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Quantum networks play an indispensable role in quantum information tasks such as secure
communications, enhanced quantum sensing, and distributed computing. Among the most mature and
promising platforms for quantum networking are nitrogen-vacancy (NV) centers in diamond and other
color centers in solids. One of the challenges in using these systems for networking applications is to
controllably manipulate entanglement between the electron and the nuclear spin register despite the always-
on nature of the hyperfine interactions, which makes this an inherently many-body quantum system. Here,
we develop a general formalism to quantify and control the generation of entanglement in an arbitrarily
large nuclear spin register coupled to a color center electronic spin. We provide a reliable measure of
nuclear spin selectivity, by exactly incorporating into our treatment the dynamics with unwanted nuclei. We
also show how to realize direct multipartite gates through the use of dynamical decoupling sequences,
drastically reducing the total gate time compared to protocols based on sequential entanglement with
individual nuclear spins. We quantify the performance of such gate operations in the presence of unwanted
residual entanglement links, capturing the dynamics of the entire nuclear spin register. Finally, using
experimental parameters of a well-characterized 27 nuclear spin register device, we show how to prepare
with high-fidelity entangled states for quantum error correction. While in this analysis we focus on a
particular NV-diamond-based register, our framework is completely general and applicable to other defects
in diamond and in SiC.
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I. INTRODUCTION

Controlling on-demand quantum nodes with high pre-
cision and scaling up to build large-scale quantum archi-
tectures is the ultimate goal of quantum information
processing. Quantum networks are clusters of nodes
interconnected via communication channels, which transfer
information or distribute entanglement using photons [1].
Long-distance connections are established by breaking
the transmission distance into smaller segments and creat-
ing intermediate entanglement links through quantum
repeaters [2]. Quantum networks enable secure communi-
cation [3–6] between qubit devices and enhance quantum
computing and sensing capabilities [7–9] by using entan-
glement as a resource. Spin registers in solid-state systems

comprise a leading platform for repeater implementation.
Such registers are already realized using nitrogen-vacancy
(NV) centers in diamond [10–12], with a recent milestone
experiment [11] demonstrating a few-node network,
SiV centers in diamond [13,14], and quantum dots [15].
Proposals for hybrid architectures complemented by trans-
ducers [16] or modular designs [17,18] have also been put
forward. In defect platforms, the electronic spin serves as
the communication qubit, because it features a spin-photon
interface, while nearby nuclear spins can serve as long-
lived quantum memories.
A challenge with exploiting the long coherence times of

the nuclear spins is twofold: (i) The interactions between
the nuclear spins and the electronic defect are always on
(not switchable), and (ii) the majority of the nuclear spins
are located at distant lattice sites, which leads to inter-
actions that are weak compared to the dephasing rate of the
defect spin. Fortunately, both these issues can be addressed
simultaneously through the use of dynamical decoupling
(DD) pulse sequences [19]. The parameters associated with
these DD sequences (specifically, the interpulse spacing)
are selected such that, ideally, all nuclear spins except
for one are decoupled from the defect. This effectively
creates a knob to select a target nuclear spin. By varying the
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pulse spacing, different nuclear spins can be selected across
the register. This approach has led to bold first steps toward
distributing entanglement across a network of a few
quantum nodes [11,20], realizing error-correction schemes
[21–23], performing entanglement distillation [12], or
implementing quantum repeater protocols [24].
Despite these seminal experimental demonstrations, criti-

cal challenges remain in exploiting nuclear spins as quantum
memory registers for networks. A key issue is that, due to the
many-body nature of this always-coupled system, the
electron is never fully decoupled from the remaining nuclear
spins, leading to residual electron-nuclear entanglement.
This lowers the fidelity of the gates and can be detrimental
in the operation of the network. An additional consideration
is that, in these DD control protocols, the gates between the
defect and each nuclear spin are implemented sequentially,
which can lead to impractically long operations in the
encoding and decoding steps of quantum error correction.
While these issues can be, in part, addressed by adding
controls to the system, e.g., by directly driving the nuclear
spins through nuclear magnetic resonance [25], this com-
plicates the experiment significantly, leading to a potentially
impractical overhead that could limit scalability.
In this paper, we address these challenges by developing

a formalism that allows us to capture the dynamics of the
full system. This, in turn, enables us to both characterize the
quality of the electron-nuclear gates and to design DD
sequences that can directly create multipartite entangling
gates within the defect-nuclear spin register. A key insight
in our approach is that the form of the Hamiltonian allows
an exact analysis of the whole system in terms of only
bipartite dynamics. We use the notion of one-tangles, an
entanglement measure that captures quantum correlations
between a single spin and a spin ensemble. We present
closed-form expressions for the one-tangles of individual
nuclear spins in the register and of the defect electronic
spin. Remarkably, these one-tangles depend only on two-
qubit Makhlin invariants (parameters that quantify and
classify the entangling power of two-qubit gates). This
critical simplification allows us to systematically determine
the DD sequences that maximize or minimize the one-
tangles as desired for nuclear spin registers containing up
to hundreds of nuclei. We use this approach to find
sequences that create entanglement between the electron
and a target subset of nuclei while simultaneously decou-
pling unwanted nuclei. We show that it is possible to
perform controlled entangling operations involving three
nuclear spins more than 4 times faster than sequential gate
approaches while achieving significantly higher gate fidel-
ities, which capture errors due to the presence of the entire
nuclear register. We further reformulate the three-qubit bit-
flip code in terms of the multispin gates and, using
parameters from the well-characterized 27-qubit device
by the Delft group, we show that the electron’s state can
be retrieved with probability > 99%. Our approach

provides a practical and scalable means for selecting
nuclear spins as quantum memory qubits and for designing
gates among them that can prepare entangled multipartite
states for efficient encoding and decoding steps in quantum
error correction protocols.
The paper is organized as follows. In Sec. II, we review

and generalize existing results on π-pulse sequences used
for controlling single nuclear spins. In Sec. III, we quantify
entanglement in the case of a single nuclear spin coupled to
the electron, and we present our formalism for the entan-
glement distribution in the entire nuclear spin register.
Finally, in Sec. IV, we show how to perform multispin
gates, quantify their gate fidelity in the presence of
spectator nuclei, and show how to use these gates for
quantum error correction codes.

II. CONTROLLING A SINGLE NUCLEAR SPIN

In this section, we describe how a single nuclear spin
coupled to a single defect spin can be controlled via
DD sequences applied to the latter. The application of
periodic trains of pulses on the electron interleaved by free-
evolution periods can either generate single-qubit gates on
a nuclear spin or entangle it with the electronic spin. This is
because dynamical decoupling sequences can modify the
effective electron-nuclear hyperfine interaction, allowing
one to couple a specific nucleus to the electron while
decoupling others. Well-known examples of dynamical
decoupling sequences that have been under investigation
for many decades include the Carr-Purcell-Meiboom-Gill
(CPMG) [26–29] and Uhrig (UDD) [30,31] sequences. In
this section, we review and generalize existing results for
single nuclear spin control via electronic spin driving. In
subsequent sections, we treat the problem of controlling
multiple nuclear spins at the same time.

A. Creating electron-nuclear spin entanglement

We begin with the task of creating electron-nuclear spin
entanglement. It is shown in Ref. [19] that, by choosing the
pulse spacing to satisfy a certain resonance condition that
depends on the hyperfine couplings, it is possible to rotate a
target nuclear spin in a way that depends on the electronic
spin state. This is done using pulse sequences that are
obtained by concatenating a basic “unit” multiple times.
For example, the CPMG sequence can be expressed in
terms of N units as ðt=4 − π − t=2 − π − t=4ÞN , where t is
the duration of the unit and π represents a π pulse. The
pulses are implemented experimentally via a microwave
(MW) drive to directly induce transitions between elec-
tronic spin states. The idealized instantaneous π pulses, in
reality, have finite amplitude and duration; they could be
generated using a vector source [32], whose characteristics
(e.g., frequency, duration, and amplitude) are predefined by
an arbitrary waveform generator, and their shapes could, for
example, be Hermite envelopes [25,33].
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The Hamiltonian for a single nuclear spin (I ¼ 1=2) is
given by [34]

H ¼ ωL

2
1 ⊗ σz þ

A
2
Ze ⊗ σz þ

B
2
Ze ⊗ σx

¼ σ00 ⊗ H0 þ σ11 ⊗ H1; ð1Þ
where σj are the Pauli matrices, ωL is the Larmor frequency
of the nuclear spin, and A and B are the parallel and
perpendicular components of the hyperfine interaction,
respectively. The electron spin operator Ze is defined as
Ze ¼ s0j0ih0j þ s1j1ih1j, where j0i and j1i are the
two levels of the electron spin multiplet used to
define the qubit and sj are the corresponding spin projection
quantum numbers. Furthermore, we define Hj as Hj ¼
1=2½ðωL þ sjAÞσz þ sjBσx�. From the above Hamiltonian,
it follows that the electron-nuclear spin evolution operator
after one unit of the pulse sequence is given by

U ¼ σ00 ⊗ Rn0
ðϕ0Þ þ σ11 ⊗ Rn1

ðϕ1Þ; ð2Þ

where σjj ≡ jjihjj are projectors onto two of the levels in the
electron spin multiplet and Rnj

ðϕjÞ ¼ e−iϕj=2ðσ·njÞ denotes
two different conditional nuclear spin evolution operators
specified by rotation axes nj and angles ϕj. Both nj and ϕj,
in general, depend on the electron’s spin state and on the
pulse sequence. The explicit form of Rnj

ðϕjÞ in the case of
CPMG is found in Appendix A 1.
To create entanglement, we need the two rotation

operators Rnj
ðϕjÞ to differ. It is, in fact, possible to choose

the pulse time t such that the nuclear spin axes are
antiparallel, i.e., n0 · n1 ¼ −1. At the same time, the
coherence function Px, which is the probability for
an electron prepared in state jþi to return to this state
at time t, reaches a minimum. The coherence function
can be expressed as Px ¼ 1=2ð1þMÞ, where M ¼
1
2
ReTr½Rn0

ðϕ0ÞR†
n1
ðϕ1Þ� (see also Ref. [19] and

Appendix B). As shown in Ref. [19], for ϕ0 ¼ ϕ1 ≡ ϕ
(which holds for CPMG), M is given by M ¼
1 − sin2ðϕ=2Þð1 − n0 · n1Þ. By calculating M analytically
using the explicit expressions for the conditional evolution
operators Rnj

ðϕjÞ and by setting n0 · n1 ¼ −1, the reso-
nance times can be obtained. For the CPMG, UDD3,
and UDD4 sequences, we find that these resonances
occur at times

tk ¼
4πð2k − 1Þ

ω̃
; ð3Þ

where ω̃ ¼ ω0 þ ω1, ωj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωL þ sjAÞ2 þ ðsjBÞ2

q
, and

k ∈ Zþ is the order of the resonance. This expression for tk,
which is valid for ωL ≫ A, B, combines and generalizes
known results. For example, the resonance times of Eq. (3)

are shown in Refs. [19,35] for s0 ¼ 0 and s1 ¼ −1, while in
Ref. [13] for s0 ¼ −s1 ¼ 1=2. For the UDD4 sequence,
whose basic unit is q1t − π − q2t − π − q3t − π − q4t −
π − q5t (see Appendix C for definitions of qs), we
find that there are additional resonances at times
tk ¼ 8πð2k − 1Þ=ω̃, which is also reported in Ref. [35].
All resonance times are valid for any electronic spin
projection and any type of nuclear spin with I ¼ 1=2
(e.g., 13C in diamond or SiC or 29Si in SiC).
An electron-nuclear spin entangling gate is achieved

by iterating the sequence an appropriate number N to
accumulate a desired rotation angle on the nuclear spin.
We present the rotation angles for the three pulse
sequences in Appendix C. Sequences with an odd
number of pulses in the basic unit need to be repeated
twice to ensure the electron returns to its initial state.
For CPMG and UDD3 (the latter has the unit q1t − π −
q2t − π − q3t − π − q4t that we repeat twice; see also
Appendix C), we find that the rotation angles per iteration
are equal, i.e., ϕ0 ¼ ϕ1. One way to generate an entan-
gling gate is to set the unit time equal to a resonance time
and repeat the sequence such that it leads to a total angle of
π=2 and, hence, implements aCRxðπ=2Þ gate [19,21]. This is
possible since the evolution operator afterN repetitions of the
basic unit retains the form of Eq. (2) with ϕj replaced by the
total rotation angle ϕjðNÞ, whereas the dot productn0 · n1 is
independent of N at resonance. However, this latter feature
does not hold for any sequence. In principle, one can realize
entangling operations beyond CRxðπ=2Þ, which we explore
later on in Sec. IV.
The UDD4 sequence yields a more complicated evolu-

tion of the nuclear spin, since it rotates by a different
amount, depending on the electron’s state (i.e., ϕ0 ≠ ϕ1).
This condition leads to a nontrivial feature based on which
the dot product of its rotation axes depends on N. Thus,
even if one fixes a resonance time for the basic UDD4 unit,
the nuclear rotation axes can switch from antiparallel to
parallel for some N. This feature is shown in Figs. 1(c) and
1(d) near the resonance time tk¼4πð2k−1Þ=ω̃ and
tk¼8πð2k−1Þ=ω̃, respectively, for the first four UDD4

resonances. In Appendix D, we show that n0 · n1 ¼ 1 at
values of N where the rotation angles ϕ0 and ϕ1 become
equal; since the axes are parallel in these ranges, the nuclear
spin undergoes an unconditional rotation, and no entangle-
ment is generated.
The jumps in n0 · n1 in the case of UDD4 appear

because we restrict the value of the rotation angles in
½0; π�; if the angles are in ½−π; 0�, we make them positive
and reverse the corresponding signs of the rotation axes nj

for consistency. Alternatively, if the rotation angles are not
restricted in this way, the dot product remains fixed at
n0 · n1 ¼ −1 for all N. However, for some N, it could
happen that ϕ0 ¼ −ϕ1 (modulo 2π), which means that
such N cannot produce an entangling gate. It would
then be misleading to claim there is a resonance whenever
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n0 · n1 ¼ −1 for UDD4. Thus, we fix the convention
ϕj ∈ ½0; π� to ensure that we find the right N to produce
conditional rotations on the nuclear spins. This convention
is not necessary for CPMG and UDD3, as it always holds
that ϕ0 ¼ ϕ1, and we can reliably identify N to create
entangling gates. No matter which convention is used for
the rotation angles of CPMG or UDD3, the dot product
shows no dependence on N [Figs. 1(a) and 1(b)].
It is important to note that, in addition to implementing

gates, π-pulse sequences can also average out the inter-
actions of the electron with unwanted spins, ensuring some
degree of selectivity with a target spin. Higher-order
resonances are proven to be more effective in targeting a
desired nuclear spin [35,36]. In turn, this implies that long
sequences are required to achieve enhanced selectivity. In
some cases, the sequences average out even the interaction
with a target nucleus, rendering such spins uncontrollable
or introducing the need for more sophisticated approaches,
such as decoherence protected subspaces [37] (which also
require direct driving of nuclear registers). These issues are
also discussed further later on when we talk about simul-
taneous control of multiple nuclei.

B. Implementing single-qubit gates on a nuclear spin

We can use similar ideas to determine how to implement
single-qubit gates on a nuclear spin without entangling it
with the electron. Let us illustrate this in the case of CPMG.
The CPMG sequence yields a rather simple equation for
the rotation axes dot product of a single nuclear spin,
which reads

1−n0 ·n1¼
4sin2ðθ0−θ1Þsin2ðω0t=8Þsin2ðω1t=8Þ

sin2ðϕ=2Þ ; ð4Þ

where cos θj ¼ ðωL þ sjAÞ=ωj. This expression is exact
for sjB ≪ ωj or fairly in the limit cos θj → 1. Equation (4)
is a generalization of the inner product of Ref. [19], with
the difference that it is presented there for an electron
spin S ¼ 1 (with the choice s0 ¼ 0 and s1 ¼ −1). The
nuclear spin evolves independently of the electron when
n0 · n1 ¼ 1 and ϕ0 ¼ ϕ1. For the CPMG sequence, it
always holds that ϕ0 ¼ ϕ1. Thus, using Eq. (4) and by
requiring that n0 · n1 ¼ 1, we find two conditions for the
decoupled evolution:

�
Aþ ωL

sj

�
2

þ B2 ¼
�
8κπ

sjt

�
2

; ð5Þ

which are the equations of a circle with center
C ¼ ð−ωL=sj; 0Þ and radius R ¼ 8κπ=sjt [with κ ∈ Z
and t being the time of one CPMG unit]. Note that for a
S ¼ 1 defect electron spin, and if sj ¼ 0, the decoupled
evolution happens at times t ¼ 8κπ=ωL for all nuclei.
Using Eq. (5), one can identify nuclei that do not affect
the gate fidelity of target nuclear spins, as the former show
no correlations with the electron. Notice that these con-
ditions are independent of the number of repetitions of the
sequence, as the dot product itself does not depend on N.
In addition, since the evolution operator of the system is
defined by the rotation each spin undergoes, this feature
continues to hold in the total system. We use the condition
for decoupled evolution in Sec. IV B to show that such
spins have no effect on the gate operations with target
nuclei. For now, we stress that Eq. (5) is valid for
ð8κπ=sjtÞ2 > ðAþ ωL=sjÞ2, while we also constrain the
κ=t range such that A;B ≤ 2π · 300 kHz, i.e., such that the
nuclei are weakly coupled with the electron. Some exam-
ples for an electron-spin S ¼ 1=2 (s0 ¼ −s1 ¼ 1=2) and
S ¼ 3=2 (s0 ¼ 3=2; s1 ¼ −1=2) are shown in Figs. 2(a)
and 2(b), respectively. One notices that the times t of the
basic sequence exceed a few microseconds. In turn, this
implies that the condition of the trivial evolution is strictly
satisfied for k ≥ 2 CPMG resonances of the spins with
hyperfine (HF) parameters shown in Fig. 2. In Appendix E,
we further show that trivial evolution can occur for shorter
times of the basic unit, although the triviality is only
approximate in this case.

FIG. 1. Dot product of nuclear spin rotation axes for (a) CPMG,
(b) UDD3, and (c),(d) UDD4 versus the number of iterations N of
the basic pulse sequence unit at the first four (k ∈ ½1; 4�)
resonances of a target spin [ðA;B;ωLÞ¼2π ·ð80;25;314Þ kHz]
for an electronic spin with S¼1=2. For CPMG and UDD3, n0 · n1

is independent of N, since the rotation angles ϕ0 and ϕ1 per
iteration are equal. For UDD4, the dot product jumps between −1
and þ1 due to the different rotation angles ϕj. In the ranges where
n0 · n1 ¼ 1, it holds that ϕ0 ≈ ϕ1, and the rotation of the nuclear
spin is unconditional on the electron. In (c) we consider the
resonance time 4πð2k − 1Þ=ω̃ and in (d) the time 8πð2k − 1Þ=ω̃.
The times for (a) are tk ¼ ð3.1822; 9.5465; 15.9108; 22.2751Þ μs
(b) tk ¼ ð3.1850; 9.5537; 15.9124; 22.2805Þ μs, (c) tk ¼ ð3.1857;
9.5481; 15.9169; 22.2737Þ μs, and (d) tk ¼ ð6.3661; 19.0883;
31.8190; 44.5509Þ μs. For the UDD sequences, we optimize the
time around the resonance.
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III. QUANTIFYING ENTANGLEMENT IN THE
ELECTRON-NUCLEAR SPIN SYSTEM

Controlling multiple nuclear spins is usually done by
applying additional radio-frequency pulses that drive the
nuclear spins directly to facilitate entangling gates, in terms
of either speed or precision, or even to reduce crosstalk
[25]. It is also possible to control multiple nuclear spins by
driving only the defect electronic spin. The most straight-
forward way to do this is by implementing entangling gates
sequentially using the techniques for addressing individual
nuclear spins described in the previous section. However,
the slowness of this approach can result in low entangle-
ment and gate fidelities due to the electron’s dephasing, as
errors on the electron spread to the nuclei. This issue can, in
principle, be addressed by applying dynamical decoupling
on the electron or nuclei while new entanglement links are
generated [11]; reaching long coherence times, however,
requires a large number of pulses (e.g., for coherence > 1 s
for an NV electronic spin, 10240 pulses are required [38]).
Hence, as the number of target nuclear spins grows, the
experimental overhead increases significantly.
In what follows, we show that these challenges can be

largely sidestepped by creating multinuclear entanglement
simultaneously rather than sequentially. To see how this
works, we first discuss how to quantify multispin entangle-
ment in these types of defect spin systems. We first consider
measures of entangling power for a single nuclear spin
coupled to the electron and then generalize this to multiple
spins using the concept of one-tangles. In subsequent
sections, we then show how to employ these measures to
guide the design of multinuclear spin entangling gates.

