state of the system,
and the Ansatz growth stops, as the pool gradient vanishes
at eigenstates of the Hamiltonian. For the same system, the
corresponding TETRIS-qubit-ADAPT-VQE Ansatz after just
one iteration is

|ψ1〉 = e0.6757iX0X1X4Y5+0.6748iX2X3X6Y7 |�ref〉
= 0.6092 |11110000〉 − 0.4884 |00111100〉

− 0.4875 |11000011〉 + 0.3908 |00001111〉 ,

where adding two double-excitation-like qubit operators side
by side generates a quadruple excitation subterm, i.e., the
|00001111〉 component. The quadruply excited Slater deter-
minant turns out to be the most dominant term beyond the
reference determinant in the ground state:

|�0〉 = 0.5182 |11110000〉 + 0.4429 |00001111〉
− 0.3658 |11001100〉 − 0.3394 |00110011〉 + · · · ,

where |�0〉 is the ground state and the computational ba-
sis states are ordered according to the magnitude of their
coefficients. In this case, the TETRIS strategy enables the
Ansätze to include this dominant term within just the first
layer, whereas the original qubit-ADAPT Ansatz with one
layer is orthogonal to |00001111〉. TETRIS-qubit-ADAPT-
VQE converges to the exact ground state within 13 iterations.

We argue that the increase in expressivity here is still
problem aware, as the operators are added in the order of
the magnitude of their gradients. This is in contrast to the
problem-agnostic Ansatz where entangling gates are blindly
added to enlarge the accessible Hilbert space. Figure 6 shows
the number of Slater determinants in the Ansatz as a function
of ADAPT layer for H6 at 1.0 Å and both versions of the
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algorithm. TETRIS-ADAPT-VQE explores the Hilbert space
faster, but just the right amount, as both curves plateau at the
same number. We present numerical evidence in Sec. III D
to demonstrate that the TETRIS strategy does not lose the
remarkable optimizability of ADAPT-VQE.

D. Optimizability

The optimizability of ADAPT-VQE and the parameter
landscape it generates were recently investigated in Ref. [17]
by searching for local minima via random parameter ini-
tializations and subsequent optimizations at each ADAPT
iteration. By virtue of adding a large-gradient operator to
the Ansatz at each layer, ADAPT-VQE generates a steep
parameter landscape near the energy minimum found in the
previous iteration. Furthermore, using the parameters found
in the previous VQE step as the starting point in the new
iteration ensures that ADAPT-VQE focuses on one (possibly
not global) energy minimum, thus “burrowing” through the
parameter landscape. Because the extra operators TETRIS-
ADAPT-VQE adds to the Ansatz at each layer do not interfere
with the largest-gradient one, they do not disrupt the steep pa-
rameter landscape. Instead, they provide additional directions
in which the optimizer can march, thus increasing the chance
of escaping a high-energy trap. For these reasons, we expect
TETRIS-ADAPT-VQE to inherit the favorable features of the
original ADAPT-VQE.

We employ the same technique to show that TETRIS-
ADAPT-VQE possesses the same desirable features as
ADAPT-VQE. Choosing the molecules LiH (at 3.0 Å), linear
H6 (at 1.0 Å), and linear BeH2 (at 2.0 Å) as examples, we
simulate ADAPT-VQE and TETRIS-ADAPT-VQE with the
QE pool and different parameter initialization schemes. At
each ADAPT iteration, 300 random parameter initializations
are drawn from a uniform distribution from −π to +π as the
initial parameters in the Ansatz, which lead to local energy
minima found in subsequent optimization using the BFGS
algorithm. These local minima are compared with the mini-
mum energies found using two other initializations: setting the
newly added parameters to zero while recycling the previously
found optimal parameters, which we refer to as “warm start,”
and setting all the parameters in the Ansatz to zero, referred to
as “cold start.”

