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ABSTRACT: Because quantum simulation of molecular systems is
expected to provide the strongest advantage over classical
computing methods for systems exhibiting strong electron
correlation, it is critical that the performance of VQEs be assessed
for strongly correlated systems. For classical simulation, strong
correlation often results in symmetry breaking of the Hartree−Fock
reference, leading to Löwdin’s well-known “symmetry dilemma”,
whereby accuracy in the energy can be increased by breaking spin
or spatial symmetries. Here, we explore the impact of symmetry
breaking on the performance of ADAPT-VQE using two strongly
correlated systems: (i) the “fermionized” anisotropic Heisenberg
model, where the anisotropy parameter controls the correlation in
the system, and (ii) symmetrically stretched linear H4, where
correlation increases with increasing H−H separation. In both of these cases, increasing the level of correlation of the system leads to
spontaneous symmetry breaking (parity and S

2
, respectively) of the mean-field solutions. We analyze the role that symmetry

breaking in the reference states and orbital mappings of the fermionic Hamiltonians have in the compactness and performance of
ADAPT-VQE. We observe that improving the energy of the reference states by breaking symmetry has a deleterious effect on
ADAPT-VQE by increasing the length of the ansatz necessary for energy convergence and exacerbating the problem of “gradient
troughs”.

1. INTRODUCTION
The simulation of ground electronic states of molecular
Hamiltonians is a fundamental goal of theoretical chemistry.
Several classes of methods exist within the realm of classical
computing for treating these systems, including density
functional theory (DFT),1,2 Hartree-Fock (HF) theory,3,4

Møller−Plesset (MP) perturbation theory,5 coupled cluster
(CC) theory,6,7 configuration interaction (CI), and many
others. Although DFT and HF are by nature approximate,
MP2, CC, and CI are systematically improvable. For systems
with weakly correlated electrons, inclusion of only single and
double excitations in MP or CC theory is sufficient for accurate
results, while for systems with strongly correlated electrons, low-
excitation rank methods fail to capture the physics required to
provide accurate energies, although increasing the excitation
rank leads to a rapid increase in the computational resources
required, with exact treatment [full CI (FCI)] requiring
combinatorial scaling with system size to cover the Hilbert
space of the system.
Simulation of chemical systems on quantum computers,

however, offers an attractive alternative to classical simulations
as the quantum mechanical structure is efficiently captured in
the quantum nature of the device,8 that is, the combinatorial
growth of the Hilbert space with system size is absorbed by the

quantum processor.9 The promise of quantum computation for
chemistry is currently limited by the small numbers of qubits
(101−102) in existing quantum devices and the quality of these
qubits (limited coherence times, limited connectivity between
qubits, and gate errors).10,11 In this noisy intermediate-scale
quantum (NISQ) era, the success of quantum simulation
depends on both the quality of qubits and the ability of quantum
algorithms to cope with these limitations.12

The variational quantum eigensolver (VQE), originally
proposed by Peruzzo et al.,13 offers an approach for quantum
simulation of chemical Hamiltonians. VQE is a hybrid
quantum−classical algorithm in which the computational work
is divided between a quantum processor and a classical co-
processor.14 In this scheme, one prepares parameterized trial
states | ( ) on the quantum processor and minimizes the
expectation value of the Hamiltonian with respect to the ansatz
parameters
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= | |E Hmin ( ) ( )
(1)

= | |g omin ( ) ( )
i

i i
(2)

where gi represents the classically precomputed one- and two-
electron integrals and oi represents the corresponding one- and
two-electron operators. As the different oi terms do not generally
commute, state preparation and measurement of the terms in eq
2 must be performed multiple times to statistically converge the
expectation values. Several procedures for efficientmeasurement
schemes14−24 (well-summarized in ref 24) and state recon-
struction via classical shadows25,26 have been proposed to
reduce the number of measurements required for convergence
of the energy.
Here, the quantum computer is used to prepare trial states and

measure the molecular Hamiltonian, while the classical
computer is used to determine ansatz parameter updates. Trial
states are prepared by applying a parameterized unitary
operator,U( ), to a reference state |ψ(0)⟩

| = |U( ) ( ) (0) (3)