A. Disjoined picture

The joint evolution of the electron and a single
nuclear spin can be described via the Makhlin (or local)

invariants [39], typically denoted as G1 and G2. These
invariants classify all two-qubit operations into distinct
entangling classes, such that gates sharing the same local
invariants belong to the same entangling class. This
property stems from the fact that local operations do not
change the amount of entanglement between two parties.
Entangling gates that give rise to maximum correlations are
known as perfect entanglers; examples include the CNOT

and CZ gates, which are locally equivalent. CNOT, CZ, and
other two-qubit gates equivalent to them up to single-qubit
gates have G1 ¼ 0 and G2 ¼ 1.
For any arbitrary π-pulse sequence, the electron-nuclear

evolution operator after N repetitions of the sequence
retains the form of Eq. (2), with ϕj replaced by the total
rotation angle ϕjðNÞ. This special form of the evolution
operator allows us to find the analytical forms ofG1 andG2

and, thus, to understand what type of entanglement any
arbitrary π-pulse sequences can generate. In other words,
knowing G1 andG2 allows us to classify the two-qubit gate
of Eq. (2) into an entangling class and find under which
conditions this gate becomes a perfect entangler. In our
case, we find that G1 and G2 as a function of N read

G1 ¼
�
cos

ϕ0ðNÞ
2

cos
ϕ1ðNÞ

2
þ n01 sin

ϕ0ðNÞ
2

sin
ϕ1ðNÞ

2

�
2

;

ð6Þ

G2 ¼ 1þ n01 sinϕ0ðNÞ sinϕ1ðNÞ

þ 2

�
cos2

ϕ0ðNÞ
2

cos2
ϕ1ðNÞ

2

þ n201 sin
2
ϕ0ðNÞ

2
sin2

ϕ1ðNÞ
2

�
; ð7Þ

where n01 ≡ n0 · n1 and with G1 ∈ ½0; 1� and G2 ∈ ½1; 3�.
Based on these ranges, one notices that π-pulse sequences
can generate perfect entangling gates only in the CNOT-
equivalent class, for which it holds that ðG1; G2Þ ¼ ð0; 1Þ.
Under the resonance condition (n01 ¼ −1), the first
Makhlin invariant simplifies to G1 ¼ cos2½ϕ0ðNÞ þ
ϕ1ðNÞ=2�, and requiring G1 ¼ 0 gives the number of
sequence iterations needed to obtain a controlled gate.
To estimate the number of repetitions N, we need only to
know the rotation angles in one iteration. The minima ofG1

are located at N ¼ ð2κ þ 1Þπ=ðϕ0 þ ϕ1Þ. In general, G1

can be zero for other N as well, as long as n0 · n1 ≤ 0. We
provide the analytical expressions for N for this general
case in Appendix G and use these conditions to identify
nuclear spin candidates to realize simultaneous controlled
gates in Sec. IV.
While Makhlin invariants are suitable for classifying

two-qubit gates, a more general metric that omits details of
the gate structure and focuses instead on the entanglement
it can generate is the entangling power [40]. It is shown that

FIG. 2. Hyperfine parameters of nuclear spins that undergo a
trivial evolution under the CPMG sequence. Each circle corre-
sponds to a constant time of one CPMG unit and different value
of κ [see the main text]. In (a), we select the electron’s spin
projections s0 ¼ −s1 ¼ 1=2 and in (b) s0 ¼ 3=2 and s1 ¼ −1=2.
The Larmor frequency is considered to be ωL ¼ 2π · 314 kHz.
For illustration purposes, we show mainly times t ∈ Zþ, but t
could also take any positive noninteger values.
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the entangling power of a two-qubit operator can be
expressed in terms of G1 as [41]

ϵp ¼ 2

9
ð1 − jG1jÞ: ð8Þ

It is clear that forG1 ¼ 0 the entangling power is maximized
and saturates to ϵ�p ¼ 2=9 for the two-qubit case. In Fig. 3,we
show the entangling power (scaled by 2=9) and Makhlin
invariants for the CPMG, UDD3, and UDD4 sequences. The
vertical lines correspond to the minima ofG1. We notice that
the period of oscillations is smaller for CPMG, since the
angle per iteration is greater compared to the UDDn
sequences (see Appendix H and Ref. [35]).

B. Assessing multispin entanglement via one-tangles

To understand the entanglement distribution in the total
system (consisting of the electron and multiple nuclei),
we need to extend the notion of the two-qubit entangling
power. To this end, we employ the one-tangles [42,43],
which measure the total amount of entanglement in a state
by considering all possible bipartitions of the system. That
is, by fictitiously dividing the total system into subsystems,
one can quantify the degree of correlations between the
subsystems (also known as the bipartition entanglement).
We choose to use the one-tangle as the entanglement

metric, which means for each bipartition that we separate
only one qubit (electron or nuclear spin) from the rest
of the system.
One-tangles carry only the information of the entangle-

ment capacity in the system and cannot distinguish states
that belong to different families (e.g., W states versus
Greenberger-Horne-Zeilinger states for the tripartite
case) [44]. Such a metric is convenient, since we are
interested in the general evolution of the system rather than
generating particular entangled states.
Similar to the two-qubit entangling power, the one-

tangles are defined through the linear entropy. For a pure
state jψi, the one-tangle reads

τgjg0 ðjψiÞ ≔ 1 − tr½ρ2g0 �; ρg0 ¼ trg½jψihψ j�; ð9Þ

where gjg0 denotes a bipartition of the system. Some
authors include an overall multiplicative factor of 2 for
the linear entropy; we choose not to follow this convention,
as it simply redefines the bounds of the linear entropy and
does not affect our following analysis.
Equation (9) in its current form is not particularly useful

for quantifying the entanglement of multinuclear opera-
tions, since it depends on the initial state. We must,
therefore, average over initial states. In particular, we
use the bipartition entangling power, which is defined as
the average of the one-tangle over all initial product states.
This average can be computed by averaging over single-
qubit unitaries Ui, applied to a fixed initial product state
jψ0i, that is, jΨi ≔ jψ ii⊗i ¼ U⊗i

i jψ0i⊗i, giving rise to
ϵgjg0 ðUÞ ≔ hτgjg0 ðUjΨiÞiUi

. The index i ranges from
i ¼ 1;…; n, where n is the total number of qubit systems.
In Ref. [44], it is shown that the entangling power (with
one-tangles as the measure) for a bipartition pjq of the
system is given by

ϵpjqðUÞ ¼ 1 −
�Yn

i¼1

di
di þ 1

�X
x0jy0

trfðtrpx0 ½jUihUj�Þ2g; ð10Þ

where di ¼ 2 is the dimension of each qubit subsystem.
The state jUi is defined in the context of the Choi-
Jamiołkowski isomorphism [45,46], which maps any pro-
jector living in a d-dimensional Hilbert space (Hd) into a
state vector in an extended space (Hd2 ≡H ⊗ H0), i.e.,
jiihj0j ↦ jij0i. In our case, d ¼ 2n, where n is the number
of qubits, including the electron and the nuclei. x0jy0
denotes a bipartition in the secondary system of the total
extended space. The summation is performed over all 2n

bipartitions in H0. For example, for the tripartite case,
we have x0jy0 ∈ f102030j·; 1020j30; 1030j20; 2030j10; 10j2030;
20j1030; 30j1020; ·j102030g, where “·” is the empty bipartition.
Equation (10) is applicable for multipartite unitary gates,
with q referring to a single qubit partitioned from the
d-dimensional Hilbert space Hd and p referring to the
remaining (d − 1)-dimensional subsystem. As an example,

FIG. 3. Scaled entangling power (ϵp=ϵ�p, blue line) and Makhlin
invariants (G1, red lines; G2, yellow lines) as a function of the
number of repetitions of the CPMG (top) and UDD3 or UDD4

(bottom) units for a single nuclear spin. The dotted lines corre-
spond to the analytically expected minima of G1 (see the text). We
consider the k ¼ 1 resonance for each sequence. The times for the
UDDn sequences are optimized around the analytical resonance
time [ðtCPMG; tUDD3

; tUDD4
Þ ¼ ð3.1811; 3.1852; 3.1862Þ μs]. For

the nuclear spin, we set ðA; B;ωLÞ ¼ 2π · ð60; 30; 314Þ kHz,
and for the electron’s spin projections s0¼−s1¼1=2. ϵ�p ¼ 2=9
is the maximum value the entangling power can take.
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for four qubits in total, pjq can take the values
pjq ∈ f123j4; 124j3; 134j2; 234j1g.
In the case of π-pulse sequences, the evolution operator

has a special form given by

U ¼
X

j∈f0;1g
σjj ⊗L

l¼1 R
ðlÞ
nj
ðϕðlÞ

j Þ; ð11Þ

where L is the total number of nuclear spins and, for

conciseness, we refer to ϕðlÞ
j ðNÞ as simply ϕðlÞ

j . The
evolution operator is, therefore, defined by the evolution
of each nuclear spin in the disjoined picture (see
Appendix A 1 for a proof). This feature allows us to obtain
analytical expressions for the average of the one-tangles
for any number of nuclear spins. However, we need to
distinguish the case when either a single nuclear spin or the
electron is partitioned from the rest of the system. For
brevity, we refer to these types of average one-tangles as
the one-tangle of a nuclear spin and the one-tangle of the
electron, respectively.
We find that the one-tangle of a single nuclear spin, when

partitioned from the remaining electron-nuclear register, is
given by (see Appendix J)

ϵnuclearpjq ¼ ϵ�pð1 −G1Þ; ð12Þ

which holds for n ≥ 3 qubits. For n ¼ 2, the average of the
one-tangle is the two-qubit entangling power of Eq. (8). G1

is given by Eq. (6), and ϵ�p ¼ 2=9 is the maximum value the
nuclear one-tangle can take. Note that, as is expected, the
one-tangle of a nuclear spin does not depend on other
quantities besides those that determine its evolution (due to
the tensor product form of the total evolution operator U).
In other words, partitioning a different nuclear spin from
the register changes Eq. (12) through its G1, describing a
different amount of entanglement between the partitioned
spin and the remaining electron-nuclear register. Although
Eq. (12) coincides with the two-qubit entangling power of
Eq. (8) in the disjoined picture, the meaning of the two
equations is different. If we ignore the presence of all nuclei
but one, then Eq. (8) effectively tells us whether the two-
qubit unitary generated by the sequence can prepare an
electron-nuclear Bell state. Once we consider arbitrarily
many spins, Eq. (12) does not strictly tell us how many Bell
pairs we can create, as it instead describes correlations in
the multispin register and, therefore, needs to respect the
monogamy of entanglement.
In the case when the electron is partitioned from the

system, the one-tangle reads (see Appendix J)

ϵelectronpjq ¼ 1

3
−

1

3n

Yn−1
i¼1

ð1þ 2GðiÞ
1 Þ; ð13Þ

where GðjÞ
1 ≡G1ðϕðjÞ

0 ;ϕðjÞ
1 ; nðjÞ01 Þ contains the information

of the evolution of the jth nuclear spin. The one-tangle of
the electron now includes contributions from the evolutions
of each nuclear spin; due to the always-on nature of the HF
interaction, the electron can be correlated with all nuclei.
On the other hand, we see from Eq. (12) that a single
nuclear spin can have explicit correlations only with the
electron and evolves independently of all other nuclei
(assuming no internuclear spin interactions).
Remarkably, the expressions for the one-tangles,

Eqs. (12) and (13), allow us to study the entanglement
distribution in an arbitrarily large nuclear spin register.
Together with the knowledge of the evolution of each
nuclear spin in the disjoined picture, we can simulate
efficiently a large number of nuclei and obtain complete
information about the dynamics of the system. The sim-
plicity of Eqs. (12) and (13) is what allows us to obtain a
detailed understanding of how entanglement gets distrib-
uted throughout the system for various pulse sequences, as
we discuss in the remainder of the paper.
One thing we can immediately see from Eq. (12) is that

the one-tangle of a nuclear spin is minimized when the
function G1 is maximized. This can happen when the
nuclear spin undergoes a trivial evolution, namely, when
n0 · n1 ¼ 1 (n0 · n1 ¼ −1) and ϕ0 ¼ ϕ1 (ϕ0 ¼ −ϕ1). The
range of the function G1 is shown in Figs. 4(a) and 4(b) for

FIG. 4. FunctionG1 versus the rotation angles ϕj for the case of
n0 · n1 ¼ 1 (a) and n0 · n1 ¼ −1 (b). (c) Maximum one-tangles
as a function of the number of qubits for the case when the
electron (blue line) or a single nuclear spin (red line) is partitioned
from the rest of the system. The yellow line is the theoretical
maximum bound for a perfect UðnÞ entangler, while the purple
line is the numerical bound we find for randomly generatedUðnÞ,
obtained by retaining the maximal value over 100 random
unitaries for n ¼ 4, 5 and five random unitaries for n ¼ 6. For
n ¼ 3, we construct a UðnÞ from an absolutely maximally
entangling (AME) state. Such UðnÞ saturates the bound, if the
AMEð2n; dÞ state exists (in this case, d ¼ 2).
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the cases of n0 · n1 ¼ �1, respectively. Whenever G1 ¼ 0,
the one-tangle of a nuclear spin is maximal, whereas when
G1 ¼ 1, the nuclear spin decouples from the system. In
Fig. 4(c), we show the maximum one-tangle when a
single nuclear spin (red line) or the electron (blue line) is
separated from the rest of the spins. As expected, the
maximum nuclear one-tangle is independent of the num-
ber of total qubits in the system and saturates to the
value 2=9, which also holds for two-qubit operations. On
the other hand, the electron’s one-tangle shows an
increase with the number of qubits until it becomes
independent of n and saturates close to 1=3.
In light of these results, it is interesting to ask whether

it is possible to achieve maximal entangling power by
applying π pulses to this central spin system. In Fig. 4(c),
we also show the bound of the bipartition entanglement
for an arbitrary n-qubit gate UðnÞ (yellow line), which is
calculated according to [44]

ϵmax
pjq ¼ 1 −

Y
i

di
di þ 1

X
x0jy0

1

min½dpx0 ; dqy0 �
; ð14Þ

where dpx0 and dqy0 are the dimensions of the subsystems
px0 and qy0, respectively. Interestingly, this bound is
never reached by π-pulse sequences. However, this upper
bound is not always tight. A necessary requirement for the
bound to be tight is that the CP maps associated with UðnÞ
are unital [40], which means that they map maximally
mixed states onto maximally mixed states. This condition
alone is not sufficient, since, as shown in Ref. [40], for the
two-qubit case, the bound given by the linear entropy
(which is 1=3) is never saturated, and the well-known
perfect entanglers, such as CNOT, can reach only the value
of 2=9. The saturation of the bound occurs when the matrix
elements ofUðnÞ can be obtained from so-called absolutely
maximally entangling states, known as AMEð2n; dÞ,
if these exist [44]. For d ¼ 2 (i.e., qubit subsystems),
AMEðn; dÞ states exist only for n ¼ 3, 5, 6 [47]. In
Fig. 4(c), we show that the bound is indeed saturated for
n ¼ 3 [for which AMEð2n; dÞ exists], if we construct such
UðnÞ based on Ref. [44], for an AMEð2n; dÞ state found in
Ref. [48]. For n ¼ 4, 5, 6, we generate random n-qubit
unitaries UðnÞ and calculate the maximum value of one-
tangles; the results are depicted with a purple line.
Although we do not sample a large number of UðnÞ, we
see that the maximum bipartition entanglement of random
unitaries exceeds the bound of the one-tangles correspond-
ing to π-pulse sequences. Therefore, the multipartite con-
trolled gates generated by π-pulse sequences applied to this
central spin system do not saturate the one-tangle bound for
n ≥ 3, and, hence, the amount of entanglement they can
create is limited.
We now illustrate the utility of Eqs. (12) and (13) by

using them to design electron-nuclear entangling gates
that avoid unwanted nuclei. We first consider the simplest
example of two nuclei under the CPMG sequence, for an

electron spin S ¼ 1=2. We fix the HF parameters of the
target spin to be ðA; BÞ ¼ 2π · ð60; 30Þ kHz and allow the
HF parameters of the second spin to vary in the range
2π · ½10; 200� kHz. The nuclear spin Larmor frequency is
set to be ωL ¼ 2π · 314 kHz; for 13C atoms, this corre-
sponds to a magnetic field of B ≈ 293.46 G. Depending on
the defect electronic spin, the B field should be chosen such
that it ensures the MW qubit transitions are far from
anticrossings, and, hence, leakage outside of the electronic
qubit subspace is suppressed [32].
In Fig. 5(a), we select the first resonance of the target

spin and N ¼ 25 sequence iterations, which maximize its
one-tangle, and show the one-tangle of the unwanted
spin (scaled by the maximum value of 2=9). In the ranges
where the one-tangle of the unwanted spin is minimal, we
successfully decouple it from the rest of the spins. We
verify that these ranges correspond to nuclear spins whose
HF parameters approximately satisfy the condition for
trivial evolution; we further depict this behavior for an
S ¼ 1 electron system in Appendix E.
Based on Fig. 5(a), we would conclude that certain

unwanted nuclei cannot be decoupled, as they show non-
zero entanglement with the rest of the system. If one wishes
to target a specific spin with high selectivity, then different
resonance times and sequence iterations need to be con-
sidered. Note that this effect would be completely missed in

FIG. 5. Controlling a target nuclear spin with parameters
ðA; B;ωLÞ ¼ 2π · ð60; 30; 314Þ kHz, in the presence of an un-
wanted spin with HF parameters ∈ 2π · ½10; 200� kHz. (a) One-
tangle of the unwanted spin scaled by the maximum bound of
ϵ�p ¼ 2=9. The time of one sequence unit is the first resonance of
the target spin, and the number of iterations is N ¼ 25, which
maximize its one-tangle. (b) Minimization of the unwanted spin’s
one-tangle using the first five (k ¼ 1;…; 5) resonances of the
target spin and up to 300 pulses on the electron. Optimal
sequence iterations (c) and optimal resonance (d) to minimize
the unwanted spin’s one-tangle while keeping the one-tangle for
the target spin maximal. In all plots, we consider an electron spin
S ¼ 1=2 and the CPMG sequence.
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prior formulations of this problem, and the issue of
insufficient decoupling would appear only in numerics,
where the simulations would have to be repeated for all
the different physically relevant hyperfine couplings. In
Fig. 5(b), we show the minimal value of the unwanted
spin’s one-tangle (excluding the case of same HF param-
eters for the unwanted and target nuclei), which is opti-
mized over the first five resonances of the target spin and up
to 300 repetitions of the sequence. We search only over
iterations that generate maximal entanglement between the
target nucleus and electron, which we obtain from the
minima of G1. The optimal iterations and resonances are
shown in Figs. 5(c) and 5(d), respectively. The optimization
yields minimum one-tangles on the order of approximately
10−3 for the unwanted spin, providing isolation for the
electron-target nuclear spin system. We conclude that using
the analytical expressions of the one-tangles to minimize
unwanted one-tangles via optimization of the parameters of
the π-pulse sequence provides a faithful metric of selec-
tivity with a single target spin.
Lastly, it is interesting to note that Fig. 5(a) reveals that

the unwanted spin’s one-tangle can be maximal (depending
on its HF parameters) at the same time t and repetitions N
we choose for the target spin. This feature is further studied
in Sec. IV and paves the path to identifying nuclei that
synchronously undergo controlled gates.

IV. SYNCHRONOUS CONTROLLED GATES ON
MULTIPLE NUCLEI

A. Maximization of multiple one-tangles

As we saw in Sec. III B, one-tangles corresponding to
different nuclei can be maximized or minimized simulta-
neously and for the same number of repetitions of the
sequence unit. This suggests that, instead of generating
entanglement with single spins sequentially, one can
simultaneously entangle multiple nuclei with the electron.
In this section, we confirm that this is indeed the case.
To see how such direct generation of multispin entan-

glement is possible, we devise a simple strategy of
identifying nuclei whose one-tangles become simultane-
ously maximal. To demonstrate our method, we select
nuclei randomly from the HF range 2π · ½10; 200� kHz.
There are two relevant parameters we need to decide how
to fix: the time t of one unit of the sequence and the
repetitions N. We fix t by setting it equal to a chosen
resonance of the first randomly selected nucleus. For this
nucleus, we find the iterations that maximize its one-tangle,
based on the minima ofG1, and store these into the set Ñð1Þ.
Since the time we choose does not, in principle, coincide
with a resonance of other randomly selected nuclei
(as the HF parameters differ), it holds, in general, that
n0 · n1 ≠ −1 for these nuclei, meaning that we need a
reliable way of estimating iterations that maximize their
one-tangles. As long as n0 · n1 ≤ 0 for a single nuclear
spin, the one-tangle can be maximal for some N. We

explain how we find the maxima (analytically for CPMG
and UDD3 and numerically for UDD4) in Appendix G.
Based on the maxima, we assign to each nucleus a set ÑðjÞ,
similar to what we did for the first nucleus. Then, we search
for a common intersection, i.e., one number of iterations of
the sequence that belongs to multiple sets [∩n−1

j¼1 Ñ
ðjÞ]. The

first set we fix is that of the first randomly chosen spin, and
then we test its intersection with the remaining sets.
Nuclear spins whose sets have zero intersection with this
initial fixed set are removed. In the end, we obtain a
particular value of iterations (N�) and nuclear spin candi-
dates that can participate in a multipartite gate.
In the simulations that follow, we assume an electron

spin S ¼ 1=2 that could correspond to SiV− or SnV− defect
in diamond [49–52]. We further set the nuclear Larmor
frequencies to be ωL ¼ 2π · 314 kHz. The HF range
2π · ½10; 200� kHz we choose for the nuclei, for instance,
corresponds to the median of the HF distribution for an
isotopic concentration of approximately 10−3 in SiC [36].
Such nuclei are weakly coupled, since the HF parameters
are smaller than 1=T�

2, which is typically a few megahertz
[53,54] for NV centers, or, in general, for A;B ≪ 1 MHz
[55] (approximately 1 MHz is also the electron linewidth
for the neutral divacancy in SiC [36]). For HF strengths
> 2π · 6 kHz, the nuclei are within a distance of R < 15 Å
from the vacancy site, while for strengths on the order
of 2π · 1 kHz, they are within R ∼ 25 Å [56]. More precise
ranges of HF values and distances from the vacancy
are shown in Table I. The HF values for our following
simulations, and estimations of the nuclear positions
relative to the vacancy, are listed in Appendix K 1. To
ensure that the spins selected via random generation are
distinct, we give a bound on how different the HF values

TABLE I. Range of hyperfine parameters and corresponding
distances from the vacancy site for 13C atoms and 29Si atoms in
diamond or SiC. Explicit values ðA; BÞ are shown in parentheses;
otherwise, we provide approximate ranges.