From Fig. 7, it is evident that as the dimension of the pa-
rameter space increases, it becomes increasingly improbable
for random initializations to find the minima reached by both
versions of ADAPT-VQE and warm starting, which reliably
lands at minima with errors one to two orders of magnitude
smaller. In Figs. 7(c) and 7(d), and especially in Figs. 7(b)
and 7(f), this ceases to be true in the final iterations, where
the cost function landscape becomes increasingly trap-free.
This is a signature of the phenomenon of overparametriza-
tion, in which the Ansatz has more than a critical number of
parameters such that all relevant directions in state space can
be explored [30]. In this regime, the deep ADAPT burrow
appears to persist as a local minimum and in some cases
perform worse than random initializations as seen in Figs. 7(b)
and 7(f). However, achieving overparametrization generally
requires an unfavorably high number of parameters and uni-
tary rotations (up to exponentially many in the system size,
depending on the Ansatz [31]), and it is not a regime in which

the compact ADAPT-VQE Ansätze are expected to find use
[17,32]. We also note that although cold starting is remarkably
good at finding the ADAPT-VQE minimum, it also requires a
greater number of function evaluations, and its energy does
not decrease monotonically.

This demonstrates the efficacy of the usual initialization
(i.e., warm start) in ADAPT-VQE, regardless of whether
or not the TETRIS strategy is used. With this practical
initialization scheme, the classical optimization in TETRIS-
ADAPT-VQE produces a result equally as good as that of
ADAPT-VQE with a similar number of variational param-
eters, even though at a given layer the dimension of the
parameter space increases by more than 1.

IV. CONCLUSIONS

Quantum simulation algorithms designed for NISQ devices
should account for limited coherence times and noisy gates. In
prior work, ADAPT-VQE, which iteratively grows problem-
tailored Ansätze based on local energy gradient information,
was shown to yield accurate trial wave functions requiring
fewer variational parameters, prepared by shallower circuits
and fewer gates compared with UCCSD [15,16]. In this paper,
we introduce a pool-independent variation of the ADAPT-
VQE algorithm, called TETRIS-ADAPT-VQE, in order to cut
down on the resources needed to carry out a given simulation
task. TETRIS-ADAPT-VQE achieves this in three ways:

(a) Curtailing circuit depths. The original ADAPT-VQE
algorithm adds a single operator per iteration, and more often
than not, the sets of qubits that two consecutive operators act
on intersect. That is, operators added in consecutive layers
cannot be implemented simultaneously at the circuit level, but
instead must be applied in succession. In contrast, TETRIS-
ADAPT-VQE by design adds multiple operators in the same
iteration, each acting on different sets of qubits, allowing them
to be implemented simultaneously in the circuit. This results
in significantly shallower circuits with roughly the same num-
ber of CNOT gates and variational parameters compared with
the original ADAPT-VQE.

(b) Slashing the measurement overhead. Although the oper-
ator gradient measurement step can in principle be performed
in parallel, there will be a finite number of quantum proces-
sors available for a given experiment, and reducing the total
number of shots is desirable. Because TETRIS-ADAPT-VQE
adds multiple operators to the Ansatz at each iteration while
keeping the total number of operators roughly the same, the
number of times the pool gradient needs to be measured
is only a fraction of that of the original algorithm. In the
JW mapping, with the qubit and QE pools, the factor by
which TETRIS-ADAPT-VQE reduces the gradient measure-
ment overhead grows roughly linearly with the system size.

(c) Exploring the Hilbert space faster. By adding multi-
ple operators in tandem, TETRIS-ADAPT-VQE samples the
Hilbert space faster and in more directions, especially in the
early iterations. Because operator addition is still gradient
based and problem aware, the Ansatz does not leave the sub-
space where the solution lives.

Note added. Recently, follow-up work which further com-
pares the differences and analyzes the properties of ADAPT,
TETRIS-ADAPT, and related schemes appeared in a preprint
[33]. The authors confirm our conclusions regarding circuit
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FIG. 7. Convergence curves for (a) and (b) LiH at 3.0 Å, (c) and (d) H6 at 1.0 Å, and (e) and (f) BeH2 at 2.0 Å, for ADAPT-VQE
[(a), (c), and (e)] and TETRIS-ADAPT-VQE [(b), (d), and (f)] using the QE pool. Energy minima found by random parameter initialization
and subsequent optimization at each ADAPT iteration are shown in light green. The warm-start initialization in which parameters are initialized
in their optimal values from the previous ADAPT iteration is shown (purple line). The all-zero parameter initialization (cold start) is also shown
(solid green line).

depth reduction without an increase in the number of varia-
tional parameters, as well as an O(N ) decrease in the number
of operator gradient evaluations. Furthermore, they find that
TETRIS-ADAPT-VQE is less susceptible than ADAPT-VQE
to amplitude-damping and dephasing errors which affect
idling and actively manipulated qubits alike (related to circuit
depth), though not necessarily advantageous when it comes to
depolarizing errors (related to the number of gates).
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