Several VQE ansa ̈tze have been explored for theoretical
studies13−15,27−34 and on quantum hardware,15,27,31,35,36 many
of which are modifications of the unitary coupled cluster (UCC)
ansatz37−40 from classical electronic structure theory. Although
in principle a circuit implementation of an arbitrarily expressive
ansatz can map the reference to any state in the Hilbert space
(including the exact FCI state), practical limits of NISQ devices
impose limits on the structure of U( ). “Hardware-efficient”
ansaẗze,15,34 while being more expressive and generally more
resilient to short coherence times, are known to suffer from
barren plateaus,41−43 while “chemistry-inspired” ansa ̈-
tze13,14,27,29−31,44 are less expressive and more limited by short
coherence times but target a more chemically relevant region of
Hilbert space. Therefore, although the reduced circuit depth of
VQEs versus PEA (at the cost of many more measurements)
makes VQEs attractive for NISQ devices, the limits imposed on
U( )mean that VQEs typically produce approximate solutions.
The accuracy of VQEs is, therefore, ultimately limited by the
variational flexibility of the predefined ansatz.
Unlike VQEs with statically defined ansaẗze, the adaptive

problem-tailored VQE (ADAPT-VQE) method, developed by
Grimsley et al.,45 avoids a predefined unitary ansatz by
constructing an arbitrarily accurate quasi-optimal ansatz on
the fly. This is achieved by iteratively growing the ansatz by
adding operators from a pool one-at-a-time as informed by the
Hamiltonian. ADAPT-VQE has been shown to simultaneously
provide smaller gate counts and errors than those of traditional
VQE methods.45,46 Further improvements in the ADAPT-VQE
framework have come from the introduction of qubit-based
operator pools (qubit-ADAPT-VQE)47 andminimally complete
pools to reduce measurement overhead.48 The success of
ADAPT-VQE has inspired the development of other adaptive
VQEs as well, including iterative qubit excitation-based VQE
(QEB-ADAPT-VQE),49 mutual information-assisted adaptive
VQE,50 and the adaptive variational quantum imaginary time
evolution (AVQITE) method.51

An additional motivation for the adaptive construction of
ansaẗze is the ability to adapt to systems that are strongly
correlated, where the performance of classical methods and even

traditional VQEs is expected to suffer. In this work, we
investigate the performance of ADAPT-VQE in two distinct
systems that display variable amounts of strong correlation: (i)
the fermionized anisotropic Heisenberg model, where the
anisotropy parameter allows for control over the level of
correlation in the system, and (ii) the symmetric dissociation of
linear H4. In both of these cases, increasing the level of
correlation of the system leads to spontaneous symmetry
breaking (parity and S

2
, respectively) of the mean-field

solutions. We explore the roles played by these symmetries,
both in the reference state and the operator pool, for ADAPT-
VQE, highlighting their importance in generating compact
ansaẗze and preventing premature convergence of the algorithm.
Our results bolster the findings of Barron et al.52 and Shkolnikov
et al.48 on the importance of building the symmetries of the
Hamiltonian into the operator pools.

2. BACKGROUND
2.1. ADAPT-VQE Algorithm. Unlike traditional VQE,

which begins with a predetermined form of the unitary U( ),
ADAPT-VQE iteratively grows a problem-tailored unitary
ansatz by adding operators one-at-a-time from a predetermined
operator pool. Before the algorithm begins, the Hamiltonian
coefficients are computed andmapped to a qubit representation,
as in traditional VQE. The operators, Ak, in the pools used in this
work take the form of anti-Hermitian sums of generalized
excitation and de-excitation operators, for example,

= † †A a a a aq
p

p q q p (4)

= † † † †A a a a a a a a ars
pq

p q s r r s q p (5)

where p, q, r, and s are arbitrary spin−orbital indices (see App.
A). Exponentiation of these anti-Hermitian operators yields
unitary operators. Although other operator pools have been
explored,47−49,53 we focus here on the fermionic operator pool.
The ADAPT-VQE trial state is then initialized with a reference
state that is easily prepared on the device, typically a product
state corresponding to the HF determinant. To grow the ansatz,
the current trial state, |ψ(n)⟩, is prepared on the device and the
gradient of the energy with respect to the operator parameters θk
for each operator Ak in the pool is measured. This is performed
by measuring the expectation value of the commutator of the
Hamiltonian and the operators for the current state

= |[ ]|E H A,
n

k

n n
( )

( )
k

( )

(6)

This gradient measurement step of ADAPT-VQE is highly
parallelizable over multiple uncoupled devices. The operator
corresponding to the largest gradient magnitude is then used to
form the new trial-state ansatz

| = |

= ··· |

+ +
+ +

+ +

e

e e e

( )n n A n

A A A

( 1) ( 1) ( )