HF range ð A
2π ;

B
2πÞ

(MHz)
Distance from
vacancy site (Å) Atoms

100–200 [57] 1.61
(first neighbor)

13C (NV diamond)

About 10–20 [57] 3.86 13C
(19.4,13.9) [58] (third neighbor) (NV diamond, Cg [58])
About 4 [59] 3 (sites G and H) 13C (NV diamond)
About 2 [60] 5 13C (NV diamond)

HF range
ð A
2π ;

B
2πÞ (kHz)

Distance from
vacancy site (Å) Atoms

60–120 [61] 6.8 13C (NV diamond)
20–50 [61] 8–9 13C (NV diamond)
2–20 [61] 11.5 13C (NV diamond)
(10,29) [62] 11.6 29Si (SiC)
(0.65,11.45) [36] 12.4 29Si (SiC)
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should be; e.g., for CPMG, we require that at least one
of the HF values differs by at least 2π · 25 kHz from
the rest. This bound is set to a reasonable value so that
we generate enough nuclei within the HF range but with
distinct enough HF values. In the following, we study two
different resonances for CPMG, UDD3, or UDD4, and,
for each resonance, we perform a distinct random gen-
eration of nuclei.
Considering the first resonance (k ¼ 1 of one of the

target spins) and using the CPMG sequence, we show ten
nuclear spin one-tangles [Fig. 6(a)] that are maximized for
a unit time t ¼ 3.1874 μs. In Fig. 6(b), we show the dot
product of the rotation axes of each of the ten nuclei. It is
apparent that the axes of each spin are nearly antiparallel,
since, for k ¼ 1, the individual resonance times have only a

small deviation from t ¼ 3.1874 μs. Consequently, the
only way for the one-tangles to be maximized is that the
nuclei rotate with ϕ0ðN�Þ ¼ ϕ1ðN�Þ ≈ π=2 [see Eq. (6)],
and, hence, the realized gate is close to a multipartite
CRxðπ=2Þ. It is interesting to notice that, based on Table II,
nuclear spins 6 and 7, 2 and 5, and 4 and 8, as well as
spins 1 and 9, have similar A values. In Ref. [21], it is
reported that two weakly coupled nuclear spins (one of
them is a spectator unwanted nucleus) show similar A
values, and, thus, the controlled gate on one of them also
rotates the other one (potentially leading to unwanted
residual entanglement), but this effect is not quantified
in their quantum error correction scheme.
In Figs. 6(c) and 6(d), we again show nuclear spin

one-tangles and rotation axis dot products but now for the

FIG. 6. Nuclear one-tangles (scaled by the maximum value ϵ�p ¼ 2=9) versus accumulated rotation angle for CPMG (a) [ðN�; kÞ ¼
ð56; 1Þ] and (c) [ðN�; kÞ ¼ ð8; 2Þ], UDD3 (e) [ðN�; kÞ ¼ ð487; 1Þ] and (g) [ðN�; kÞ ¼ ð93; 3Þ], and UDD4 (i) [ðN�; kÞ ¼ ð252; 1Þ] and
(k) [ðN�; kÞ ¼ ð41; 2Þ]. The different lines correspond to nuclear spins that we label with an integer index j. The dot product of nuclear
rotation axes close to k ¼ 1 CPMG resonance (b), k ¼ 2 CPMG resonance (d), k ¼ 1 UDD3 resonance (f), k ¼ 3 UDD3 resonance (h),
k ¼ 1 UDD4 resonance (j), and k ¼ 2 UDD4 resonance (l). The vertical lines in the dot product panels denote the common time of the
basic unit used to evaluate the corresponding one-tangles and is the resonance of nuclear spin “1.” In (i) and (k), the lines with circles
correspond to ϕ0 and the lines with diamonds to ϕ1. The nuclear spins for each set ðN�; kÞ of each sequence are different and are
provided in Tables II (CPMG), III (UDD3), and IV (UDD4) in Appendix K.
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k ¼ 2 resonance. As the order of the resonance increases,
the individual resonance times show a larger dispersion,
leading to nuclear rotation axes that deviate from being
antiparallel. For multiple nuclei to be (close to) maximally
entangled with the electron, they would then have to
compensate for this feature by rotating by an angle ϕ0

that differs from π=2 [Fig. 6(c)].
We can perform a similar analysis for the UDD3

sequence for which again the rotation angle of each nucleus
is independent of the electron’s state, i.e., ϕ0 ¼ ϕ1. The
basic UDD3 unit now contains an odd number of pulses
and, thus, needs to be repeated twice. For this reason, the
UDD3 angle per iteration is smaller than those of CPMG or
UDD4 (see Appendix H and Ref. [35]), implying higher
precision on the accumulated angle but slower multipartite
gates. This behavior is verified in Fig. 6(e), where we plot
the one-tangles of 11 nuclear spins versus their accumu-
lated rotation angle, which is very close to π=2. As the first
resonance is very sharp [see Fig. 6(f)], the nuclear rotation
axes are very close to antiparallel. This gives rise to very
high entanglement but a long sequence with N� ¼ 487
repetitions. However, one can impose restrictions on the
total time and still find very high one-tangles for the k ¼ 1
UDD3 resonance.
On the other hand, for k ¼ 3 [Fig. 6(h)], the resonance is

broader, and, hence, the rotation angles of the target nuclei
deviate, in general, from π=2 [Fig. 6(g)], similar to what we
observed for CPMG. The k ¼ 1 UDD3 resonance leads to
higher entanglement, since the unit time is smaller than
for k ¼ 3, implying greater precision in the accumulated
rotation angle per iteration. Of course, one reason for the
difference between the two resonances is the random
selection of HF values, which is distinct in the two cases.
In addition, the chosen number of sequence repetitions
might not be optimal for k ¼ 3. It is not surprising that
particular resonances and iterations can lead to better
nuclear spin control, as the rotation angle depends on both
the sequence time andN. SinceN takes discrete values, this
implies that features of over- or underrotation result in
imperfect entanglement.
Lastly, we consider the UDD4 sequence. In this case, the

rotation angle of each spin depends on the electron’s state,
and we cannot estimate analytically the maxima of one-
tangles; instead, we identify them via numerical search.
In Fig. 6(i), we show the one-tangles versus the rotation
angles (ϕj) for nine nuclei selected from the randomly
distributed ensemble, for k ¼ 1 [lines with circles (dia-
monds) show ϕ0 (ϕ1)]. The dot product of the nuclear axes
is shown in Fig. 6(j). Even though the dot product shows
nontrivial jumps (due to ϕ0 ≠ ϕ1), one can still obtain
appreciable entanglement with multiple nuclei. The one-
tangles in Fig. 6(k) and the dot products in Fig. 6(l)
correspond to the k ¼ 2 resonance. The entangling oper-
ations for UDD4 are, in general, faster than for UDD3,
since the former induces a larger nuclear spin rotation.

An interesting feature that emerges from ϕ0 ≠ ϕ1 is that the
nuclei undergo a more complicated evolution, and entan-
glement generation can occur for multiple sets of rotation
angles and axes. For example, we see that in both Figs. 6(i)
and 6(k) it can happen that ½ϕ0ðN�Þ;ϕ1ðN�Þ� ≈ ð0; πÞ (or
vice versa), realizing a CRðπÞ operation with that particular
nuclear spin [see Table IV in Appendix K 1]. This is not
surprising, since, based on Eq. (6) for n0 · n1 ¼ 0 [see
spin “7” in Fig. 6(l)], G1 ¼ 0 if either ϕ0ðNÞ or ϕ1ðNÞ
is ð2κ þ 1Þπ.

B. Effect of unwanted spins on gate fidelity

Using the language of one-tangles, we showed that it is
possible to realize direct multipartite gates, providing a
speedup compared to sequential entanglement-generation
schemes. However, the gate fidelity could still be affected
by unwanted nuclei, especially if these become entangled
with the electron. We now examine this issue.
To keep the discussion general, let us consider L nuclear

spins in total, with K of them corresponding to the target
nuclei that show maximal one-tangles. The L − K
unwanted nuclei affect the target gate, since, in general,
they have a nonzero degree of entanglement with the
electron. This means that projecting the evolution operator
onto the target subspace would result in a nonunitary gate.
In Appendix A 2, we show how this can be avoided by
using the Kraus operator representation of the partial trace
channel, based on which we can work directly with the total
evolution operator and do not need to specify an initial state
for the system. The operator-sum representation [63] allows
us to derive an analytical expression for the gate fidelity of
the target subspace. As a target gate U0, we consider the
evolution operator of the K target spins in the absence of
the unwanted spins, i.e.,

U0 ¼
X

j∈f0;1g
σjj ⊗K

k¼1 RnðkÞ
j
ðϕðkÞ

j Þ: ð15Þ

Using the analytical expressions for the Kraus operators,
we find that the target subspace gate fidelity reads

F ¼ 1

2Kþ1 þ 1

�
1þ 2K−1

X2L−K−1
k¼0

���� X
j∈f0;1g

cðkÞj pðkÞ
j

����2
�
; ð16Þ

where cðiÞj and pðiÞ
j are given in Appendix A 2. The

summation is performed over the 2L−K Kraus operators
of the unwanted subspace. The expression of the gate
fidelity depends solely on the parameters describing the
unwanted spins’ evolution, since we assume that U0 is the
evolution that would occur in the absence of any unwanted
spins. The gate fidelity is clearly maximized whenP

2L−K−1
k¼0 jPj∈f0;1g c

ðkÞ
j pðkÞ

j j2 ¼ 22. This happens when
the unwanted spins evolve trivially (i.e., independently
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of the electron’s spin state), which is an immediate
consequence of the minimization of unwanted nuclear
spin one-tangles.
To understand the impact of an unwanted spin bath on the

target evolution, we consider as our target nuclear spins three
different groups from Sec. IVA: (i) thosewe identified at the
k ¼ 2 CPMG resonance, (ii) those at the k ¼ 3 UDD3

resonance, and (iii) those at the k ¼ 2 UDD4 resonance.
That is, we use the eight target nuclear spins we found for
each of the three sequences in Fig. 6 whose HF parameters
are given inTables II (CPMG,k ¼ 2), III (UDD3,k ¼ 3), and
IV(UDD4, k ¼ 2) in Appendix K. For each case, we
construct an ensemble of unwanted nuclear spins with
randomly distributed HF parameters and identify those with
one-tangles in the range [0, 0.76]. As the target gate
operation, we consider the evolution of the target spins of
Eq. (15) in the absence of unwanted nuclei. The gate error
arises once we introduce unwanted nuclei, let them interact
with the electron, and then trace them out to obtain the
effective evolution in the target subspace. In reality, we never
assume an initial state or trace out nuclei, since we can use
Eq. (16) to find thegate error byusing only the information of
the unwanted spins’ evolution.
As a concrete example, we gradually build up a bath of

at most six unwanted, spectator nuclei one at a time, in each
case examining the impact on the gate error. We are
interested in studying the effect of both the number of
unwanted nuclei and the size of their one-tangles on the
gate fidelity. To do this, we start with an ensemble of
3 × 105 sets of randomly distributed HF parameters
(A and B), with each set differing by at least 3 kHz from
the rest in at least one of the HF components (A or B).
This ensemble is such that the corresponding one-tangles
span the range [0, 0.76]. We then assign each set of HF
parameters into one of 31 bins depending on the value of
the corresponding one-tangle. In most cases, the size of
each one-tangle bin is chosen to be about 2–3 times the
order of magnitude of the one-tangles in that bin (e.g., for
one-tangles on the order of 10−3, we define the following
three bins: ½2; 4� × 10−3, ½4; 6� × 10−3, and ½6; 8� × 10−3),
although we choose the bin sizes to saturate at about 0.02
for larger one-tangles, as otherwise the gate infidelity
quickly approaches one. The nuclear spin bath is formed
by selecting one of these bins and introducing l unwanted
nuclei, where each nucleus assumes a distinct set of HF
parameters randomly selected from that bin. We vary l
from 1 to 6 (i.e., the total bath size is at most six spins).
This construction allows us to systematically investigate
the impact of both the bath size and one-tangle size
simultaneously.
In Fig. 7(a), we depict the infidelity 1 − F corresponding

to the CPMG sequence as a function of which one-tangle
bin is used to form the unwanted nuclear spin bath. For
each bin, we gradually increase the number of unwanted
nuclei that contribute to the infidelity, starting from 1 and

increasing up to 6. Because of the random distribution of
HF parameters, it might be the case that there are fewer than
six spins in some of these intervals (especially for low
values of the one-tangle), in which case we show the gate
error as we trace out a smaller number of spins. As
expected, the gate error grows as we increase the size of
the nuclear spin environment or as its entanglement with
the target subsystem becomes substantial (as indicated
by the magnitude of the one-tangle). However, some nuclei
can evolve trivially under the CPMG sequence, in particu-
lar, those whose HF parameters obey the conditions for
trivial evolution shown in Sec. II B. In Fig. 7(b), we show
the gate error versus the one-tangles of unwanted spins that
satisfy the condition for trivial evolution. All one-tangles
are trivially zero, leading to a vanishing gate error.
In Figs. 7(c) and 7(d), we show the infidelity of the

multipartite gate under the UDD3 or UDD4 evolution. We
notice that for UDD4 the one-tangles are distributed at
higher values. This is a direct consequence of the more
complicated dynamics that the nuclei undergo for this
sequence. Recall that multiple conditions allow nuclei to
entangle with the electron due to the fact that their
individual rotation angles ϕ0 and ϕ1 are different.
It is interesting to note that, for some values of one-

tangles, the gate error shows jumps and becomes very large.
It is not surprising that this is possible even at relatively
small values of one-tangles (approximately 10−2) [see
Fig. 7(c)]. The reason for this behavior is that the unwanted
spins could cause the evolution to deviate from the ideal
isolated evolution of Eq. (15). However, the resulting gate
may have a larger overlap with other target gates. Here, we
choose not to optimize over the resulting gate, as we want
to show the overall tendency of the target subspace gate
error as the entanglement of unwanted spins with the
remaining system increases. In Appendix A 2, we provide
a modified gate fidelity formula if one wishes to optimize
over single-qubit gates acting on the target nuclei.
Although we do not optimize over the sequence param-

eters and target spin HF parameters, we see that a CPMG
sequence with only N� ¼ 8 repetitions and a total time of
T ≈ 74.5 μs is still capable of entangling eight different
nuclear spins with the electron and preserving the multi-
partite gate operation, in general, on par with UDD4.
However, both UDD sequences are longer in this scenario
and require a larger number of sequence iterations than
CPMG (T ¼ 1.48 ms and N� ¼ 93 for UDD3, while
T ≈ 0.38 ms and N� ¼ 41 for UDD4). Even though we
do not compare directly the sequences (as their parameters
differ), we see that resorting to long sequences does not
necessarily imply enhanced protection of the target evolu-
tion. Moreover, in an experimental setup, it is preferable
to use a smaller number of sequence iterations to limit
potential pulse errors. Experimentally and numerically, it is
shown that CPMG outperforms UDD6 [28] in decoupling
capabilities, which is in agreement with a soft cutoff
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Lorentzian noise spectrum. Further comparison of the
gate performance for CPMG, UDD3, and UDD4 can be
found in Appendix K 2, where we average over eight
different ensembles of randomly generated unwanted
nuclei for each sequence.

C. Multipartite gates in a 27 nuclear spin register

Up to this point, we have studied the qualitative behavior
of multipartite gates for randomly distributed nuclear spins.
In this section, we consider an ensemble of 27 13C atoms
near an NV center (S ¼ 1) in diamond, using HF parameters
experimentally determined via 3D spectroscopy by the
Taminiau group [32,64]. Our goal is to gain an under-
standing of what multispin entangling gates can be achieved
in this system with high fidelity and gate speed. We focus
on multipartite gates generated by CPMG sequences
applied to the NV spin. We set the magnetic field to
B ¼ 403 G [32], which translates into a Larmor frequency
of ωL ≈ 2π · 432 kHz for the 13C nuclei. We further select
the electron’s spin projections to be s0 ¼ 0 and s1 ¼ −1.
To identify target nuclear spins, we could use our

analytical expressions to find the number of iterations that
maximize multiple one-tangles. Instead, we perform a more
systematic search over 135 distinct driving sequences, each

characterized by the choice of CPMG unit time and the
number of iterations. Each sequence is tuned close to one of
the first five resonances of one of the 27 nuclei. Thus, each
of the 135 sequences can be labeled by nucleus j and
resonance k, where j ∈ ½1; 27� and k ∈ ½1; 5�. For each such
resonance, we vary the CPMG unit time over a window of
�0.25 μs around the resonance time. We further perform a
search over the number of iterations by constraining the
total time of the gate to be ≤ 1.5 ms. In this way, we restrict
the gate time within T�

2 of the nuclei, which ranges from 3
to 17 ms [32]. For each of the 135 sequences, we select the
unit time and number of iterations that ensure the following
criteria are met: (i) one-tangles of target nuclei > 0.8,
(ii) one-tangles of unwanted nuclei < 0.14, and (iii) mean
value of unwanted one-tangles < 0.1. After we find the
potential sets of ðt; N�Þ which fulfill all the above require-
ments, we choose a set that can simultaneously entangle
two or more nuclear spins with the electron. If no such set
exists, we ignore that case. In the end, we calculate the gate
fidelity of the target subspace for each of the groups of
ðt; N�Þ in the presence of the remaining unwanted spectator
nuclei. This procedure allows us to systematically identify
how many other nuclei can be efficiently and reliably
entangled with a given nuclear spin.

FIG. 7. Gate error 1 − F as a function of one-tangles (scaled by the maximum value ϵ�p ¼ 2=9) of unwanted nuclear spins for (a),(b)
the CPMG, (c) the UDD3, and (d) the UDD4 sequences. The labels in all graphs show up to how many spins are “traced out” from the
total system. The unwanted spins have one-tangles in the range [0,0.76]. The error bars of the blue points show the intervals of one-
tangles to which we assign unwanted spins and are the same for all differently colored lines. For one-tangle bins where we cannot find up
to six distinct sets of HF parameters, we include data only up to a smaller number of unwanted spins for which distinct sets can be found.
In (b), we use the condition for the trivial evolution to identify unwanted nuclei which do not introduce any gate error. The dashed lines
in the plots serve as a guide to the eye.
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The computation of nuclear spin one-tangles requires
only the information of the independent evolution of each
nucleus. Hence, this allows us to simulate many nuclear
spins without computational difficulty. The gate fidelity, on
the other hand, involves 2L−K Kraus operators (L ¼ 27 and
K is the number of target nuclei), which translates into
2 × 2L−K additions [see Eq. (16)]. As an example, a single
run for K ¼ 7 target spins and, thus, 20 unwanted spins
(approximately 2 × 106 additions) calculates the gate fidel-
ity within about 8 s, but forK ¼ 2 (approximately 67 × 106

additions) it takes about 4.5 min (computational times are
without parallel computing). However, it is still advanta-
geous that we can do such computations without explicitly
defining the Kraus operators.
We display our results for all 135 driving sequences

in Fig. 8. Each sequence is labeled by a case number equal
to jþ ðk − 1Þ · 27, where j ∈ ½1; 27� labels the primary
nucleus being targeted and k ∈ ½1; 5� labels one of its first
five resonances. In Fig. 8(a), we show the mean of target
one-tangles, while in Fig. 8(b), we show the mean of the
unwanted one-tangles. The first 27 cases are shown with
blue lines (k ¼ 1), the next 27 with red lines (k ¼ 2), and so
on. As expected, higher-order resonances, in principle,
give rise to lower residual entanglement with unwanted
spins [35]. In Fig. 8(c), we show the number of target nuclei

whose one-tangle mean is the one in Fig. 8(a). In general,
as the order of the resonance k increases, nuclei tend to
decouple more efficiently, since the resonant times show
larger dispersion, and, hence, the number of target nuclei
decreases. In Figs. 8(d) and 8(e), we show the number of
iterations and total gate time. Higher-order resonances
require fewer sequence repetitions, since the accumulated
nuclear rotation angle per iteration is larger. Finally, in
Fig. 8(f), we show the gate error of the entangling
operation. The first resonance yields the highest error,
since the spectator nuclei have larger residual entanglement
with the target spins. The optimization tries to balance
the trade-off between maximum achievable entanglement
(i.e., target one-tangles > 0.8) and minimum gate error.
Requiring lower values of individual unwanted one-tangles
could reduce the gate error more.
We should further comment that the HF parameters of the

27 nuclear spins are smaller than the randomly generated
ones in Sec. IVA (see Appendixes K 1 and K 3). It is then a
natural consequence that the gate times for the multipartite
gates presented in this section are longer. Experimentally,
one could identify better candidates for target nuclei to
maximize the entanglement in the nuclear spin register while
satisfying time constraints. Using target nuclear spins with a
bit larger HF parameters could reduce the total gate time.

FIG. 8. Performance of 135 distinct multipartite gates in a 27 nuclear spin register using the CPMG sequence. Each gate is labeled by a
case number, which is equal to jþ ðk − 1Þ · 27, where j ∈ ½1; 27� labels nuclei and k ∈ ½1; 5� labels resonances. Each gate is generated
by a different driving sequence determined by the CPMG unit time and number of iterations, with the former tuned close to the
kth resonance of nucleus j. (a) Mean value of target nuclei one-tangles for each gate; each target one-tangle contributing to the mean is
scaled by the maximum value of 2=9. (b) Mean value of unwanted nuclei one-tangles; each unwanted one-tangle contributing to the
mean is scaled by the maximum value of 2=9. (c) Number of target spins participating in each multipartite gate. (d) Number of iterations
and (e) gate time of each multipartite gate. (f) Gate error due to residual entanglement with unwanted nuclear spins.
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In addition, over- or underrotation errors that cause the one-
tangles of the target nuclei to deviate from their maximum
values could potentially be remedied by direct driving of a
few nuclear spins or by using hybrid sequence protocols as
in Ref. [35]. However, our results indicate that multipartite
entangling operations can be reliably implemented with gate
fidelities above 0.95 for k > 1 even without such measures.

D. Speedup of controlled gates for QEC

Practical applications, such as quantum error correction
(QEC), require gate durations to be much smaller than T�

2

of the spins which participate in the protocol to ensure
reliable performance. Many QEC schemes require repeating
a sequence of operations and/or measurements multiple
times, and, thus, it is crucial to perform the gate operations
fast; for example, one QEC cycle of Ref. [22] lasts for
approximately 2.99 ms. More specifically, for the three
nuclei that participate in this QEC scheme [22], the
durations of each sequential electron-nuclear entangling
gate are 980, 400, and 1086 μs, respectively. The accumu-
lation of errors due to decoherence during long gates could
be partially alleviated by applying refocusing pulses to
extend coherence times [25]. However, such techniques add
to the experimental overhead, making it desirable to use
them only sparingly or not at all if possible; such methods
can be avoided if we can accelerate the entangling gates by
involving multiple nuclei in the operation simultaneously.
The question we address now is how fast and reliably can
we perform such a single-shot operation in comparison with
the sequential entanglement generation scheme.
To demonstrate the advantages offered by the synchro-

nous controlled gates, we select as an example case 23
for k ¼ 3 of the previous section (see Table VIII of
Appendix K 3). For this realization, we entangle simulta-
neously nuclei fC4;C5;C15g with the electron, with
total gate time T ¼ 582.22 μs, individual one-tangles
ϵnuclearpjq ¼ f0.999 94; 0.996 62; 0.997 56g (scaled by 2=9),
and a gate error due to residual entanglement with the
remaining 24 unwanted nuclei of 1 − F ¼ 0.067977.
To compare the performance of this direct multispin

operation against sequential entanglement protocols, we
perform another simulation where we entangle each Cj
nucleus [j ∈ f4; 5; 15g] one at a time with the electron
starting with C4. We impose constraints on the sequential
gates that are similar to those on the single-shot operation in
order to compare the two schemes fairly (see Appendix K 4
for further discussion). For a more direct gate fidelity
comparison (comparable decoupling efficiency and selec-
tivity) between the two schemes, we restrict the duration of
each sequential entangling gate to be within 1.5 ms as we
did for the multispin scheme.
For each Cj nucleus, we identify sequence parameters

that yield optimal CRxðπ=2Þ gates while satisfying the
various constraints we impose. In particular, we search
over the first ten resonances, k ∈ ½1; 10�, for each spin and

number of CPMG iterations, choosing the values that
maximize the target one-tangle while minimizing the rest
within the chosen time constraints. For C4, we find that the
optimal gate time is T ≈ 0.93 ms with an error due to
residual entanglement of 1 − F ¼ 0.1133. By performing
only this single entangling gate, we already exceed the gate
time of approximately 0.58 ms of the multipartite oper-
ation. For C5, we find that a CRxðπ=2Þ gate can be
performed at the shortest gate time of approximately
68 μs, which leads to a gate error of 1 − F ¼ 0.1045.
The results for C15 are rather surprising; although we
search over ten different resonances, the best CRxðπ=2Þ
gate we can achieve is long (approximately 1.344 ms), and
the error (1 − F ¼ 0.1421) is larger than that of the other
two entangling gates.
Overall, we see that the sequential gates for the

fC4;C5;C15g set lead to significant gate error, since these
fail to decouple each nucleus from the remaining spin bath
effectively. The total gate time of the sequential entangling
operations is approximately 2.342 ms, already 4 times
larger than the gate time of the multipartite gate on
fC4;C5;C15g. Furthermore, the sets we identify as target
spins for the multispin gates in Sec. IV C contain nuclei,
which, when we attempt to address them individually, lead
to electron-nuclear entangling gates that suffer from cross-
talk arising from the other nuclear spins of the set. Indeed,
this is verified by the gate error sources we identify (see
Table VIII in Appendix K 3); for example, the infidelity of
the C4 entangling gate is due to nonzero residual entan-
glement of the electron with the C15 nucleus. Similar
observations hold for the errors of the other two sequential
gates. Thus, our formalism not only provides a faithful
metric of nuclear spin selectivity, but identifies crosstalk
issues and optimal nuclear spin candidates for performing
entangling gates within time constraints.
In Fig. 9, we compare the multispin protocol with

the sequential entanglement generation scheme. In the
latter case, the gates are very close to CRxð�π=2Þ [see
Figs. 9(f)–9(h) and Table XI in Appendix K 4]. The
gates acting on the nuclei in the multipartite case, in
principle, have both nonzero x- and z-axis components
[see Figs. 9(b)–9(d) and Table XI in Appendix K 4].
Although the gates of the two approaches are different,
they are equivalent up to local rotations.

E. Three-qubit bit-flip code

Continuing with the 27 nuclear spin register from above,
let us now consider a three-qubit measurement-free QEC
protocol that does not require stabilizer measurements or
ancillary qubits and can correct a single bit- or phase-flip
error [65]. Our goal is to protect the initial state of the
electron. Using two nuclei which we assume are initialized
into the j1i state, we show how to use the CRxz multispin
operations to recover the electron’s state from a single
bit-flip error. We also compare the performance of this
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approach with the sequential entangling gate protocol.
In the following analysis, we restrict our full numerical
simulations of the QEC protocol to include only the three
spins comprising the code (the electron and the two nuclei
that are part of the protocol), since we cannot simulate the
full density matrix of 28 spins. However, our analysis still
incorporates the effects of the full nuclear spin bath, since
each gate of the protocol is designed by minimizing the
one-tangles of the bath spins, as described in the previous
section. We use our results from the previous section to
guide both our choice of which two nuclei should partici-
pate in the QEC protocol as well as the control parameters.
The QEC protocol consists of three parts: (i) the encod-

ing of the electron’s physical state into a logical state,
(ii) the decoding, and (iii) the correction. The latter is
performed by decomposing the three-qubit Toffoli gate
(controlled on the nuclei) using single- and two-qubit
gates [65]. The entire QEC circuit of the sequential protocol
can be found in Appendix K 5 and Ref. [65]. Such a
measurement-free QEC protocol is realized experimentally
in Ref. [21], where very high theoretical fidelities (in excess
of 99%) of electron-nuclear entangling gates are reported.
However, in Ref. [21], it is mentioned that these estimates
do not account for the presence of unwanted nuclei, which
leads to extra loss of electron coherence. Here, we show

explicitly that the presence of the unwanted spin bath can
have a significant impact on the implementation of target
operations, especially when it undergoes substantial entan-
glement with the electron.
To explain the principles of the multispin three-qubit

QEC protocol, suppose that we wish to recover an arbitrary
state of the electron from an X error that happens after the
encoding. We implement the encoding and decoding using
the CRxz gate. The QEC circuit needs to be “aware” of the
absence of bit-flip errors, so that it leaves the electron’s
state intact. This mean that the encoding and decoding
gates need to combine to flip the initial j11i state of the
nuclei into j00i, such that the subsequent Toffoli gate is not
activated, if no bit-flip error happens. Because of the more
complicated dynamics induced by the multispin gates, this
requirement is not satisfied by the encoding or decoding
CRxz gates alone. We resolve this issue by introducing
unconditional Ryð−πÞ gates on the nuclei in between the
two encoding or decoding CRxz gates; this ensures that the
encoding or decoding and Ryð−πÞ gates compose together
so as to flip the nuclei and deactivate the subsequent Toffoli
gate (see Appendix K 5 for a proof).
The correction circuit is composed of unconditional

nuclear and electron rotations, as well as CRxðπ=2Þ gates.
For simplicity, we treat the additional Ryð−πÞ rotations that

(e)(a)

FIG. 9. Comparison of synchronous multispin gate scheme with the sequential entanglement protocol. Circuit diagram for
(a) multispin entangling gate operation and (e) sequential entangling protocol. The x-axis components (b),(f) and the z-axis
components (c),(g) of the 13C nuclear spin rotations are shown. The subscripts “0” and “1” on the axis components refer to the nuclear
rotations Rnj

. (d),(h) The rotation angle of each nucleus. (b)–(d) correspond to the multispin operation, while (f)–(h) correspond to the
sequential entangling protocol. The exact parameters of the rotation axes and rotation angles are given in Table XI in Appendix K 4.
Lighter shading in (a) and (e) indicates shorter gate durations.
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we require as part of the encoding and the gates of the
correction circuit as ideal. We do not find the optimal
parameters to perform the correction gates, since we
would numerically optimize and implement them in the
same way for both the sequential and the multispin
schemes. The Ryð−πÞ rotations can be implemented by
direct driving of the nuclei or composed through uncondi-
tional Rx and Rz gates obtained via dynamical decoupling
sequences [65], through appropriate tuning of the inter-
pulse spacing of the sequence.
Besides leaving the electron’s state intact when no error

occurs, the QEC circuit also needs to recover its state after a
bit-flip error. A bit flip on the electron (occurring after the
encoding) makes the rotation that each nucleus undergoes
during the encoding differ from the one it undergoes during
the decoding. The success of our protocol lies in the fact
that now the CRxz and Ryð−πÞ gates combine to rotate the
nuclei approximately about the z axis. This means that
the nuclei return close to the j11i state, activating the
subsequent Toffoli gate that corrects the bit-flip error.
The evolution of the nuclei up to the decoding involves
also a nonvanishing x-axis rotation. Consequently, at the
end of the decoding, the nuclei are not fully disentangled
from the electron. However, the x rotation is quadratically
suppressed by the nuclear Larmor frequency (see
Appendix K 5), meaning that the recovery operation brings
the electron close to its initial state, but, as we quantify
shortly, the electron’s final state is slightly mixed.
To illustrate the performance of the multispin QEC

scheme, we start with the recovery of the electron state
jyi from a bit-flip error. We consider case 22 and k ¼ 4
of the multispin gates in Fig. 8, for which we entangle
the electron with nuclei C10 and C12. The gate error
due to residual entanglement with unwanted spins is
1 − F ≈ 0.04, and the gate time is T ≈ 645.6 μs. In
Fig. 10(a), we show the coefficients of the three-qubit
state at each step of the circuit, prior to the encoding and up
to the correction step. We find that the probability of
recovering the electron’s state is 99.63%. The electron’s
reduced density matrix [Fig. 10(b)] after tracing out the
two nuclei verifies that it is close to the desired jyihyj
state; the purity is found to be 99.26%. In Fig. 10(c), we
show the error probability, defined as 1 − jhψel;0jψ finalij2
(jψ el;0i is the electron’s initial state and jψ finali the
final three-qubit state) for arbitrary initial states jψ el;0i ¼
cosðγ=2Þj0i þ eiδ sinðγ=2Þj1i. We find that, in all cases,
we recover the electron’s state with an error on the order
of approximately 10−3.
We perform a similar analysis for the recovery of the

jπ=3i ¼ cosðπ=6Þj0i þ sinðπ=6Þj1i state, now for case 13
and k ¼ 4 in Fig. 8. For this realization, we again entangle
the electron with nuclei C10 and C12; the gate duration is
T ≈ 827 μs, and the gate error due to residual entanglement
is 1 − F ≈ 0.0152. In Fig. 10(d), we show the coefficients
of the three-qubit state, and, in Fig. 10(e), the electron’s

reduced density matrix, whose purity is 99%. We find that
the recovery probability is 99.5%. In Fig. 10(f), we show
the error probability for arbitrary initial states of the
electron. In Figs. 10(g) and 10(h), we show the evolution
of each nuclear spin up to the decoding step. The blue
arrows indicate the initial state of the nuclei, which is the
j1i state. The green (red) curves show the path each nucleus
traces on the Bloch sphere if the electron starts from the j0i
(j1i) state and undergoes a bit flip. The final green and red
arrows indicate that the nuclei return approximately to the
j11i state, such that the Toffoli gate then corrects the
electron’s bit flip. In the case when no bit flip occurs,
both nuclei traverse a great arc on the Bloch sphere and
end up exactly in the j0i state at the end of the decoding
[see Appendix K 5].
We now compare our direct multispin protocol with the

sequential three-qubit QEC code. For a fair comparison, we
impose constraints on the sequential entangling gates
that are similar to those of the multispin operation. By
searching over the first ten resonances of C12 or C10, we
find a list of acceptable CRxðπ=2Þ gates [see Table XII in
Appendix K 6]. For C12, the CRxðπ=2Þ gate can be
implemented with error 1 − F ¼ 0.0238 due to unwanted
residual entanglement and a duration of 449.4277 μs. This
gate is faster than the two cases of multispin operations
mentioned previously [although faster multispin gates were
found in Fig. 8], with an error lower than case 22 and k ¼ 4
but higher than case 13 and k ¼ 4. Note that, in Fig. 8, the
multispin gates are restricted to k ≤ 5, but, to implement
the CRxðπ=2Þ gate reliably, we expand the search over
k ≥ 5, as higher-order resonances are needed for improved
selectivity for the sequential scheme. Addressing the C10
nucleus is much more challenging than addressing C12.
In the time constraint of 1.5 ms, the lowest infidelity is
approximately 0.384; imposing a new constraint of 5 ms,
we find that the CRxðπ=2Þ gate can be implemented for a
duration of about 3 ms with an infidelity of approxi-
mately 0.106.
The sequential scheme can, in principle, succeed with a

recovery probability of 100%, assuming all gates are error-
free, since the disentanglement in the decoding step can be
perfect (see Appendix K 5). Nevertheless, errors due to
unresolved residual entanglement reduce the probability of
recovering the electron’s initial state. That is, tracing out
unwanted spins and the nuclei of the protocol yields, in
general, a mixed density matrix for the electron. Thus, in
cases when crosstalk errors cannot be resolved by the
sequential scheme, the recovery probability is expected to
be smaller for the sequential protocol compared to the
multispin scheme, and the electron’s reduced density
matrix more mixed at the end of the correction.
For both protocols, it is necessary to implement the

correction CRxðπ=2Þ gates reliably. The advantage of
the multispin QEC scheme lies in the fact that it can
reduce the encoding and decoding durations by utilizing the
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CRxz operations, while to ensure reliable CRxðπ=2Þ cor-
rection gates, we can allow more relaxed time constraints
for the Toffoli implementation. In this way, we save time
during the first two parts of the QEC scheme. On the other
hand, the entire sequential QEC scheme relies on the
successful performance of the CRxðπ=2Þ gates, which
are implemented using the same optimal sequence param-
eters for all parts of the circuit. Thus, in the sequential QEC
scheme, one might have to trade off gate fidelity with speed
of operations, and the total duration of the gates can quickly
exceed the coherence times.
Interestingly, both protocols can be combined to provide

optimal performance of the QEC codes. For example,
reliable and fast CRxðπ=2Þ encoding or decoding gates
could be combined with CRxz encoding or decoding gates

to address subsets of nuclei that cannot be resolved
individually within given time constraints. Considering
that the number of spinful nuclei in experimental conditions
could be hundreds, it is highly likely that particular
CRxðπ=2Þ gates fail to provide both speed of operation
and selectivity of a single spin. This is verified, for
example, in Ref. [25], wherein certain electron-nuclear
Bell-state fidelities are as low as 63% due to unresolved
crosstalk arising from nearby nuclei, combined with loss of
coherence due to long two-qubit operations. Inability to
address nuclei individually means that they would have to
be excluded from any protocol (i.e., decoupled such that
they do not induce errors) but could become a valuable
resource using the multispin gates. The CRxz encoding
or decoding gates would be accompanied by Ryð−πÞ

FIG. 10. Three-qubit bit-flip code using the CRxz multispin operations. The electron’s state is encoded into three physical qubits, two
of which correspond to the 13C atoms C10 and C12. (a) Recovery of the electron state jyi [case 22, k ¼ 4 in Fig. 8]. (d) Recovery of the
electron state jπ=3i ¼ cosðπ=6Þj0i þ sinðπ=6Þj1i [case 13, k ¼ 4 in Fig. 8]. From top to bottom, (a),(d) show the coefficients of the
initial, encoded, error, decoded, and corrected state. Blue (red) bars are the real (imaginary) parts of the coefficients. The probability to
measure the electron in jyi in (a) is 99.63% while to measure it in jπ=3i in (d) is 99.5%. Real and imaginary components (b),(e) of the
final reduced density matrix of the electron verify the recovery of the initial state. Error probability 1 − jhψel;0jψ finalij2 of measuring the
incorrect state of the electron at the end of the QEC code for case 22 and k ¼ 4 (c) and for case 13 and k ¼ 4 (f). jψel;0i is defined as
cosðγ=2Þj0i þ eiδ sinðγ=2Þj1i. Evolution of 13C atoms C10 (g) and C12 (h) up to the decoding step, when the electron undergoes a bit
flip. The initial state is j1i for each nucleus (blue arrow). The nuclei follow the green curve evolution if the electron is initially in j0i or
the red curve evolution if it is initially in j1i. After an error happens on the electron and we perform the decoding, the nuclei
approximately return to j11i such that the subsequent Toffoli gate corrects the bit-flip error.
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unconditional rotations on these nuclear spin subsets,
which, as we mentioned previously, are required for the
multispin QEC scheme.
Our analysis shows that the multispin entangling gates

can drastically reduce the entanglement generation time
and mitigate dephasing issues. In a measurement-free
QEC scheme, the entanglement generation speedup could
be crucial for protecting the logical state; leaving it
unprotected for a shorter duration reduces the probability
of errors occurring during the decoding step. Additionally,
the synchronous controlled gates can outperform the
sequential entanglement schemes, especially when we
cannot resolve crosstalk issues. An interesting future
direction would be to examine further the utility of
CRxz gates for QEC protocols and potentially adjust the
correction circuit to account for the imperfect disentan-
glement at the end of the decoding.

V. CONCLUSIONS

Nuclear spins are an essential component of spin-based
solid-state platforms for quantum networks. Harnessing
their full potential to create large-scale quantum networks
requires a detailed understanding of and precise control
over the entanglement distribution in the system. We
showed how to quantify the entanglement in a multinuclear
spin register coupled to a single electron qubit and
presented a faithful metric for nuclear spin selectivity.
We studied the properties of CPMG, UDD3, and UDD4

sequences and extended their resonance conditions to
arbitrary electron systems for applicability to any defect
qubit in diamond or SiC. We further showed how to
implement synchronous controlled gates on multiple nuclei
by driving the electron appropriately. Such multipartite
gates provide a speedup over the conventional way of
generating sequential entanglement links, especially for
large nuclear spin registers, where the total sequence
time can exceed the dephasing time. We quantify the
performance of multipartite gates implemented by
CPMG, UDD3, or UDD4 sequences in the presence of
unwanted nuclear spins, revealing that the gate fidelity
tends to decrease as the residual entanglement with the
unwanted bath becomes significant. Using experimental
parameters for 27 13C atoms in close proximity to an NV
center in diamond, we have further verified that such
multipartite gates can be performed reliably and with high
fidelity and can facilitate implementations of quantum error
correction codes.
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APPENDIX A: MATHEMATICAL DESCRIPTION
OF MULTISPIN NUCLEAR REGISTER

1. Evolution operator of multiple spins

We mention in the main text that π-pulse sequences
generate an evolution operator which is a sum of terms,
each of which includes an electron spin projector tensored
with a product of single-qubit gates acting on the nuclei.
Here, we show this explicitly. Let us consider for simplicity
two nuclear spins, with HF parameters Al and Bl
[l ∈ f1; 2g]. Neglecting internuclear spin interactions,
the secular Hamiltonian is given by

H¼ωL

2
ð1⊗ σz ⊗ 1þ1⊗ 1⊗ σzÞþ

A1

2
Ze ⊗ σz ⊗ 1

þB1

2
Ze ⊗ σx ⊗ 1þA2

2
Ze ⊗ 1⊗ σzþ

B2

2
Ze ⊗ 1⊗ σx

¼
X

j∈f0;1g
σjj ⊗

�
ωLþ sjA1

2
σz ⊗ 1þ sjB1

2
σx ⊗ 1

þωLþ sjA2

2
1⊗ σzþ

sjB2

2
1⊗ σx

�

¼
X

j∈f0;1g
σjj ⊗ ðHð1Þ

j ⊗ 1þ1⊗Hð2Þ
j Þ; ðA1Þ

where we define HðlÞ
j :

HðlÞ
j ¼ ωL þ sjAl

2
σðlÞz þ sjBl

2
σðlÞx ; ðA2Þ

with σðlÞx and σðlÞz being the Pauli matrices which act on the
lth spin (and the identity acts on the other spin). As a
concrete example, let us focus on the CPMG sequence
(t=4 − π − t=2 − π − t=4). Its evolution operator over one
unit of the sequence (which consists of two pulses) has
the form

U¼σ00⊗e−ih̃0e−2ih̃1e−ih̃0 þσ11⊗e−ih̃1e−2ih̃0e−ih̃1 ; ðA3Þ

where

h̃j ¼
t
4
ðHð1Þ

j ⊗ 1þ 1 ⊗ Hð2Þ
j Þ: ðA4Þ

Notice that ½Hð1Þ
j ⊗ 1; 1 ⊗ Hð2Þ

j � ¼ 0, and, thus, we can
write down the total evolution operator as

U ¼
X

j∈f0;1g
σjj ⊗ Rð1Þ

nj ðϕð1Þ
j Þ ⊗ Rð2Þ

nj ðϕð2Þ
j Þ; ðA5Þ

where Rð1Þ
n0
ðϕð1Þ

0 Þ¼e−iH
ð1Þ
0
t=4e−iH

ð1Þ
1
t=2e−iH

ð1Þ
0
t=4 [Rð1Þ

n1
ðϕð1Þ

1 Þ ¼
e−iH

ð1Þ
1
t=4e−iH

ð1Þ
0
t=2e−iH

ð1Þ
1
t=4], and similarly for Rð2Þ

nj ðϕð2Þ
j Þ.

Therefore, if more nuclear spins are considered, their
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Hamiltonians commute, and, thus, one obtains a tensor
product of single-qubit rotations acting on the nuclei.

2. Kraus operators and gate fidelity

In the main text, we mention that the unwanted nuclei
affect the gate fidelity of target nuclei when the former have
nonzero entanglement with the target subspace. Here, we
provide the steps to obtain the formula for the gate fidelity
of the target subspace.
One way to describe the evolution of the target subspace

in the presence of unwanted spins is by tracing out the
latter. This procedure can be performed on the density
matrix level, but this requires that we specify an initial state
for the system. To avoid this limitation, we can instead
describe the same partial-trace channel using the operator-
sum representation [63]. The elements of the partial-trace
channel are Kraus operators, defined via a chosen complete
basis for the environment (i.e., the unwanted spins). Since
one can choose any complete basis, the Kraus operators are
not unique. Using the operator-sum representation then,
one can naturally extend the fidelity of a general quantum
operation into the form [66]

F ¼ 1

mðmþ 1Þ
X
k

tr½ðU†
0EkÞ†U†

0Ek� þ jtr½U†
0Ek�j2; ðA6Þ

where m ¼ 2Kþ1 is the dimension of the target subspace
(consisting of the electron and K target spins), whereas Ek
are the Kraus operators of the quantum channel described
by EðρÞ ¼Pk EkρE

†
k, and they satisfy the completeness

relation
P

k E
†
kEk ¼ 1.