(0)

n n

n n n n

1 1

1 1 1 1 (7)

The new parameter θn+1 is initialized to 0, while the initial values
for the other parameters are taken to be the optimized values
from the previous iteration. The new ansatz is then optimized

over all
+n( 1)

via a VQE subroutine to yield |ψ(n+1)⟩. From here,
the algorithm repeats by returning to the operator gradient
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measurement step. Convergence of the ADAPT-VQE algorithm
may be determined in a number of ways, including the norm (L2

or L∞) of the operator gradient <E n( )

k
, the variance of the

ADAPT-VQE state | | <H E( )n n n( ) 2 ( ) ( ) 2 , and the
energy change between iterations |E(n)−E(n−1)| < ϵ. The operator
pools are not “drained” by the addition of an operator to the
ansatz; a given operator may be added to the ansatz more than
once, with different parameters for each occurrence. Because of
this, ADAPT-VQE can be viewed as an algorithm that
approximates the exact (FCI) ground state to arbitrary accuracy
by appending multiple instances of the operators

| = |e ,
l

AFCI

k

(0)l
k
( )

k

(8)

where the parameters θk(l) are allowed to vary independently for
different l. This property of ADAPT-VQE, however, requires
completeness of the operator pool (see ref 48 for a rigorous
definition). Similar work on the exactness of general trotterized
UCC variants has been explored by Evangelista et al.54 and
demonstrates the completeness of the UCC single- and double-
excitation/de-excitation pool. ref 45 presents a more detailed
explanation and demonstration of ADAPT-VQE and this
connection to FCI.
2.2. Heisenberg Model. Although spin Hamiltonians are

most often associated with condensed matter physics, these
Hamiltonians are also often used in the context of chemistry as
model systems to develop a coarse-grained understanding of
certain molecular interactions.55−65 Such models are useful for
describing the interactions between open-shell fragments, such
as metal atoms in multi-metal organometallic complexes. These
interactions are broadly classified as ferromagnetic coupling or
antiferromagnetic coupling based on whether or not the ground
state has a spin magnetic moment.
In this picture, the unpaired electrons on a given metal atom

are aligned parallel to each other while the unpaired electrons on
different metal atoms align either parallel (ferromagnetic
coupling) or antiparallel (antiferomagnetic coupling) to each
other. Although purely ab initio approaches to describe these
systems must contend with strongly interacting electrons within
nearly degenerate orbitals, the effective-Hamiltonian ap-
proaches reduce these to the interactions between the net
spins on different fragments. The exchange interaction, a
consequence of Fermi statistics, provides the energetic driving
force behind this coupling. For fixed oxidation states, the
Heisenberg−Dirac−van Vleck Hamiltonian (HDvV)66−68

provides a simple model that depends on the net spin of the
different metal centers

= ·H J S S2
ij

ij i j
HDvV

(9)

= + +J S S S S S S2 ( ).
ij

ij i
x

j
x

i
y

j
y

i
z

j
z

(10)

Jij > 0 couples sites i and j ferromagnetically while Jij < 0 couples
them antiferromagnetically. The problem then shifts (slightly)
from describing the many interactions between the electrons to
describing the interactions between the spins, namely, obtaining
values for Jij.
The Heisenberg spin Hamiltonian can also be considered as a

model for strong fermionic correlation as well, when viewed at

the strong-correlation limit of the fermionic Hubbard model.
The fermionic Hubbard Hamiltonian is given as follows

= +†H t a a U n n1
2

,
ij

i j
i

i i
Hubbard

, , , ,
(11)

where t is the single-electron hopping and U is the two-electron
repulsion. When t/U ≫ 1, the system is dominated by hopping
(kinetic energy-like), and at the limit U → 0, it becomes a free-
electron system, where the electrons delocalize over the entire
lattice. In this regime, the delocalized state may be taken as the
zeroth-order solution, with correlations between electrons being
handled by perturbation theory. At the opposite limit, where t/U
≪ 1, the system becomes localized. In this regime, degenerate
perturbation theory may be used to treat delocalization as a

perturbation to the
i
k
jjjj

y
{
zzzz

N
k

-fold degenerate localized ground states,

where N is the number of sites and k is the number of electrons.
This approach yields the Heisenberg Hamiltonian, and at the

second order, =Jij
t
U

(2) 2

(see derivation in ref 69). This
connection between the Hubbard model at the limit of large
electron−electron repulsion and the Heisenberg spin Hamil-
tonian suggests the latter to be a model for studying strong
correlation. Although our use of the Heisenberg model is as a
proxy for chemical systems, the use of quantum computers to
simulate model Hamiltonians is an important field in its own
right, with much recent work in this context.44,52,70−77