We assume L nuclear spins in total, with K target ones
and, hence, L − K unwanted. The environment is, thus,
spanned by 2L−K basis states. We further assume that we
have permuted the total evolution operator U such that the
target spins appear first in the tensor product with the
electron’s projector and the unwanted spins appear in the
last positions, i.e.,

U¼
X

j∈f0;1g
σjj⊗K

k¼1RnðkÞ
j
ðϕðkÞ

j Þ⊗L−K
l¼1 R

nðKþlÞ
j

ðϕðKþlÞ
j Þ: ðA7Þ

Without loss of generality, we consider the initial state of the
environment to be je0i≡ j0i⊗ðL−KÞ, which when extended
to the total space becomes je0i ¼ 1Kþ1×Kþ1 ⊗ j0i⊗ðL−KÞ.
Here, 1Kþ1×Kþ1 is the identity gate acting on the space of
target spins and the electron. We further define the complete
computational basis fjeiig2L−K−1i¼0 , where all jeii states
correspond to all possible bit strings of zeros and ones.
The states jeii are again extended into the total space as
jẽii ¼ 1Kþ1×Kþ1 ⊗ jeii. With these definitions we are now

ready to introduce the expression for the ith Kraus operator
of the partial-trace quantum channel:

Ei ¼ hẽijUje0i
¼
X

j∈f0;1g
σjj ⊗K

k¼1 RnðkÞ
j
ðϕðkÞ

j Þ

× fheij½⊗L−K
l¼1 R

nðKþlÞ
j

ðϕðKþlÞ
j Þ�j0i⊗ðL−KÞg: ðA8Þ

If for the state jeii the mth nuclear spin of the
environment is in state j0i, then we have

h0jR
nðmÞ
j
ðϕðmÞ

j Þj0i ¼ cos
ϕðmÞ
j

2
− inðmÞ

z;j sin
ϕðmÞ
j

2
; ðA9Þ

and whenever the mth ket is j1i we have

h1jR
nðmÞ
j
ðϕðmÞ

j Þj0i ¼ −i
�
nðmÞ
x;j þ inðmÞ

y;j

	
sin

ϕðmÞ
j

2
: ðA10Þ

Suppose that, out of the L − K spins in the environment,M
of them are in j0i and the other L − K −M are in state j1i.
Substituting Eqs. (A9) and (A10) into Eq. (A8), we obtain
the final form of the ith Kraus operator:

Ei ¼
X
j

cðiÞj pðiÞ
j σjj ⊗K

k¼1 RnðkÞ
j
ðϕðkÞ

j Þ; ðA11Þ

where we define cðiÞj ≡QmM
m¼m1

½cosðϕðmÞ
j =2Þ − inðmÞ

z;j ×

sinðϕðmÞ
j =2Þ� and pðiÞ

j ≡QsL−K−M
s¼s1 ½−iðnðsÞx;j þ inðsÞy;jÞ×

sinðϕðsÞ
j =2Þ� while fnx; ny; nzg correspond to the rotation

axis components of each nuclear spin. In the case when

M ¼ L − K (i.e., jeii ¼ j0i⊗ðL−KÞ), it holds that pðiÞ
j ¼ 1,

and, in the case when M ¼ 0 (i.e., jeii ¼ j1i⊗ðL−KÞ), it
holds that cðiÞj ¼ 1.
The last element we need to evaluate the expression of

the gate fidelity for the target subspace is the target gate
operation U0. We take as our target gate the evolution
operator of the K target spins in the absence of the
unwanted spins, i.e.,

U0 ¼
X

j∈f0;1g
σjj ⊗K

k¼1 RnðkÞ
j
ðϕðkÞ

j Þ: ðA12Þ

By substituting Eqs. (A12) and (A11) into Eq. (A6), we
find that the expression of the gate fidelity reads
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F ¼ 1

mðmþ 1Þ
�
tr

�X2L−K
k¼1

E†
kEk

�
þ
X2L−K
k¼1

jtr½U†
0Ek�j2

�

¼ 1

mðmþ 1Þ
�
mþ

X
k

����tr
�X

j

cðkÞj pðkÞ
j σjj ⊗ 12K×2K

�����2
�

¼ 1

mðmþ 1Þ
�
mþ

X
k

����tr
�X

j

cðkÞj pðkÞ
j σjj

�
tr½12K×2K �

����2
�

¼ 1

2Kþ1ð2Kþ1 þ 1Þ
�
2Kþ1 þ 22K

X
k

���� X
j∈f0;1g

cðkÞj pðkÞ
j

����2
�

¼ 1

2Kþ1 þ 1

�
1þ 2K−1

X
k

���� X
j∈f0;1g

cðkÞj pðkÞ
j

����2
�
; ðA13Þ

where we use the fact that U0 is a 2Kþ1 × 2Kþ1 target gate
and the Kraus operators Ek are projectors with dimension
2Kþ1 × 2Kþ1, as well as the trace property of the Kronecker
product tr½A ⊗ B� ¼ tr½A�tr½B�.
In Sec. IV B, we mention that one can optimize the gate

fidelity over the target gate. For a generic target gate,
it is difficult to find a closed-form expression of the gate
fidelity. For this reason, we assume a target gate of the form

U0 ¼
X

ρ∈f0;1g
σρρ ⊗K

k¼1 Rn0
ρ
ðϕðkÞ

ρ0 Þ; ðA14Þ

where now one would have to optimize over the single-
qubit rotations that act on the target nuclear spins. Again,
the first step is to calculate U†

0Ei which gives

U†
0Ei ¼

X
ρ

X
j

pðiÞ
j cðiÞj σρρσjj ⊗K

k¼1 R
†
n0
ρ
ðϕ0ðkÞ

ρ ÞRn0
j
ðϕðkÞ

j Þ

¼
X
j

pðiÞ
j cðiÞj σjj ⊗K

k¼1


�
cos

ϕ0ðkÞ
j

2
þ iσ · n0

j
ðkÞ sin

ϕ0ðkÞ
j

2

��
cos

ϕðkÞ
j

2
− iσ · nðkÞ

j sin
ϕðkÞ
j

2

��

¼
X
j

pðiÞ
j cðiÞj σjj ⊗K

k¼1



cos

ϕ0ðkÞ
j

2
cos

ϕðkÞ
j

2
þ ðσ · n0

j
ðkÞÞðσ · nðkÞ

j Þ sinϕ
ðkÞ
j

2
sin

ϕ0ðkÞ
j

2

− iσ ·

�
nðkÞ
j sin

ϕðkÞ
j

2
cos

ϕ0ðkÞ
j

2
− n0ðkÞ

j sin
ϕ0ðkÞ

j

2
cos

ϕðkÞ
j

2

��

¼
X
j

pðiÞ
j cðiÞj σjj ⊗K

k¼1 C
ðkÞ
j : ðA15Þ

Evaluating the trace gives

tr½U†
0Ei� ¼

X
j

tr½pðiÞ
j cðiÞj σjj�

YK
k¼1

tr½CðkÞ
j � ¼

X
j

pðiÞ
j cðiÞj

YK
k¼1

2

�
cos

ϕðkÞ
j

2
cos

ϕ0ðkÞ
j

2
þ nðkÞ

j · n0ðkÞ
j sin

ϕðkÞ
j

2
sin

ϕ0ðkÞ
j

2

�

¼ 2K
X
j

pðiÞ
j cðiÞj fj; ðA16Þ

where we define fj ¼
Q

K
k¼1 ( cosðϕðkÞ

j =2Þ cosðϕ0ðkÞ
j =2Þþ

nðkÞ
j · n0ðkÞ

j sinðϕðkÞ
j =2Þ sinðϕ0ðkÞ

j =2Þ). Finally, the fidelity
expression reads

F ¼ 1

2Kþ1ð2Kþ1 þ 1Þ
�
2Kþ1 þ 22K

X2L−K
i¼1

����X
j

pðiÞ
j cðiÞj fj

����2
�

¼ 1

2Kþ1

�
1þ 2K−1

X2L−K
i¼1

����X
j

pðiÞ
j cðiÞj fj

����2
�
: ðA17Þ

Clearly, for ϕ0ðkÞ
j ¼ ϕðkÞ

j and n0ðkÞ
j ¼ nðkÞ

j , fj ¼ 1 and we
recover Eq. (A13). To find if there is a higher overlap with
the target gate of Eq. (A14), one would have to optimize

over the set fϕ0ðkÞ
j ;n0ðkÞ

j g, which corresponds to the
parameters of the single-qubit rotations that act on the
target subspace. Such a computation could be potentially
performed via gradient-based optimization methods, sup-
plemented by the Jacobian. If a target gate with better
overlap is found, then the one-tangles can be reevaluated

using the optimized set fϕ0ðkÞ
j ;n0ðkÞ

j g to obtain the entan-
glement distribution of the target subsystem.

APPENDIX B: RESONANCE TIMES

For completeness, we present the formula for the
coherence function Px; this function is used to derive
the resonance times. The expressions we present below can
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also be found in Ref. [19]. In DD protocols, the electron is
initialized in the jþi state; assuming a single nuclear spin,
the initial density matrix is given by

ρ0 ¼ jþijψnihþjhψnj; ðB1Þ

where the tensor product is implied between kets and
bras. The probability to find the electron in the jþi state
after some time t is Px ¼ hþjρðtÞjþi, where ρðtÞ ¼ Uρ0U†

is the time-evolved density matrix of the system.
Furthermore, U¼σ00⊗U0þσ11⊗U1, with Uj≡Rnj

ðϕjÞ.
Calculating first Uρ0U†, we find

Uρ0U† ¼ 1

2
ðU0j0ijψnihψnjh0jU†

0 þU0j0ijψnihψnjh1jU†
1

þ U1j1ijψnihψnjh0jU†
0 þU1j1ijψnihψnjh1jU†

1Þ:
ðB2Þ

Evaluating hþjUρ0U†jþi, we obtain

hþjUρ0U†jþi ¼ 1

4

X
i;j

UijψnihψnjU†
j : ðB3Þ

The probability to find the electron in the jþi state
(irrespective of the nuclear spin state) is the trace of
Eq. (B3) with respect to the nuclear spin state:

Px ¼
1

4

X
i;j

hψnjUiU
†
j jψni ¼

1

2
ð1þ RehψnjU†

0U1jψniÞ

¼ 1

2
ð1þMÞ: ðB4Þ

Since U†
0U1 is unitary, it can be written as

�
a −b�

b a�

�
:

Hence, for ψn ¼ ½c1c2�T we get

Reðajc1j2 − b�c�1c2 þ bc1c�2 þ a�jc2j2Þ
¼ ReðaÞðjc1j2 þ jc2j2Þ þ Re½2iImðbc1c�2Þ� ¼ ReðaÞ;

ðB5Þ

and, therefore,M¼ 1
2
ReTrðU†

0U1Þ¼ 1
2
ReTrðU0U

†
1Þ. Finally,

by setting Uj ¼ Rnj
ðϕjÞ, M becomes

M ¼ 1

2
ReTr

�Y
j

�
cos

ϕj

2
þ ið−1Þj sinϕj

2
σ · nj

��

¼ cos
ϕ0

2
cos

ϕ1

2
þ n0 · n1 sin

ϕ0

2
sin

ϕ1

2
: ðB6Þ

In the case of ϕ0 ¼ ϕ1 ≡ ϕ, M can be rewritten as

M ¼ 1 − sin2
ϕ

2
ð1 − n0 · n1Þ: ðB7Þ

Using the explicit expression for Uj, one can derive the
resonance condition by setting n0 · n1 ¼ −1 in Eq. (B7) for
sequences that produce the same nuclear spin rotation angle.
For sequences that produce different nuclear spin rotation
angles (e.g., UDD4), one would have to use Eq. (B6).

APPENDIX C: NUCLEAR SPIN
ROTATION ANGLES

Here, we provide the expressions for the nuclear spin
rotation angles corresponding to 2 − π, 3 − π, and 4 − π
sequences (meaning two, three, or four π pulses in a
single sequence unit). The analytical formulas are summa-
rized below.

(i) 2-π sequence:

ϕ0 ¼ 2 cos−1½gðω0;ω1Þ�: ðC1Þ

(ii) 4-π sequence:

ϕ0 ¼ 2cos−1
�
gðω0;ω1Þ − 2sin2θ̃ sin

q2ω1

2
sin

q3ω0

2
sin

q4ω1

2
sin

ðq1 þ q5Þω0

2

�
: ðC2Þ

(iii) 3-π sequence (6 − π time-symmetric):

ϕ0 ¼ 2cos−1
�
gðω0;ω1Þ þ 4 cos θ̃sin2θ̃ sinðq1ω0Þ sinðq1ω1Þsin2

q2ω0

2
sin2

q2ω1

2

− 2sin2θ̃ cosðq1ω1Þ sinðq1ω0Þ sinðq2ω0Þsin2
q2ω1

2

− 2sin2θ̃ sinðq1ω1Þ sinðq2ω1Þ sin
q2ω0

2
sin

�
q1ω0 þ

q2ω0

2

��
; ðC3Þ
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where we define gðω0;ω1Þ as

gðω0;ω1Þ ¼ cos

P
j;oddqjω0

2
cos

P
j;evenqjω1

2

− cos θ̃ sin

P
j;oddqjω0

2
sin

P
j;evenqjω1

2
ðC4Þ

and ωj ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωL þ sjAÞ2 þ ðsjBÞ2

q
; note this is different

from the definition in the main text, where we define ωj as

ωj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωL þ sjAÞ2 þ ðsjBÞ2

q
. The ϕ1 angles are found

from ϕ0 with the replacements ω1 ↦ ω0;ω0 ↦ ω1;
and θ̃ ↦ −θ̃. Here, we define θ̃ ¼ θ0 − θ1, where

cos θj ¼ ðωL þ sjAÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωL þ sjAÞ2 þ ðsjBÞ2

q
.

For example, for the CPMG sequence we have
q1t − q2t − q3t with q3 ¼ q1 ¼ q2=2. This means that
the odd summation in g in Eq. (C4) is q1 þ q3 and the
even is q2. As we mention in the main text, for the CPMG
sequence the rotation angles ϕ0 and ϕ1 are equal, but this is
not the case for a 2 − π sequence with arbitrary qj that do
not satisfy q1 ¼ q3 ¼ q2=2.
For the UDDn sequences, the spacings are given by

qs ¼ sin2
�

πs
2nþ 2

�
− sin2

�
πðs − 1Þ
2nþ 2

�
; ðC5Þ

where s goes from 1 to nþ 1, since there are nþ 1 free
evolution periods. The UDD4 [q1t − q2t − q3t − q4t − q5t
with spacings given by Eq. (C5)] sequence produces
rotation angles ϕ0 and ϕ1 that are not equal. The UDD
sequences (as the CPMG) are symmetric; i.e., in the UDD4

case, it holds that q5 ¼ q1, and q2 ¼ q4.
Regarding the UDD3 sequence (or any odd-π sequence),

it needs to be repeated twice to form the basic unit.
Specifically, the initial block with spacings q1t − q2t −
q3t − q4t becomes a new unit with spacings q1t=2−
q2t=2−q3t=2−ðq4þq1Þt=2−q2t=2−q3t=2−q4t=2, where
we divide by a factor of 2 to make sure that the sum of all qj
is equal to one and, hence, the time of one unit is t. Again,
for UDD3 it holds that it is symmetric with q4 ¼ q1 and
q3 ¼ q2. Conversely to the UDD4 sequence, UDD3 pro-
duces rotation angles that are equal (i.e., ϕ0 ¼ ϕ1).

APPENDIX D: UDD4 JUMPS IN THE
DOT PRODUCT

As we mention in Sec. II, the dot product of nuclear spin
rotation axes in the case of UDD4 shows a nontrivial
behavior and depends on the number of iterations. We find
that these jumps happen near values of N for which
Δϕ ¼ jϕ0 − ϕ1j ¼ 0. Using the expression for G1 and
substituting Δϕ ¼ 0 and n0 · n1 ¼ 1, we find that the
jumps occur around N ¼ round½2κπ=ðϕ0 þ ϕ1Þ�, where
ϕj are the rotation angles in one iteration. We show this
behavior in Fig. 11, which captures all the jumps; in these

ranges, the nuclear spin evolves trivially, i.e., independent
of the electron’s state.

APPENDIX E: MINIMIZATION OF ONE-TANGLE
FOR S= 1 DEFECT ELECTRON SPIN

In this section, we consider a target nuclear spin with
hyperfine (HF) parameters ðA;BÞ ¼ 2π · ð60; 30Þ kHz and
Larmor frequency ωL ¼ 2π · 314 kHz as in Sec. III B.
However, in this case, we assume a defect electron system
S ¼ 1, and we define the qubit using the spin projections
s0 ¼ 0 and s1 ¼ −1. As in Sec. III B, we choose the CPMG
sequence. First, we consider the k ¼ 1 resonance of the
target spin; i.e., we set the basic unit time to be t ¼
3.5102 μs and set the number of iterations to be N ¼ 20,
which gives rise to maximum one-tangle of the target spin.
In Fig. 12(a), we plot the one-tangle of an unwanted nuclear
spin whose HF parameters could lie in the range
∈ 2π · ½10; 200� kHz. We further indicate with circles the
HF parameters of an unwanted spin, which satisfies
approximately the condition for trivial evolution, presented
in Sec. II B. To display these points, we set a bound for the
unwanted one-tangle to be ϵ12j3 < 0.02 and a tolerance for
satisfying the trivial evolution of 1.3 × 10−2. We see that
indeed the minimal one-tangles correspond to nuclei that
approximately evolve trivially.
In Fig. 12(b), we minimize the unwanted one-tangle by

searching over the first five resonances of the target spin
and iterations of the basic unit that preserve maximum
entanglement between the target register and the electron.
The optimal repetitions of the basic CPMG unit, as well as

FIG. 11. Jumps in the dot product of nuclear spin rotation
axes for UDD4 as a function of N occur in the ranges when
Δϕ → 0; Δϕ is defined as jϕ0 − ϕ1j. In these ranges, the
entangling power ϵP is zero. For this simulation, we set
ðωL; A; BÞ ¼ 2π · ð314; 60; 30Þ kHz, unit time of t ¼ 3.1861 μs,
and we consider a spin S ¼ 1=2 electron system.
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the optimal resonances, are shown in Figs. 12(c) and 12(d),
respectively.

APPENDIX F: SELECTIVITY AS A FUNCTION
OF jΔAj

Here, we consider the problem of addressing a single
nuclear spin with parameters ðA;B;ωLÞ ¼ 2π · ð60; 30;
314Þ kHz, in the presence of an unwanted spin (with the
same Larmor frequency), when the A HF parameter of
the latter differs from the target one by jΔAj. For the
unwanted spin, we let its A HF value be in the range
2π · ½10; 200� kHz, and we sample it with steps of
0.25 kHz. For the B value of the unwanted spin, we fix
some constant value as we mention shortly. To illustrate the
procedure of isolating the target spin, we use as an example
the CPMG sequence. To entangle the electron with the
target nuclear spin, we search over its first 12 resonances
(k ∈ ½1; 12�). We find the number of iterations that maxi-
mize the target one-tangle by using the minima of G1. For
each value of jΔAj, we keep the optimal unit time and
iteration of the unit that give rise to minimal unwanted one-
tangle and respect the gate time restriction of 2 ms.
We consider two cases. In the first one, we assume an

electron with spin S ¼ 1, and we select the spin projections
s0 ¼ 0 and s1 ¼ −1. In the second case, we consider

an electron spin S ¼ 1=2 and define the projections
s0 ¼ 1=2 ¼ −s1. The unwanted one-tangle as a function
of jΔAj is shown in Fig. 13(a) for S ¼ 1 and in Fig. 13(b)
for S ¼ 1=2. The different lines correspond to various B
values for the unwanted spin. The blue line corresponds to
the case when the unwanted and target spins have the
same B value. This case is also illustrated in the insets in
Fig. 13. We note that, when the B values of the two spins
are the same, there is a more gradual reduction of the
unwanted one-tangle as a function of jΔAj for S ¼ 1=2
than for S ¼ 1. This is due to the fact that for A;B ≪ ωL
the resonance time becomes inversely proportional to
ω̃ ≈ 2ωL þ Aðs0 þ s1Þ þ ðs20 þ s21ÞB2=ð2ωLÞ, and so the
linear dependence in A vanishes for S ¼ 1=2. Although
the dependence of the resonance time on B is quadratic, we

FIG. 12. Controlling a target spin with parameters ðA; B;ωLÞ ¼
2π · ð60; 30; 314Þ kHz in the presence of an unwanted spin with
varying HF parameters ∈ 2π · ½10; 200� kHz. (a) One-tangle of
the unwanted spin, scaled by the maximum bound of ϵ�p ¼ 2=9.
The time of the unit is the first resonance time of the target spin,
and the number of iterations is N ¼ 20, which maximize its one-
tangle. (b) Minimization of the one-tangle of the unwanted spin
using the first five (k ¼ 1;…; 5) resonances of the target spin and
up to 300 pulses on the electron. Optimal number of repetitions
(c) and optimal resonance (d) to minimize the unwanted spin’s
one-tangle while keeping the one-tangle of the target spin
maximal. In all plots, we consider the CPMG sequence and an
electron spin S ¼ 1 (s0 ¼ 0 and s1 ¼ −1).

FIG. 13. (a) Unwanted one-tangle (scaled by the maximum
value ϵ�p ¼ 2=9) for a nuclear spin whose A HF parameter differs
by jΔAj from the target spin. For the target spin, we consider
ðA; BÞ ¼ 2π · ð60; 30Þ kHz. The electron is considered to be S ¼
1=2 with electron spin projections s0 ¼ 1=2 ¼ −s1. The different
colors correspond to different B values for the unwanted spin.
The inset shows the unwanted one-tangle in the range
jΔAj=ð2πÞ ∈ ½0; 5� kHz, for the case where the unwanted spin
has the same B value with the target one. (b) Similar as (a), but for
an electron spin S ¼ 1, with s0 ¼ 0 and s1 ¼ −1. In both plots,
the nuclear Larmor frequency is set to ωL ¼ 2π · 314 kHz.
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note that even a difference of 1 kHz between the B values of
target and unwanted spins suffices to ensure selectivity of
the former [see the yellow line in Fig. 13(b)].

APPENDIX G: MINIMA OF G1 FOR n0 · n1 ≤ 0

In this section, we provide the number of iterations
that maximize the one-tangle of a nuclear spin, as long as
n0 · n1 ≤ 0. Let us first consider the CPMG or UDD3

sequences. For these sequences, it holds that ϕ0 ¼ ϕ1 and
G1 of Eq. (6) simplifies into

G1ðNÞ¼fcos2½ϕ0ðNÞ=2�þn0 ·n1 sin2½ϕ0ðNÞ=2�g2: ðG1Þ

Requiring that G1ðNÞ ¼ 0, we find

cos2
Nϕ0

2
þ n0 · n1sin2

Nϕ0

2
¼ 0 ⇒

−1
n0 · n1

¼ tan2
Nϕ0

2
⇒

N ¼ round

"
1

ϕ0

 
2κπ − 2tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−1

n0 · n1

s !#
;

N ¼ round

"
1

ϕ0

 
ð2κ − 1Þπ þ 2tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−1

n0 · n1

s !#
; ðG2Þ

where ϕ0 is the rotation angle in one unit. The two
expressions hold as long as n0 · n1 < 0 and ϕ0ðNÞ ≠
ð2κ þ 1Þπ. For n0 · n1 ≈ 0, G1 ¼ 0 when ϕ0ðNÞ ¼
ð2κ þ 1Þπ, and, hence, N ¼ round½ð2κ þ 1Þπ=ϕ0�. For
n0 · n1 > 0, G1 cannot go to zero. Regarding the UDD4

sequence for which it holds that ϕ0 ≠ ϕ1, we cannot
estimate analytically the repetitions N; some values are
captured by the above expressions with the replacement
ϕ0 ↦ ϕ0 þ ϕ1, but due to the complicated oscillations
of G1 these modified expressions for N do not hold in
all cases.

APPENDIX H: COMPARISON OF CPMG, UDD3,
AND UDD4 ROTATION ANGLES

To understand geometrically the rotation angle induced
by each sequence, we use the Rodrigues formula [67] for
the composition of rotations. Two rotations of the form
RlðαÞRmðβÞ give rise to the total rotation RnðγÞ for which
the rotation angle is given by

cos
γ

2
¼ cos

α

2
cos

β

2
− sin

α

2
sin

β

2
ðl ·mÞ; ðH1Þ

while the rotation axis is given by

sin
γ

2
n ¼ sin

α

2
cos

β

2
lþ cos

α

2
sin

β

2
mþ sin

α

2
sin

β

2
ðl ×mÞ:

ðH2Þ

We apply this composition law repeatedly to find the
induced nuclear spin rotation after each free-evolution
period of the sequence passes. For the CPMG sequence,
there are two compositions and three free-evolution peri-
ods; UDD4 has four compositions and five free-evolution
periods; and UDD3 has six compositions and seven free-
evolution periods. UDD3 has more free-evolution periods
than UDD4 because we repeat the basic unit twice to yield a
new sequence unit. In this way, we ensure that the electron
returns to its initial state, since the new basic block of the
sequence has an even number of π pulses.
Without loss of generality, we consider an electron spin

S ¼ 1,with s0 ¼ 0 and s1 ¼ −1, andassume that the electron
starts from the j0i state (similar analysis holds when the
electron starts in j1i) and is flipped repeatedly according to
the number of π pulses in the CPMG or UDD units.
In Fig. 14, we show the rotation axes of a single

nuclear spin [ðωL; A; BÞ ¼ 2π · ð314; 120; 90Þ kHz and
t ¼ 3.7889 μs] after each composition. In each free-
evolution period, the nuclear spin rotates alternately about
axis “A” and “B.” For example, in Fig. 14(a), the nuclear spin
first rotates about “A,” then about “B,” and again about “A.”
The composition of “A” and “B” gives rise to the new axis

(a) (b) (c)CPMG UDD4 UDD3

FIG. 14. Comparison of CPMG (a) with UDD4 (b) and UDD3 (c) rotation angles. We compose the rotations of the free-evolution
periods for one unit of the sequence using the Rodrigues formula. The last composition gives rise to the black spherical triangles. In (a),
we show ∢CDB, which gives the total rotation angle γ. We find that geometrically the rotation angle of CPMG is larger.
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“C,” and the composition of “C” with “A” leads to the final
axis “D.” The angle enclosed by the arcs CD and BD gives
the total rotation angle γ in one CPMG unit. Similar analysis
holds for Figs. 14(b) and 14(c), where rotations follow the
composition ½A�½B�½A�½B�½A� and ½A�½B�½A�½B�½A�½B�½A�,
respectively. We notice that it holds that π− ðγ=2ÞCPMG>
π− ðγ=2ÞUDD4 > π− ðγ=2ÞUDD3 , and so one would conclude
that γCPMG < γUDD4 < γUDD3 . However, these rotation
angles are close to 2π, and, hence, we need to consider as
actual rotation γ̃ ¼ 2π − γ. Therefore, we find that it holds
that

γ̃CPMG > γ̃UDD4 > γ̃UDD3 : ðH3Þ

Thus, UDD3 produces the finest rotation angle of all three
sequences, which can offer greater precision, but CPMG is
the fastest of all.

APPENDIX I: ADDITIONAL RESONANCE
TIMES FOR UDDn FOR EVEN n

In the main text, we mention that for UDD3 and CPMG
we find only the resonance times tk ¼ 4πð2k − 1Þ=ω̃,
where ω̃ ¼ ω0 þ ω1, with ωj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωL þ sjAÞ2 þ ðsjBÞ2

q
.

For UDD4, we find the additional resonance times
tk ¼ 8πð2k − 1Þ=ω̃. The odd UDDn sequences are time
symmetric with respect to the middle pulse (before repeat-
ing them twice), whereas the even UDDn sequences are
time symmetric with respect to the middle free-evolution
period. This implies that the odd UDDn sequences
are expected to produce the same rotation angles on the
nuclear spin, i.e., ϕ0 ¼ ϕ1. One way to see this is to
consider as an example the evolution operator of UDD3 in
one unit:

U ¼ σ00 ⊗ e−iH0ðq1t=2Þe−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1q1te−iH0ðq2t=2Þe−iH1ðq2t=2Þe−iH0ðq1t=2Þ

þ σ11 ⊗ e−iH1ðq1t=2Þe−iH0ðq2t=2Þe−iH1ðq2t=2Þe−iH0q1te−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1ðq1t=2Þ: ðI1Þ

Thus, we see that the rotation angle ϕ0 is

2ϕ0 ¼ Tr½e−iH0ðq1t=2Þe−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1q1te−iH0ðq2t=2Þe−iH1ðq2t=2Þe−iH0ðq1t=2Þ�
¼ Tr½e−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1q1te−iH0ðq2t=2Þe−iH1ðq2t=2Þe−iH0q1t�; ðI2Þ

where in the second line we use the cyclic permutation property of the trace. Similarly, for the rotation angle ϕ1 we obtain

2ϕ1 ¼ Tr½e−iH1ðq1t=2Þe−iH0ðq2t=2Þe−iH1ðq2t=2Þe−iH0q1te−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1ðq1t=2Þ�
¼ Tr½e−iH0ðq2t=2Þe−iH1ðq2t=2Þe−iH0q1te−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1q1t�
¼ Tr½e−iH1ðq2t=2Þe−iH0q1te−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1q1te−iH0ðq2t=2Þ�
¼ Tr½e−iH0q1te−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1q1te−iH0ðq2t=2Þe−iH1ðq2t=2Þ�
¼ Tr½e−iH1ðq2t=2Þe−iH0ðq2t=2Þe−iH1q1te−iH0ðq2t=2Þe−iH1ðq2t=2Þe−iH0q1t� ¼ 2ϕ0; ðI3Þ

where we repeatedly use the cyclic permutation property of
the trace. Similarly, it can be proven that, for odd UDDn
sequences with n > 3, it also holds that ϕ0 ¼ ϕ1. For this
reason, the odd UDDn sequences do not produce additional
resonance times besides tk ¼ 4πð2k − 1Þ=ω̃.
On the other hand, the UDDn sequences with even n ≥ 4

produce rotation angles ϕ0 ≠ ϕ1, which gives an extra
degree of freedom based on which electron-nuclear entan-
glement can be generated for unit times besides the
main one at tk ¼ 4πð2k − 1Þ=ω̃. Besides the times
tk ¼ 4πð2k − 1Þ=ω̃ and tk ¼ 8πð2k − 1Þ=ω̃ we mention
in the main text for UDD4, we find as an example that
there exist additional resonances at times

tk ¼ 10π
2k − 1

ω̃
;

tk ¼ 16π
2k − 1

ω̃
;

tk ¼ 18π
2k − 1

ω̃
;

tk ¼ 22π
2k − 1

ω̃
: ðI4Þ

Figure 15(a) shows the dot product of the nuclear

rotation axes as a function of time of one UDD4 unit.

For this plot, we consider an electron with spin S ¼ 1=2
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(i.e., spin projections s0 ¼ −s1 ¼ 1=2) and a nuclear spin
with parameters ðA; B;ωLÞ ¼ 2π · ð70; 10; 314Þ kHz. The
black vertical lines correspond to the resonance times
tk ¼ 4πð2k − 1Þ=ω̃, whereas the red vertical lines to the
times tk ¼ 8πð2k − 1Þ=ω̃. Additionally, the green line
corresponds to the time tk ¼ 10πð2k − 1Þ=ω̃, the magenta
line to tk ¼ 16πð2k − 1Þ=ω̃, the yellow line to tk ¼
18πð2k − 1Þ=ω̃, and the cyan line to tk¼22πð2k−1Þ=ω̃.
These resonances are extremely sharp and appear when we
sample the time with very fine steps. For example, to
demonstrate these lines, we consider 106 evenly spaced
time values in the range ½0; 20� μs. If we generate a much
smaller number of evenly spaced time values (around 103),
we mainly observe the resonances indicated by the black
and red lines, since these resonances are more broad.

Figure 15(b) shows the nuclear one-tangle as a function
of the number of iterations N, of one UDD4 unit, and for
various resonance times associated with the differently
colored lines. The first time of 3.1843 μs is obtained from
tk ¼ 4πð2k − 1Þ=ω̃, for k ¼ 1. All other indicated times
in the plot correspond to the additional resonance times we
list in Eq. (I4). For the time of 3.1843 μs, entanglement
builds up much faster compared to the remaining cases. This
is because the additional resonance times are “weaker,” in
the sense that the rotation angles per iteration are highly
oscillatory, resulting potentially in the averaging out of
interactions. This behavior is demonstrated in Fig. 16, where
we plot with red lines the rotation angles ϕ0 and ϕ1, as well
as their difference jΔϕj as a function of N, for a unit time
equal to t ¼ 7.9608 μs. To the contrary, for the resonance at
t ¼ 3.1843 μs, we do not observe such rapid oscillations
for the rotation angles, which is potentially the reason
why entanglement builds up faster for this case based on
Fig. 15(b). Therefore, we conclude that, for any practical
application, the weaker resonance times cannot be used to
create entanglement fast enough, meaning that dephasing
deteriorates the electron-nuclear Bell state before it is even
created. Furthermore, since those resonances are extremely
sharp and require very precise tuning of the interpulse
spacings, it is highly unlikely that one would observe
experimentally such resonances.

APPENDIX J: DERIVATION OF ONE-TANGLES
FOR THE ELECTRON AND A NUCLEAR SPIN

In this section, we prove that the expression of the
nuclear spin one-tangle essentially reduces to the formula
of the two-qubit entangling power. We start from the
general expression for an arbitrary number n of qubits
(with n − 1 nuclear spins):

FIG. 15. (a) Dot product of nuclear axes as a function of the
time of one UDD4 sequence unit. (b) Nuclear one-tangle
scaled by ϵ�p ¼ 2=9, for various resonance times, as a function
of the iterations of one unit. All times besides the first one at
3.1843 μs correspond to the additional times we list in
Eq. (I4). For these resonance times, a very large number
of iterations is required to reach the first maximum of the
nuclear one-tangle. The curves which look as though they
have larger linewidth are, in fact, highly oscillatory as a
function of N.

FIG. 16. Nuclear rotation angles ϕ0 (top) and ϕ1 (middle) as a
function of iterations of a UDD4 unit at the resonance time
3.1843 μs or at 7.9608 μs. The red lines show the fast oscillation
of the rotation angles. The bottom plot shows the difference of the
rotation angles as a function of N.
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1þ 1
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þ 1

2n−1
1
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ð1þG1Þ þ Θðn − 3Þ 1

2n32
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�

¼ 1 −
2

9
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2n

3n



1þ 2nþ 2n
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¼ 1 −
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1
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f1þ 2nþ 2n þ Θðn − 3Þ½5 · 3n−2 − ð1þ 2nþ 2nÞ�g; ðJ1Þ

where Θðn − 3Þ is the step function. Clearly, for n ¼ 3 the last term vanishes, and we recover 2=9ð1 −G1Þ. For n > 3,
we have

ϵnuclearpjq ¼ 7

9
−
2

9
G1 −

5 · 3n−2

3n
¼ 7 − 5

9
−
2

9
G1 ¼

2

9
ð1 −G1Þ; ðJ2Þ

which concludes our proof.
For the electron, we start from the expression

ϵelectronpjq ¼ 1 −
2n
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which can be simplified into

ϵelectronpjq ¼ 1 −
1

3n



2n−1 þ 1þ 2nþ Θðn − 3Þð1 − 2n − 2n−1 þ 3n−1Þ þ

�Xn−1
k¼1

2k
X
j1 ;…;jk

jmþ1>jm

1

�
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�
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1
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2k
�
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�
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�
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where we define FðG1Þ as

FðG1Þ ¼
Xn−1
k¼1

2k
X
j1;…jk

Yk
i¼1

GðjiÞ
1 : ðJ5Þ

We note that FðG1Þ can be rewritten as

FðG1Þ ¼ 2
n�

Gð1Þ
1 þ � � � þ Gðn−1Þ

1

	
þ 2
�
Gð1Þ

1 Gð2Þ
1 þGð1Þ

1 Gð3Þ
1 þ � � � þGð1Þ

1 Gðn−1Þ
1 þ � � � þGðn−2Þ

1 Gðn−1Þ
1
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1 Gð2Þ
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1 Gð4Þ
1 þ � � � þ Gð1Þ

1 Gð2Þ
1 Gðn−1Þ
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þ � � �

o
; ðJ6Þ

which actually reduces to

−1þ ð1þ 2Gð1Þ
1 Þ…ð1þ 2Gðn−1Þ

1 Þ ¼ −1þ
Yn−1
i¼1

ð1þ 2GðiÞ
1 Þ: ðJ7Þ

Finally, the electron’s one-tangle reads
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ϵelectronpjq ¼ 1 −
1

3n
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1 Þ
�
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For n > 3, it becomes

ϵelectronpjq ¼ 1 −
1

3n
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1 Þ
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1
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ð1þ 2GðiÞ
1 Þ; ðJ9Þ

whereas for n ¼ 3 the term multiplying the Θðn − 3Þ
function vanishes and we obtain

ϵelectronpjq ¼ 1 −
18

9 · 3
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APPENDIX K: PARAMETERS OF THE
MULTIPARTITE GATES

1. Random generation of nuclei

In Tables II–IV, we list the HF parameters of the
randomly generate nuclei (labeled by number) we use in
Sec. IVA. We present their one-tangles, rotation angles,
dot product of rotation axes, and positions compared to the
vacancy site. To estimate the distances and polar angles of
nuclei, we use the approach found in Supplemental
Material of Refs. [36,68] and in Ref. [61]. Since we are
studying weakly coupled spins far away from the electron,
the interaction is well approximated by the dipole-dipole
interaction, and the Fermi contact interaction is negligible.
The hyperfine vector can be broken into parallel and
perpendicular components which are related to the polar
angle θ and the distance R by

B ¼ 3A0 cos θ sin θ; ðK1Þ

A ¼ A0ð3 cos2 θ − 1Þ; ðK2Þ

TABLE II. Parameters for the k ¼ 1 CPMG resonances in Figs. 6(a) and 6(b) and the k ¼ 2 CPMG in
Figs. 6(c) and 6(d).

k ¼ 1

No. A
2π (kHz) B

2π (kHz) ϵpjq=ϵ�p ϕ0=ðπ=2Þ n0 · n1 R
13C (Å) θ

13C (deg)

1 195.78 49.619 0.9986 0.97615 −1 5.798 9.4595
2 27.783 136.51 0.999 06 1.0206 −0.996 67 6.0056 48.7804
3 124.53 128.31 0.955 85 0.865 97 −0.997 15 5.8549 29.8479
4 100.03 22.072 0.999 78 0.991 04 −0.998 12 7.2761 8.2809
5 26.926 181.33 0.968 84 1.1155 −0.993 28 5.4466 50.4027
6 65.726 128.15 0.998 49 1.0257 −0.997 18 6.1206 40.0504
7 63.767 74.919 0.998 49 1.0257 −0.997 18 7.1056 32.1510
8 106.88 164.74 0.963 52 1.1244 −0.994 62 5.5762 36.6319
9 193.4 122.07 0.973 93 0.897 43 −0.997 48 5.4859 21.2539
10 144.18 93.415 0.996 12 0.960 65 −0.998 93 6.0305 21.6910

k ¼ 2

No. A
2π (kHz) B

2π (kHz) ϵpjq=ϵ�p ϕ0=ðπ=2Þ n0 · n1 R
13C Å θ

13C (deg)

1 188.85 131.4 0.998 22 1.0268 −1 5.4598 22.9024
2 56.381 179.7 0.953 01 1.4246 −0.503 48 5.4953 45.5628
3 88.294 109.64 0.989 79 0.94983 −0.951 58 6.2905 33.1012
4 56.527 78.511 0.987 42 1.1009 −0.5337 7.0931 34.9707
5 134.8 150.66 0.998 07 1.1201 −0.758 14 5.6010 31.2819
6 82.906 187.71 0.997 03 1.2709 −0.338 44 5.4062 41.9618
7 121.1 73.468 0.999 34 1.6293 −0.117 89 6.4427 20.6001
8 10.288 157.82 0.994 36 1.024 −0.78 257 5.6665 52.8493
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TABLE III. Parameters for the k ¼ 1 UDD3 resonance in Figs. 6(e) and 6(f) and the k ¼ 3 UDD3 resonance in
Figs. 6(g) and 6(h).

k ¼ 1

No. A
2π (kHz) B

2π (kHz) ϵpjq=ϵ�p ϕ0=ðπ=2Þ n0 · n1 R
13C (Å) θ

13C (deg)

1 156.64 77.034 1 0.998 88 −1 6.0380 17.3233
2 140.3 86.029 0.999 78 1.0098 −0.9988 6.1266 20.7752
3 198.87 166.64 0.999 37 1.0055 −0.933 07 5.2130 26.1614
4 66.029 49.357 0.999 92 1.0119 −0.980 71 7.6696 24.1452
5 70.082 148.45 1 1.0151 −0.9537 5.8393 41.1360
6 123.25 121.93 0.999 91 1.013 −0.978 65 5.9252 29.1248
7 26.135 112.96 0.9988 1.0269 −0.985 38 6.4041 47.9618
8 41.644 103.96 0.999 22 0.984 95 −0.991 14 6.5907 43.0975
9 159.78 104.28 0.999 25 0.985 41 −0.991 01 5.8221 21.8136
10 61.719 76.878 0.999 75 1.01 −1 7.0826 33.1540
11 45.081 191.59 0.999 99 1.0355 −0.900 59 5.3707 47.8464

k ¼ 3

No. A
2π (kHz) B

2π (kHz) ϵpjq=ϵ�p ϕ0=ðπ=2Þ n0 · n1 R
13C (Å) θ

13C (deg)

1 168.78 12.804 0.999 37 1.016 −1 6.1687 2.8916
2 82.989 158.3 0.999 68 1.4125 −0.224 76 5.7008 39.7526
3 63.816 88.135 0.996 38 1.4196 −0.314 99 6.8222 34.8782
4 136.9 149.52 0.959 87 1.5528 −0.361 49 5.6013 30.8775
5 141.46 99.44 0.969 69 1.0693 −0.489 89 6.0031 23.0786
6 142.11 76.191 0.999 61 1.1399 −0.609 42 6.1886 18.6298
7 186.1 56.749 0.993 09 0.99304 −0.854 08 5.8622 11.2690
8 199.65 138.43 0.996 34 1.0949 −0.636 09 5.3621 22.8424

TABLE IV. Parameters for the k ¼ 1 UDD4 resonance in Figs. 6(i) and 6(j) and the k ¼ 2 UDD4 resonance in
Figs. 6(k) and 6(l).

k ¼ 1

No. A
2π (kHz) B

2π (kHz) ϵpjq=ϵ�p ϕ0=ðπ=2Þ ϕ1=ðπ=2Þ n0 · n1 R
13C (Å) θ

13C (deg)

1 185.97 180.32 0.997 26 0.0082 1.9251 −1 5.1871 28.7667
2 66.715 101.62 0.992 31 0.444 77 1.5634 −0.707 96 6.5463 36.4471
3 74.691 53.908 0.999 97 1.6433 1.8615 −0.037 267 7.3993 23.5345
4 142.18 92.353 0.999 95 1.96 0.051 616 −0.605 99 6.0567 21.7336
5 129.3 56.393 0.999 98 1.0714 1.9898 −0.013 046 6.4964 15.6109
6 176.75 56.919 0.993 06 0.847 82 1.8841 0.019 231 5.9511 11.8573
7 53.599 136.86 0.955 39 0.504 12 1.8016 −0.930 27 6.0146 43.3476
8 22.803 92.34 0.995 26 1.2626 0.925 51 −0.611 59 6.8526 47.5050
9 36.541 194.7 0.997 41 1.6852 0.382 14 −0.993 22 5.3311 49.2472

k ¼ 2

No. A
2π (kHz) B

2π (kHz) ϵpjq=ϵ�p ϕ0=ðπ=2Þ ϕ1=ðπ=2Þ n0 · n1 R
13C (Å) θ

13C (deg)

1 57.301 157.25 0.999 83 1.6338 0.349 39 −1 5.7448 44.115
2 83.42 41.407 0.987 32 0.339 54 1.5977 −0.747 18 7.4432 17.4606
3 91.972 183.32 0.994 33 1.4705 0.645 75 −0.964 29 5.4352 40.3454
4 167.87 70.649 0.991 08 1.1752 1.0431 −0.545 09 5.9694 15.1266
5 150.76 190.51 0.999 43 1.2509 0.783 26 −0.894 64 5.2403 33.3981
6 81.29 135.96 0.996 09 0.748 27 1.1903 −0.968 08 5.9687 37.8747
7 165.25 99.13 0.999 98 1.9905 0.092 461 −0.035 242 5.8161 20.4161
8 179.08 30.338 0.967 42 0.099 24 1.8562 0.880 88 6.0179 6.403 45
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with A0 ¼ μ0γnγeℏ=ð4πR3Þ. We solve these equations
for R and θ, assuming 13C atoms, and present the values
in the tables.

2. Gate error comparison for the three sequences

Here, we provide a more thorough calculation of the
gate error of multipartite gates under the CPMG, UDD3,
or UDD4 evolution. Following a similar approach as in
Sec. IV B, we generate ensembles of 5 × 105 unwanted
nuclear spins with randomly distributed HF parameters and
identify those with one-tangles in the range [0.1, 0.7]. We
keep the same number of repetitions and gate time we
considered for each sequence in Sec. IV B. However, in this
case, we repeat the random generation eight times to
produce eight different ensembles of 5 × 105 unwanted
nuclei. For each of these eight different ensembles, we
repeat the same procedure as in Sec. IV B; we gradually
increase the size of the unwanted spin bath (which contains
up to six spins) and calculate the gate error it induces on the
target subspace. At the end, we take the average of the error
(over the eight ensembles) for each case of unwanted spin

bath size (from one up to six spins). Notice that the eight
ensembles are distinct for each sequence.
In Fig. 17, we show the gate error averaged over the

eight different realizations of unwanted spin ensembles
for CPMG (a), UDD3 (b), and UDD4 (c). We notice that
CPMG performs, in general, on par with UDD4, while
UDD3 fails to protect the target subspace as effectively as
the other two sequences. Although in this scenario UDD3

has the longest total gate time of all three sequences (as we
mention in the main text), we see that choosing a longer
sequence does not always ensure improved performance.
To provide a comparison of the gate error, we further
evaluate the average gate error in each range of one-tangles.
That is, we average the gate error for each fixed interval of
one-tangles as 1−F¼1=6ð1−F1spinþ1−F2spinsþ���þ
1−F6spinsÞ. The results are shown in Fig. 17(d), where
we see that UDD3 underperforms the other two sequences.

3. Parameters for 27 nuclear spins

The HF parameters for the 27 nuclear spins [32] we
consider in Sec. IV C are listed in Table V. In addition,
in Tables VI–IX, we list the target spins in Fig. 8 for each of
the 27 different realizations of each resonance k, their one-
tangles, and the gate error.

4. Parameters for comparison of multispin operations
with sequential entanglement generation

Here, we provide the parameters we consider in
Sec. IV D. To obtain the optimal sequential CRxðπ=2Þ gates
with C4, C5, andC15, we set the time constraint of 1.5 ms for
each sequential gate. We further require that the unwanted
one-tangles of the remaining 26 unwanted spins are below
0.14–0.4 (we cannot satisfy the unwanted one-tangle bound
of 0.14 for all cases of addressing each Cj nucleus). The
unwanted one-tangles for the optimal choices we find are

FIG. 17. Gate error 1 − F as a function of one-tangles (scaled by
the maximum value ϵ�p ¼ 2=9) of unwanted nuclei for (a) CPMG,
(b) UDD3, and (c) UDD4. The labels in all graphs show up to how
many spins are “traced out” from the total system. The unwanted
spins have one-tangles in the range [0.1, 0.7]. The error bars of the
blue points show the intervals where we assign unwanted spins and
are the same for all differently colored lines. The gate error shown
in (a)–(c) is the average over eight different ensembles of unwanted
nuclei for each bath size. In (d), we take the gate error from (a)–(c),
respectively, and further average over the six different unwanted
spin baths for each one-tangle range (see the text).

TABLE V. Hyperfine parameters of the 13C atoms we consider
in Sec. IV C.

C atoms A
2π (kHz) B

2π (kHz) C atoms A
2π (kHz) B

2π (kHz)

C1 −20.72 12 C14 −19.815 5.3
C2 −23.22 13 C15 −13.971 9
C3 −31.25 8 C16 −4.66 7
C4 −14.07 13 C17 −5.62 5
C5 −11.346 59.21 C18 −36.308 26.62
C6 −48.58 9 C19 24.399 24.81
C7 −8.32 3 C20 2.690 11
C8 −9.79 5 C21 1.212 13
C9 213.154 3 C22 7.683 4
C10 17.643 8.6 C23 −3.177 2
C11 14.548 10 C24 −4.225 0
C12 20.569 41.51 C25 −3.873 0
C13 8.029 21.0 C26 −3.618 0
C27 −4.039 0
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TABLE VI. Target spins, one-tangles, and gate error for each case number for the k ¼ 1 resonance in Fig. 8.

Case,
resonance Target spins εTpjq=ε

�
p Gate error

(1,1) fC5;C10;C11;C12;C19g f0.999 92; 0.984 16; 0.947 79; 0.994 07; 0.997 94g 0.134 41
(2,1) fC5;C10;C11;C12;C19g f0.999 71; 0.950 59; 0.862 47; 0.982 84; 0.999 01g 0.1162
(3,1) fC5;C11;C12;C13;C19;C21;C22g f0.8453; 0.994 63; 0.969 33; 0.985 94; 0.981 29; 0.975 88; 0.996 83g 0.124 47
(4,1) fC5;C10;C11;C12;C19g f0.997 23; 0.999 45; 0.991 04; 0.943 26; 0.955 14g 0.151 66
(5,1) fC5;C11;C12;C13;C19;C21;C22g f0.845 56; 0.994 68; 0.969 25; 0.985 91; 0.981 34; 0.975 84; 0.996 77g 0.1245
(6,1) fC5;C10;C11;C12;C13;C19g f0.923 65; 0.961 92; 0.846 89; 0.977 34; 0.960 71; 0.891 76g 0.153 78
(7,1) fC5;C10;C11;C12;C13;C19g f0.916 51; 0.923 15; 0.895 04; 0.929 34; 0.977 13; 0.957 19g 0.168 15
(8,1) fC5;C10;C11;C12;C19g f0.998 45; 0.993 21; 0.975 71; 0.997 13; 0.995 18g 0.156 31
(9,1) � � � � � � � � �
(10,1) fC5;C10;C11;C12;C19g f1; 0.978 95; 0.933 09; 0.992 34; 0.9985g 0.127 88
(11,1) fC5;C10;C11;C12;C13;C19g f0.835 32; 0.956 52; 0.860 71; 0.900 97; 0.9606; 0.955 54g 0.141 42
(12,1) fC5;C10;C11;C12;C19g f0.999 73; 0.953 97; 0.872 63; 0.984 32; 0.999 05g 0.116 61
(13,1) fC5;C10;C11;C12;C19g f0.999 71; 0.951 99; 0.8657; 0.983 32; 0.999 02g 0.1163
(14,1) fC5;C10;C11;C12;C13;C19g f0.887 69; 0.971 41; 0.819 81; 0.968 51; 0.9474; 0.891 37g 0.141 73
(15,1) fC5;C10;C11;C12;C19g f0.996 78; 0.998 78; 0.986 62; 0.940 73; 0.9591g 0.145 17
(16,1) fC5;C10;C11;C12;C19g f0.999 97; 0.974 99; 0.922 39; 0.991 02; 0.998 47g 0.124 38
(17,1) fC5;C10;C11;C12;C19g f0.999 34; 0.9901; 0.965 67; 0.996 06; 0.996 61g 0.146 38
(18,1) fC5;C10;C11;C12;C19g f0.999 95; 0.983 34; 0.945 44; 0.9938; 0.998 06g 0.133 21
(19,1) fC5;C10;C11;C12;C19g f0.996 54; 0.998 19; 0.983 28; 0.939 01; 0.961 39g 0.141 37
(20,1) fC5;C10;C11;C12;C19g f0.999 98; 0.981 85; 0.941 18; 0.9933; 0.998 23g 0.131 19
(21,1) fC5;C10;C11;C12;C19g f0.989 23; 0.999 74; 0.995 23; 0.820 26; 0.887 72g 0.139 51
(22,1) fC5;C11;C12;C13;C19;C21;C22g f0.866 39; 0.997 71; 0.962 68; 0.983 38; 0.985 24; 0.972 19; 0.990 93g 0.1276
(23,1) fC5;C10;C11;C12;C19g f0.997 65; 0.920 23; 0.820 14; 0.998 31; 0.993 23g 0.1157
(24,1) fC5;C10;C11;C12;C13;C19g f0.892 27; 0.970 47; 0.8232; 0.9696; 0.949 14; 0.8914g 0.143 06
(25,1) fC5;C10;C11;C12;C19g f0.999 72; 0.9529; 0.867 79; 0.983 62; 0.999 03g 0.116 38
(26,1) fC5;C11;C12;C13;C19;C21;C22g f0.839 05; 0.993 53; 0.971 09; 0.986 64; 0.980 05; 0.976 84; 0.997 95g 0.123 82
(27,1) fC5;C10;C11;C12;C19g f0.999 75; 0.957 95; 0.879 66; 0.985 32; 0.999 06g 0.117 08

TABLE VII. Target spins, one-tangles, and gate error for each case number for the k ¼ 2 resonance in Fig. 8.

Case, resonance Target spins εTpjq=ε
�
p Gate error

(1,2) fC12;C13;C20;C21g f0.829 37; 0.999 07; 0.914 08; 0.969 15g 0.130 08
(2,2) fC12;C13;C20;C21g f0.840 17; 0.995 43; 0.911 92; 0.964 35g 0.127 29
(3,2) fC1;C5;C14g f0.978 21; 0.996 98; 0.970 14g 0.132 08
(4,2) fC10;C11;C12;C19g f0.986 93; 0.983 02; 0.987 53; 0.860 79g 0.065 161
(5,2) fC12;C13;C20;C21g f0.808 45; 0.991 56; 0.934 99; 0.972 61g 0.106 42
(6,2) fC3;C5;C18g f0.998 34; 0.929 35; 0.960 76g 0.087 809
(7,2) fC12;C13;C20;C21g f0.826 92; 0.9933; 0.986 08; 0.848 37g 0.055 868
(8,2) fC3;C15;C15g f0.9983; 0.9294; 0.9608g 0.074
(9,2) � � � � � � � � �
(10,2) fC12;C13;C20;C21g f0.808 33; 0.991 61; 0.935 01; 0.972 65g 0.106 42
(11,2) fC12;C13;C20;C21g f0.905 11; 0.921 14; 0.983 17; 0.816 08g 0.070 816
(12,2) fC10;C11;C12;C19g f0.981 09; 0.987 71; 0.9929; 0.867 59g 0.057 813
(13,2) fC12;C13;C20;C21g f0.836 75; 0.996 92; 0.912 67; 0.965 98g 0.128 14
(14,2) fC12;C13;C20;C21g f0.802 91; 0.997 63; 0.917 43; 0.977 61g 0.137 94
(15,2) fC12;C13;C20;C21g f0.847 17; 0.991 25; 0.910 16; 0.960 64g 0.125 67
(16,2) fC12;C13;C20;C21g f0.8637; 0.917 92; 0.800 65; 0.970 57g 0.079 901
(17,2) fC12;C13;C20;C21g f0.8985; 0.933 71; 0.984 48; 0.822 79g 0.066 377
(18,2) fC3;C5;C18g f0.868 36; 0.941 77; 0.976 11g 0.095 639
(19,2) fC12;C13;C20;C21g f0.856 12; 0.983 21; 0.907 38; 0.954 96g 0.123 89
(20,2) fC12;C13;C20;C21g f0.840 67; 0.995 18; 0.9118; 0.964 11g 0.127 17
(21,2) fC10;C11;C12;C19g f0.932 95; 0.999 59; 0.998 59; 0.878 79g 0.036 53
(22,2) fC12;C13;C20;C21g f0.848 77; 0.990 04; 0.909 71; 0.959 71g 0.125 32

(Table continued)
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TABLE VIII. Target spins, one-tangles, and gate error for each case number for the k ¼ 3 resonance in Fig. 8.

Case, resonance Target spins εTpjq=ε
�
p Gate error

(1,3) fC1;C2;C5g f0.998 02; 0.955 19; 0.985 51g 0.076 654
(2,3) fC4;C5;C15g f0.982 89; 0.988 11; 0.998 95g 0.090 689
(3,3) fC1;C2;C5g f0.999 73; 0.926 45; 0.982 35g 0.085 654
(4,3) fC4;C5;C15g f0.960 05; 0.992 48; 0.977 39g 0.091 492
(5,3) fC5;C16;C17g f0.971 77; 0.9997; 0.958 42g 0.045 708
(6,3) fC3;C18g f0.938 76; 0.882 74g 0.046 505
(7,3) fC1;C2;C5g f0.993 57; 0.969 03; 0.987 01g 0.071 505
(8,3) fC5;C16;C17g f0.971 21; 0.999 98; 0.957 96g 0.045 857
(9,3) fC6;C9g f0.851 18; 0.896 31g 0.065 242
(10,3) fC12;C19g f0.999 78; 0.999 96g 0.037 397
(11,3) fC12;C19g f0.999 99; 0.999 25g 0.038 34
(12,3) fC10;C11;C12g f0.825; 0.971 02; 0.999 84g 0.063 887
(13,3) fC5;C16;C17g f0.939 99; 0.963 79; 0.997 59g 0.137 09
(14,3) fC4;C5;C15g f0.983 31; 0.997 33; 0.955 22g 0.096 136
(15,3) fC4;C5;C15g f0.999 41; 0.995 71; 0.998 54g 0.067 369
(16,3) fC4;C5;C15g f0.999 94; 0.9966; 0.997 58g 0.067 963
(17,3) fC4;C5;C15g f0.973 91; 0.984 69; 0.993 69g 0.080 809
(18,3) fC1;C2;C5g f0.999 48; 0.922 96; 0.981 96g 0.086 644
(19,3) fC10;C11;C12g f0.862 42; 0.957 45; 0.985 41g 0.068 323
(20,3) fC5;C16;C17g f0.974 18; 0.976 14; 0.966 38g 0.047 334
(21,3) fC4;C5;C15g f0.986 99; 0.989 29; 0.946 84g 0.072 855
(22,3) fC5;C16;C17g f0.978 87; 0.995 43; 0.946 63g 0.065 835
(23,3) fC4;C5;C15g f0.999 94; 0.996 62; 0.997 56g 0.067 977
(24,3) fC4;C5;C15g f0.985 78; 0.997 81; 0.951 56g 0.096 777
(25,3) fC4;C5;C15g f0.998 99; 0.988 88; 0.9961g 0.082 447
(26,3) fC5;C16;C17g f0.972 62; 0.998 41; 0.959 37g 0.045 567
(27,3) fC4;C5;C15g f0.9882; 0.989 58; 0.999 68g 0.064 595

TABLE VII. (Continued)

Case, resonance Target spins εTpjq=ε
�
p Gate error

(23,2) fC12;C13;C20;C21g f0.838 47; 0.989 04; 0.986 55; 0.847 17g 0.055 117
(24,2) fC12;C13;C20;C21g f0.802 17; 0.997 42; 0.917 49; 0.9778g 0.138 17
(25,2) fC10;C11;C12;C19g f0.9923; 0.976 29; 0.978 69; 0.849 76g 0.075 422
(26,2) fC12;C13;C20;C21g f0.810 29; 0.990 69; 0.934 67; 0.971 99g 0.106 38
(27,2) fC10;C11;C12;C19g f0.948 17; 0.998 22; 0.999 93; 0.8788g 0.039 691

TABLE IX. Target spins, one-tangles, and gate error for each case number for the k ¼ 4 and k ¼ 5 resonance in Fig. 8.

Case,
resonance Target spins εTpjq=ε

�
p Gate error

Case,
resonance Target spins εTpjq=ε

�
p Gate error

(1,4) fC4;C5;C15g f0.997 81; 0.996 36; 0.998 31g 0.053 818 (1,5) fC4;C5;C15g f0.9144; 1; 0.986 98g 0.025 322
(2,4) fC1;C5;C14g f0.979 19; 0.997 46; 0.995 52g 0.074 751 (2,5) fC4;C5;C15g f0.999 03; 0.987 28; 0.996 31g 0.022 729
(3,4) fC1;C5;C14g f0.9942; 0.995 17; 0.982 06g 0.055 318 (3,5) fC1;C5;C14g f0.998 18; 0.870 03; 0.850 05g 0.056 428
(4,4) fC4;C5;C15g f0.970 17; 0.994 92; 0.983 28g 0.071 316 (4,5) fC4;C5;C15g f0.927 56; 0.999 42; 0.984 65g 0.025 334
(5,4) fC4;C5;C15g f0.997 34; 0.989 92; 0.999 43g 0.053 567 (5,5) fC4;C5;C15g f0.998 89; 0.994 63; 0.917 21g 0.022 455
(6,4) fC6;C9g f0.849 38; 0.897 01g 0.065 279 (6,5) � � � � � � � � �
(7,4) fC1;C5;C14g f0.997 83; 0.998; 0.965 11g 0.034 986 (7,5) fC4;C5;C15g f0.997 73; 0.992 32; 0.9129g 0.022 384
(8,4) fC4;C5;C15g f0.955 84; 0.996 67; 0.976 78g 0.071 062 (8,5) fC4;C5;C15g f0.997 09; 0.989 72; 0.994 43g 0.022 413
(9,4) fC12;C19g f0.949 43; 0.9978g 0.055 554 (9,5) � � � � � � � � �
(10,4) fC12;C19g f0.999 65; 0.998 88g 0.019 047 (10,5) fC10;C12g f0.997 49; 0.999 63g 0.087 708
(11,4) fC12;C19g f0.999 83; 0.998 06g 0.018 949 (11,5) fC10;C12g f0.974 77; 0.9974g 0.047 869

(Table continued)

PRECISE CONTROL OF ENTANGLEMENT IN MULTINUCLEAR … PHYS. REV. X 13, 011004 (2023)

011004-33



listed in Table X. The rotation angles and axes for the
sequential and multispin gates in Fig. 9 are listed in Table XI.

5. QEC with CRxz multispin gates

In this section, we provide the details of how we imple-
ment the three-qubit bit-flip code using the CRxz gates. First,
we explain the three-qubit bit-flip code that utilizes the
sequential CR�xðπ=2Þ gates. The circuit to implement the
QEC code using the latter scheme is shown in Fig. 18(a);
the CNOT gates used in the usual QEC code are expressed in
terms of the CR�xðπ=2Þ gates as well as initialization of
the nuclei into the j1i state, while the Toffoli gate is
decomposed into single-qubit gates and CR�xðπ=2Þ gates.
The CR�xðπ=2Þ shown in Fig. 18 are given by

CR�xðπ=2Þ¼σ00⊗Rxðπ=2Þþσ11⊗R−xðπ=2Þ; ðK3Þ

where we define RxðϕÞ ¼ e−iðϕ=2Þσx . The half-white, half-
black control implies that when the electron is in the j0i
state, the nuclear spin still undergoes a rotation, but it differs
from the one it undergoes when the electron is in
the j1i state. The electron rotation angles θj have to satisfy
particular relations to ensure recovery of the electron’s state.
Let us start with the sequential protocol. If a bit flip

happens on the electron, then the final (after the correction)
three-qubit state has the form [in the basis fj000i; j001i;
j010i; j011i; j100i; j101i; j110i; j111ig]

jψfi ¼
1

2

0
BBBBBBBBBBBBBBBB@

−β cosðΘ
2
Þ þ iα sinðΘ

2
Þ

−β cosðΘ
2
Þ þ iα sinðΘ

2
Þ

−β cosðΘ
2
Þ þ iα sinðΘ

2
Þ

−β cosðΘ
2
Þ þ iα sinðΘ

2
Þ

−α cosðΘ
2
Þ þ iβ sinðΘ

2
Þ

−α cosðΘ
2
Þ þ iβ sinðΘ

2
Þ

−α cosðΘ
2
Þ þ iβ sinðΘ

2
Þ

−α cosðΘ
2
Þ þ iβ sinðΘ

2
Þ;

1
CCCCCCCCCCCCCCCCA

; ðK4Þ

where we define Θ ¼ θ1 − θ2 − θ3 þ θ4. Clearly, in order to
recover the initial state of the electron, it has to hold that
Θ ¼ ð2kþ 1Þπ. Under this condition, one can verify that the
final state is ðαj0i þ βj1iÞjxijxi, with jxi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

.
If no error occurs, then the final state is

jψfi ¼
1

2

0
BBBBBBBBBBBBBBBBBB@

α cosðΘ̃
2
Þ þ iβ sinðΘ̃

2
Þ

−α cosðΘ̃
2
Þ − iβ sinðΘ̃

2
Þ

−α cosðΘ̃
2
Þ − iβ sinðΘ̃

2
Þ

α cosðΘ̃
2
Þ þ iβ sinðΘ̃

2
Þ

β cosðΘ̃
2
Þ þ iα sinðΘ̃

2
Þ

−β cosðΘ̃
2
Þ − iα sinðΘ̃

2
Þ

−β cosðΘ̃
2
Þ − iα sinðΘ̃

2
Þ

β cosðΘ̃
2
Þ þ iα sinðΘ̃

2
Þ;

1
CCCCCCCCCCCCCCCCCCA

; ðK5Þ

TABLE IX. (Continued)

Case,
resonance Target spins εTpjq=ε

�
p Gate error

Case,
resonance Target spins εTpjq=ε

�
p Gate error

(12,4) fC12;C19g f0.995 61; 0.997 18g 0.039 132 (12,5) fC10;C12g f0.984 42; 0.995 69g 0.047 928
(13,4) fC10;C12g f0.999 16; 0.996 39g 0.015 197 (13,5) fC20;C21g f0.999 96; 0.989 58g 0.075 203
(14,4) fC4;C5;C15g f0.993 33; 0.989 22; 0.994 89g 0.071 773 (14,5) fC4;C5;C15g f0.999 84; 0.985 08; 0.997 59g 0.022 995
(15,4) fC4;C5;C15g f0.987 11; 0.998 92; 0.992 49g 0.054 07 (15,5) fC4;C5;C15g f0.985 48; 0.998 83; 0.995 86g 0.019 793
(16,4) fC4;C5;C15g f0.999 07; 0.991 56; 0.9999g 0.053 608 (16,5) fC4;C5;C15g f0.976 24; 0.997 43; 0.982 04g 0.021 121
(17,4) fC4;C5;C15g f0.957 75; 0.998 75; 0.999 76g 0.077 026 (17,5) fC4;C5;C15g f0.910 76; 0.999 95; 0.987 55g 0.025 321
(18,4) fC2;C5g f1; 0.906 04g 0.094 235 (18,5) � � � � � � � � �
(19,4) fC12;C19g f0.995 72; 0.997 16g 0.039 168 (19,5) fC10;C12g f0.999 86; 0.999 62g 0.037 721
(20,4) fC16;C17g f0.999 94; 0.999 37g 0.076 236 (20,5) fC20;C21g f0.998 03; 0.997 65g 0.069 339
(21,4) fC16;C17g f0.9741; 0.998 81g 0.046 931 (21,5) fC20;C21g f1; 0.988 65g 0.041 343
(22,4) fC10;C12g f0.999 98; 0.999 75g 0.040 316 (22,5) fC10;C12g f0.995 92; 0.999 97g 0.083 296
(23,4) fC4;C5;C15g f0.9695; 0.995 02; 0.982 97g 0.071 304 (23,5) fC4;C5;C15g f0.996 12; 0.989 56; 0.908 37g 0.022 317
(24,4) fC4;C5;C15g f0.991 34; 0.990 04; 0.993 79g 0.071 728 (24,5) fC4;C5;C15g f0.999 28; 0.986 78; 0.996 63g 0.022 791
(25,4) fC4;C5;C15g f0.9693; 0.99901; 0.99898g 0.041347 (25,5) fC4;C5;C15g f0.96988; 0.99834; 0.97894g 0.020891
(26,4) fC4;C5;C15g f0.999 22; 0.991 76; 0.999 93g 0.053 613 (26,5) fC4;C5;C15g f0.997 46; 0.991 85; 0.912 08g 0.022 372
(27,4) fC4;C5;C15g f0.982 15; 0.999 49; 0.992 79g 0.075 682 (27,5) fC4;C5;C15g f0.996 87; 0.990 81; 0.910 36g 0.022 346
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where we define Θ̃ ¼ θ1 þ θ2 − θ3 − θ4. Clearly, in order
to preserve the initial state of the electron, it has to hold that
Θ̃ ¼ 2κπ. In this case, the final state is ðαj0i þ βj1iÞjx̄ijx̄i,
where jx̄i ¼ ðj0i − j1iÞ= ffiffiffi

2
p

.
Based on the above observations, we find that we can

satisfy both conditions for Θ and Θ̃ if we choose the θj to
satisfy

θ2 ¼ θ1; θ3 ¼ θ1 − 3π=2; θ4 ¼ θ3 þ π: ðK6Þ

It is clear that in the sequential protocol if no error occurs
on the electron’s state, the CR�xðπ=2Þ gates of the
encoding add up with those of the decoding step to
produce CR�xðπÞ gates which flip both nuclear spins into
the j00i state, and, hence, the subsequent Toffoli gate is
not activated. We should further mention that, in the case
where a single bit flip happens on either the first or
second nuclear spin, and we are interested in preserving
the initial state of the electron, then the θj need to be
constrained further. That is, we have two more condi-
tions; namely, if the bit flip happens on the first nucleus,
then the angles need to satisfy θ1 þ θ2 þ θ3 þ θ4 ¼ 2π,
whereas if the bit flip happens on the second nucleus, the
angles need to satisfy θ1 − θ2 þ θ3 − θ4 ¼ 2π. Combining
these constraints with the θj constraints when a bit flip or
no bit flip happens on the electron, we find that θj need to
satisfy

θ1 ¼ θ4 ¼ −π=4 ¼ −θ2 ¼ −θ3: ðK7Þ

Let us return to the CRxz QEC protocol and consider first
the case where no error happens on the electron. Now, the
CRxz gates of the encoding and decoding again add up, but,
in general, the total gate is not equivalent to a bit-flip
operation that brings the state j11i of the nuclei into the

TABLE XI. Nuclear rotation axes and rotation angles for the
multispin operation (case 23, k ¼ 3) and the sequential gates we
discuss in Sec. IV D.

Multispin gate

C4 C5 C15

nx;0 −0.7532 0.9468 0.6832
ny;0 0 0 0
nz;0 −0.6566 0.3219 0.7302
nx;1 0.7754 −0.9844 −0.6996
ny;1 0 0 0
nz;1 −0.6314 0.1758 0.7145
ϕ=ðπ=2Þ 1.5136 1.0028 1.9021

Sequential gates

C4 C5 C15

nx;0 −1 0.999 96 −1
ny;0 0 0 0
nz;0 0 0.009 05 0
nx;1 0.999 52 −0.98996 0.999 77
ny;1 0 0 0
nz;1 0.031 −0.14314 0.021
ϕ=ðπ=2Þ 0.982 82 1.0048 0.099 227

TABLE X. Nuclear one-tangles when we aim to entangle only
a C4 or C5 or C15 atom with the electron. The optimal parameters
for C4 are ðN�;k�Þ¼ð82;3Þ, 1−F¼0.1133, and T�≈0.9337ms.
There is no other optimal case for C4 within the time constraint
of 1.5 ms and unwanted one-tangles below 0.2. The optimal
parameters for C5 are ðN�; k�Þ ¼ ð6; 3Þ, T� ≈ 68.24 μs, and
1 − F ¼ 0.1045; there are other cases that satisfy the time
constraint and tolerance of unwanted one-tangles of 0.14, but
we select the fastest option. The optimal parameters for C15 are
ðN�; k�Þ ¼ ð118; 3Þ, T� ≈ 1.3439 ms, and 1 − F ¼ 0.1421; the
tolerance for unwanted one-tangles for C15 is 0.31. For the time
constraint of 1.5 ms, we find no other optimal case to address
only C15.

C4

C atoms ϵpjq=ϵ�p C atoms ϵpjq=ϵ�p C atoms ϵpjq=ϵ�p

C1 0.0498 C2 0.0968 C3 0.0001
C4 0.9993 C5 0.0645 C6 0.0002
C7 0.0062 C8 0.0062 C9 0.0001
C10 0.0005 C11 0.0044 C12 0.0565
C13 0.0198 C14 0.0490 C15 0.1767
C16 0.0289 C17 0.0002 C18 0.0546
C19 0.0065 C20 0.0031 C21 0.0098
C22 0.0007 C23 0.0005 C24 0
C25 0 C26 0 C27 0

C5

C atoms ϵpjq=ϵ�p C atoms ϵpjq=ϵ�p C atoms ϵpjq=ϵ�p

C1 0.0925 C2 0.0967 C3 0.0173
C4 0.1130 C5 1 C6 0.0011
C7 0.0048 C8 0.0147 C9 0.0001
C10 0.0003 C11 0 C12 0.0132
C13 0.0148 C14 0.0191 C15 0.0551
C16 0.0193 C17 0.0108 C18 0.0541
C19 0.0096 C20 0.0162 C21 0.0300
C22 0.0005 C23 0.0013 C24 0
C25 0 C26 0 C27 0

C15

C atoms ϵpjq=ϵ�p C atoms ϵpjq=ϵ�p C atoms ϵpjq=ϵ�p

C1 0.1296 C2 0.1054 C3 0.0135
C4 0.3086 C5 0.0030 C6 0.0030
C7 0.0031 C8 0.0115 C9 0.0003
C10 0.0014 C11 0.0011 C12 0.0143
C13 0.0378 C14 0.0036 C15 0.9999
C16 0.0201 C17 0.0149 C18 0.0901
C19 0.0132 C20 0.0072 C21 0.0115
C22 0.0014 C23 0.0012 C24 0
C25 0 C26 0 C27 0
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j00i state. However, if we put Ryð−πÞ gates on the nuclei at
the encoding step and right after the CRxz gate, we then
have the total gate CRxz½12×2 ⊗ Ryð−πÞ ⊗ Ryð−πÞ�CRxz.

If we consider the case when the electron is in the j0i state
and consider the part of the gate acting on the first nuclear
spin, we find that the total gate is

Rð0Þ
n0
Ryð−πÞRð0Þ

n0
¼
�
cos

ϕ

2
− i sin

ϕ

2
ðnx;0σx þ nz;0σzÞ

�
½iσy�

�
cos

ϕ

2
− i sin

ϕ

2
ðnx;0σx þ nz;0σzÞ

�

¼
�
cos

ϕ

2
iσy þ i sin

ϕ

2
ðnx;0σz − nz;0σxÞ

��
cos

ϕ

2
− i sin

ϕ

2
ðnx;0σx þ nz;0σzÞ

�

¼ cos2
ϕ

2
iσy þ sin2

ϕ

2
ðnx;0σz − nz;0σxÞðnx;0σx þ nz;0σzÞ

¼ cos2
ϕ

2
iσy þ sin2

ϕ

2
ðn2x;0 þ n2z;0Þiσy ¼ iσy; ðK8Þ

where in the last line we use the fact that time-symmetric
π sequences do not produce an ny rotation component
and, thus, n2x þ n2z ¼ 1. (Note that we consider here a
π-pulse sequence that produces the same rotation angles
irrespective of the electron’s state, i.e., ϕ0 ¼ ϕ1 ≡ ϕ.)
The same analysis follows for the second nuclear spin
and for the case when the electron is in state j1i, and,
thus, CRxz½12×2 ⊗ Ryð−πÞ ⊗ Ryð−πÞ�CRxz is equivalent
to i212×2 ⊗ σy ⊗ σy if no error occurs on the electron.
Thus, we see that the CRxz½12×2 ⊗ Ryð−πÞ ⊗
Ryð−πÞ�CRxz gate leads to the desired bit-flip operation
of the nuclei, deactivating the subsequent Toffoli gate.
This is verified schematically in Figs. 19(a) and 19(b),
where we show the Bloch sphere evolution of nuclear

spins C10 and C12 (that we considered in Sec. IV D),
respectively, up to the decoding, assuming no error occurs
on the electron.
Now, let us assume that a bit-flip error happens on

the electron. At the encoding step, which includes the
Ryð−πÞ rotations, the encoded state becomes

jψ enci ¼ αj0i ⊗ Ryð−πÞRð1Þ
n0
j1i ⊗ Ryð−πÞRð2Þ

n0
j1i

þ βj1i ⊗ Ryð−πÞRð1Þ
n1
j1i ⊗ Ryð−πÞRð2Þ

n1
j1i: ðK9Þ

After the bit flip and the decoding step, the state becomes

FIG. 18. Circuit diagrams to correct a bit flip on the electron for (a) the sequential approach that utilizes the CRxðπ=2Þ gates and (b) the
multispin operation protocol. E denotes the bit-flip error, which can happen either on the electron or on one of the nuclei. In (b), we
further require the R−yðπÞ unconditional rotations on the nuclear spins for the encoding step. These rotations can be performed at either
the encoding step after the CRxz gate or the decoding step before the CRxz gate. The half-white, half-black circles of the control of the
CR�xðπ=2Þ gates indicate that, depending on the electron’s state, the nuclear spin rotates by Rxðπ=2Þ or Rxð−π=2Þ. For the CRxz gates,
the half-white, half-black notation means that, depending on the electron’s state, the nuclear spin rotates by Rn0

or Rn1
.
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jψdeci ¼ αj1i⊗ Rð1Þ
n1
Ryð−πÞRð1Þ

n0
j1i⊗ Rð2Þ

n1
Ryð−πÞRð2Þ

n0
j1i

þ βj0i⊗ Rð1Þ
n0
Ryð−πÞRð1Þ

n1
j1i⊗ Rð2Þ

n0
Ryð−πÞRð2Þ

n1
j1i:

ðK10Þ

These four sets of gates approximately leave the nuclei
at the state j11i such that we activate the Toffoli gate,
recovering the electron’s state with high probability. To see

this, let us consider RðjÞ
n0
Ryð−πÞRðjÞ

n1
, which reads

RðjÞ
n0
Ryð−πÞRðjÞ

n1
¼ ŷ · ðn1 ×n0ÞðjÞ sin2

ϕ

2
1

þ i sinϕ½ðnðjÞx;0 − nðjÞx;1Þσz − ðnðjÞz;0 − nðjÞz;1Þσx�

þ i
ffiffiffiffiffiffiffiffi
GðjÞ

1

q
σy; ðK11Þ

where GðjÞ
1 ¼ cos2ðϕðjÞ=2Þþsin2ðϕðjÞ=2Þðn0 ·n1ÞðjÞ. Since

for the multispin gates we choose the number of iterations

N such that GðjÞ
1 is minimized for all j-nuclear spins (i.e.,

GðjÞ
1 ≈ 0, ∀ j), then the y component of the composite

rotation vanishes. Furthermore, for the CRxz gates and
considering the CPMG sequence, it holds that nx;0 · nx;1 <
0 and that nz;0 ≈ nz;1 þ δ, where δ is small, as we show
shortly (for brevity, we drop superscripts j which refer
to the jth spin). Let us further consider the action of the
CRxz gate on a single nuclear spin (similar analysis holds
for more nuclei). As we mention in Appendix A 1,
the evolution of a nuclear spin over one unit of the
CPMG sequence is defined by the Hamiltonians Hj ¼
1
2
½ðωL þ sjAÞZ þ ðsjBÞX�, where the nuclear rotations over

one unit of the sequence are Rn0
¼ e−iH0t=4e−iH1t=2e−iH0t=4

and Rn1
¼ e−iH1t=4e−iH0t=2e−iH1t=4. Letting cos θj ¼ ðωL þ

sjAÞ=ωj [where ωj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωLþsjAÞ2þðsjBÞ2

q
] and sin θj ¼

sjB=ωj, we find the SU(2) decomposition of Eq. (K11),
and focusing on the z components we find that it holds that

sin
ϕ

2
ðnz;1 − nz;0Þ ¼ 2 sinðθ0 − θ1Þ

�
sin θ1 sin

tω0

4
sin2

tω1

8

þ sin θ0 sin
tω1

4
sin2

tω0

8

�
: ðK12Þ

Note that sinðθ0 − θ1Þ ¼ ωLBðs1 − s0Þ=ðω0ω1Þ and that
sin θj ¼ sjB=ωj, meaning that, for ωL ≫ A, B, we have

sin
ϕ

2
ðnz;1 − nz;0Þ ≈ 2

ðs1 − s0ÞB
ωL

�
s1B
ωL

sin
tω0

4
sin2

tω1

8

þ s0B
ωL

sin
tω1

4
sin2

tω0

8

�
ðK13Þ

or

sin
ϕ

2
ðnz;1 − nz;0Þ ∝

�
B
ωL

�
2

: ðK14Þ

FIG. 19. Evolution of nuclear spins C10 (a) and C12 (b) up to
the decoding, if no error occurs on the electron during the CRxz
QEC protocol. Initially, both nuclei are in the j1i state (blue
arrow). If the electron starts in the j0i (j1i) state, the nuclear spins
follow the green (red) trajectory. The final state of each spin is
indicated with the red arrow pointing to the North pole of the
Bloch sphere (the final green and red arrows coincide).

TABLE XII. Optimal iterations (N�) and resonances (k�) to
perform CRxðπ=2Þ between the electron and C12 or C10. We
provide a list of optimal cases for T ≤ 1.5 ms for C12. For C10,
we cannot satisfy the bound of unwanted one-tangles for this time
constraint, so we further list cases for T up to 5 ms.

C12

Gate time (μs) Gate error N� k� ϕ=ðπ=2Þ
#1 170.3095 0.1080 8 5 0.975 67
#2 208.156 0.0867 8 6 0.951 98
#3 276.7529 0.0732 9 7 1.0393
#4 319.33 0.0319 9 8 1.0027
#5 361.9076 0.0273 9 9 0.961 37
#6 449.4277 0.0238 10 10 1.0172
#7 1054.9725 0.2428 446 1 1.066
#8 1125.9347 0.0800 28 9 1.0091
#9 1303.3404 0.0549 29 10 1.05
#10 1457.092 0.0604 88 4 1.0578

C10

Gate time (μs) Gate error N� k� ϕ=ðπ=2Þ
#1 645.0498 0.3839 39 4 1.0038
#2 850.6152 0.4150 40 5 1.0118
#3 985.2959 0.4208 417 1 0.987 72
#4 1039.6407 0.4292 40 6 0.989 76
#5 1290.0997 0.4821 42 7 1.0117
#6 1358.6214 0.4732 115 3 1.0016
#7 1524.0188 0.5455 43 8 1.0032
#8 1767.3893 0.4753 44 9 0.988 82
#9 2065.1046 0.5144 46 10 0.989 96
#10 2431.3417 0.3214 49 11 1.0034
#11 2530.5801 0.2248 119 5 0.989 91
#12 2825.9326 0.1953 52 12 1.006
#13 3144.9133 0.1058 121 6 1.006
#14 4075.8643 0.1124 345 3 0.995 06
#15 4453.9155 0.1326 65 15 1.0064
#16 4572.0565 0.1679 129 8 0.9904
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Thus, in Eq. (K11), we have suppressed x component of
rotation, meaning that each nucleus rotates approximately
around the z axis irrespective of the electron’s state.
Since each nucleus is initialized in the j1i state, an Rz
rotation only approximately leads to a global phase. The
nonzero difference of the z-axis components is what makes
our CRxz QEC protocol probabilistic, since the disentan-
glement at the decoding step is imperfect, but it succeeds
with high probability because the difference in the z
components is, in general, small (the external B field is
typically chosen such that ωL ≫ A, B).

6. Parameters for three-qubit QEC with CRxðπ=2Þ
In Table XII, we provide a list of the optimal CRxðπ=2Þ

gates for nuclear spins C10 and C12 using the sequential
entanglement scheme, we considered in Sec. IV D.

[1] W. Kozlowski and S. Wehner, Towards Large-Scale Quan-
tum Networks, in Proceedings of the Sixth Annual ACM
International Conference on Nanoscale Computing
and Communication, NANOCOM ’19 (Association for
Computing Machinery, New York, 2019).

[2] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum
Repeaters: The Role of Imperfect Local Operations in
Quantum Communication, Phys. Rev. Lett. 81, 5932 (1998).

[3] N. Lo Piparo, M. Razavi, and W. J. Munro, Memory-
Assisted Quantum Key Distribution with a Single Nitro-
gen-Vacancy Center, Phys. Rev. A 96, 052313 (2017).

[4] M. Leifgen, T. Schröder, F. Gädeke, R. Riemann, V.
Métillon, E. Neu, C. Hepp, C. Arend, C. Becher, K.
Lauritsen, and O. Benson, Evaluation of Nitrogen- and
Silicon-Vacancy Defect Centres as Single Photon Sources
in Quantum Key Distribution, New. J. Phys. 16, 023021
(2014).

[5] R. Schwonnek, K. T. Goh, I. W. Primaatmaja, E. Y.-Z. Tan,
R. Wolf, V. Scarani, and C. C.-W. Lim, Device-Independent
Quantum Key Distribution with Random Key Basis, Nat.
Commun. 12, 2880 (2021).

[6] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and
R. Ursin, An Entanglement-Based Wavelength-Multiplexed
Quantum Communication Network, Nature (London) 564,
225 (2018).

[7] S. Zaiser, T. Rendler, I. Jakobi, T. Wolf, S.-Y. Lee, S.
Wagner, V. Bergholm, T. Schulte-Herbrüggen, P. Neumann,
and J. Wrachtrup, Enhancing Quantum Sensing Sensitivity
by a Quantum Memory, Nat. Commun. 7, 12279 (2016).

[8] A. Cooper, Won Kyu Calvin Sun, J.-C. Jaskula, and P.
Cappellaro, Environment-Assisted Quantum-Enhanced
Sensing with Electronic Spins in Diamond, Phys. Rev.
Appl. 12, 044047 (2019).

[9] V. Vorobyov, S. Zaiser, N. Abt, J. Meinel, D. Dasari, P.
Neumann, and J. Wrachtrup, Quantum Fourier Transform
for Nanoscale Quantum Sensing, npj Quantum Inf. 7, 124
(2021).

[10] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L.
Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen,

L. Childress, and R. Hanson, Heralded Entanglement
between Solid-State Qubits Separated by Three Metres,
Nature (London) 497, 86 (2013).

[11] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers,
P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J.
Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, and
R. Hanson, Realization of a Multinode Quantum Network of
Remote Solid-State Qubits, Science 372, 259 (2021).

[12] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W.
Bakermans, S. J. Kamerling, N. H. Nickerson, S. C.
Benjamin, D. J. Twitchen, M. Markham, and R. Hanson,
Entanglement Distillation between Solid-State Quantum
Network Nodes, Science 356, 928 (2017).

[13] C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B.
Machielse, D. S. Levonian, E. N. Knall, P. Stroganov, R.
Riedinger, H. Park, M. Lončar, and M. D. Lukin, Quantum
Network Nodes Based on Diamond Qubits with an Efficient
Nanophotonic Interface, Phys. Rev. Lett. 123, 183602
(2019).

[14] C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B.
Machielse, D. S. Levonian, E. N. Knall, P. Stroganov, C.
Chia, M. J. Burek, R. Riedinger, H. Park, M. Lončar, and
M. D. Lukin, An Integrated Nanophotonic Quantum Regis-
ter Based on Silicon-Vacancy Spins in Diamond, Phys. Rev.
B 100, 165428 (2019).

[15] R. Stockill, M. J. Stanley, L. Huthmacher, E. Clarke,
M. Hugues, A. J. Miller, C. Matthiesen, C. Le Gall, and
M. Atatüre, Phase-Tuned Entangled State Generation
between Distant Spin Qubits, Phys. Rev. Lett. 119,
010503 (2017).

[16] T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P.
Narang, and D. Englund, A Phononic Interface between
a Superconducting Quantum Processor and Quantum Net-
worked Spin Memories, npj Quantum Inf. 7, 121 (2021).

[17] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P.
Maunz, L.-M. Duan, and J. Kim, Large-Scale Modular
Quantum-Computer Architecture with Atomic Memory
and Photonic Interconnects, Phys. Rev. A 89, 022317
(2014).

[18] D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath,
S. M. Clark, and C. Monroe, Modular Entanglement
of Atomic Qubits Using Photons and Phonons, Nat. Phys.
11, 37 (2015).

[19] T. H. Taminiau, J. J. T. Wagenaar, T. van der Sar, F. Jelezko,
V. V. Dobrovitski, and R. Hanson, Detection and Control of
Individual Nuclear Spins Using a Weakly Coupled Electron
Spin, Phys. Rev. Lett. 109, 137602 (2012).

[20] P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten,
R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R.
Hanson, Deterministic Delivery of Remote Entanglement on
a Quantum Network, Nature (London) 558, 268 (2018).

[21] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski,
and R. Hanson, Universal Control and Error Correction in
Multi-qubit Spin Registers in Diamond, Nat. Nanotechnol.
9, 171 (2014).

[22] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M.
Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau,
Repeated Quantum Error Correction on a Continuously
Encoded Qubit by Real-Time Feedback, Nat. Commun. 7,
11526 (2016).

TAKOU, BARNES, and ECONOMOU PHYS. REV. X 13, 011004 (2023)

011004-38

https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevA.96.052313
https://doi.org/10.1088/1367-2630/16/2/023021
https://doi.org/10.1088/1367-2630/16/2/023021
https://doi.org/10.1038/s41467-021-23147-3
https://doi.org/10.1038/s41467-021-23147-3
https://doi.org/10.1038/s41586-018-0766-y
https://doi.org/10.1038/s41586-018-0766-y
https://doi.org/10.1038/ncomms12279
https://doi.org/10.1103/PhysRevApplied.12.044047
https://doi.org/10.1103/PhysRevApplied.12.044047
https://doi.org/10.1038/s41534-021-00463-6
https://doi.org/10.1038/s41534-021-00463-6
https://doi.org/10.1038/nature12016
https://doi.org/10.1126/science.abg1919
https://doi.org/10.1126/science.aan0070
https://doi.org/10.1103/PhysRevLett.123.183602
https://doi.org/10.1103/PhysRevLett.123.183602
https://doi.org/10.1103/PhysRevB.100.165428
https://doi.org/10.1103/PhysRevB.100.165428
https://doi.org/10.1103/PhysRevLett.119.010503
https://doi.org/10.1103/PhysRevLett.119.010503
https://doi.org/10.1038/s41534-021-00457-4
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1038/nphys3150
https://doi.org/10.1038/nphys3150
https://doi.org/10.1103/PhysRevLett.109.137602
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/nnano.2014.2
https://doi.org/10.1038/nnano.2014.2
https://doi.org/10.1038/ncomms11526
https://doi.org/10.1038/ncomms11526


[23] M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen, C. E.
Bradley, M. Markham, D. J. Twitchen, B. M. Terhal, and
T. H. Taminiau, Fault-Tolerant Operation of a Logical
Qubit in a Diamond Quantum Processor, Nature (London)
606, 884 (2022).

[24] F. Rozpedek, R. Yehia, K. Goodenough, M. Ruf, P. C.
Humphreys, R. Hanson, S. Wehner, and D. Elkouss, Near-
Term Quantum-Repeater Experiments with Nitrogen-
Vacancy Centers: Overcoming the Limitations of Direct
Transmission, Phys. Rev. A 99, 052330 (2019).

[25] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets,
M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen,
and T. H. Taminiau, A Ten-Qubit Solid-State Spin Register
with Quantum Memory up to One Minute, Phys. Rev. X 9,
031045 (2019).

[26] H. Y. Carr and E. M. Purcell, Effects of Diffusion on Free
Precession in Nuclear Magnetic Resonance Experiments,
Phys. Rev. 94, 630 (1954).

[27] S. Meiboom and D. Gill, Modified Spin-Echo Method for
Measuring Nuclear Relaxation Times, Rev. Sci. Instrum. 29,
688 (1958).

[28] G. de Lange, Z. H. Wang, D. Ristè, V. V. Dobrovitski,
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