2.2.1. Anisotropic Heisenberg Hamiltonian. The HDvV
Hamiltonian given in eqs 9 and 10 is referred to as being
isotropic, meaning that the x, y, and z components of the total
spin are treated equivalently. If interactions are present that
break this equivalence (e.g., dipolar-like couplings), the resulting
effective spin Hamiltonian becomes anisotropic. The aniso-
tropic Heisenberg model, also known as the XXZ model, has a
Hamiltonian given as follows

= +H J S S S S K S S2 ( ) 2 ,
ij

i
x

j
x

i
y

j
y

ij
i
z

j
zaniso

(12)

where ⟨ij⟩ restricts the sum over nearest-neighbor sites.
2.2.2. Fermionization of 1D Spin Hamiltonians. Although

application of degenerate perturbation theory to the Hubbard
model at the t/U≪ 1 limit to yield the Heisenberg Hamiltonian
provides a connection between fermions and spins, this
connection is made more general using the Jordan−Wigner
(JW) transformation.78 The JW transformation has become
ubiquitous in quantum simulation of chemistry Hamiltonians as
a means to map fermionic Hamiltonians onto qubit Hamil-
tonians; however, the transformation was originally proposed as
a means to map spins onto fermions. For a one-dimensional
(1D) spin-1/2 lattice, the anisotropic Heisenberg Hamiltonian
is “fermionized” by first writing eq 12 in terms of Pauli ladder
operators and then substituting them with fermionic creation/
annihilation operators:

= ++ +

+

H
J

K

2
( )

2

i
i
x

i
x

i
y

i
y

i
i
z

i
z

aniso
1 1

1
(13)
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= ++
+ +

+

+

J

K

( )

2

i
i i i i

i
i
z

i
z

1 1

1
(14)

= +

+

†
+ +

†

†
+
†

+
†

+
†

+

J a a a a

K a a a a a a

a a

( )

(2

1
2

).

i
i i i i

i
i i i i i i

i i

1 1

1 1

1 1 (15)

For K = 0, this fermionized Hamiltonian reduces to a one-
electron Hamiltonian that is easily diagonalized to yield non-
interacting fermions. This model is known as the XY model, and
despite acting on the full Hilbert space in the spin
representation, it has a trivial simple solution in the fermionic
representation. Table 1 summarizes the different limits of the
anisotropic Heisenberg Hamiltonian. The ratio of K/J is seen as
a correlating parameter as below the isotropic point (K/J = 1),
increasing K/J increases the correlation in the system by
encouraging localization. Above the isotropic point, this
correlation decreases with increasing K/J. Beginning at the
isotropic point and for all larger K/J, the mean-field solution is
seen to break spatial (parity) symmetry. In the first set of results,
we apply ADAPT-VQE to the fermionized anisotropic
Heisenberg model to investigate the role of parity symmetry
in the performance of ADAPT-VQE for both local and non-local
representations.

3. COMPUTATIONAL DETAILS
We employ an antiferromagnetically coupled (J < 0 and K < 0)
anisotropicHeisenbergHamiltonian on a 1D, eight-site lattice as
a model system for our calculations. Calculations are performed
within the Ms = 0 space, after which JW transformation yields a
four-fermion system (half-filling). We survey correlation
parameter values K/J ranging from 0.001 to 100. The
OpenFermion79 electronic structure theory package is used to
build the nearest-neighbor (local) spin Hamiltonians and
transform them into local fermionic Hamiltonians.80 These
local fermionic Hamiltonians are diagonalized to yield full
configuration interaction (FCI) energies and wavefunctions. For
each surveyed value of K/J, the ground-state wavefunction has
even symmetry (gerade, g) with respect to the lattice, and the
first-excited state has odd symmetry (ungerade, u). These two
states become degenerate at the K/J → ∞ limit. The local
Hamiltonians are then read into the PySCF81,82 electronic
structure theory package to perform HF. For K/J < 1, a
wavefunction stability analysis of the HF solutions confirms that
the stable HF solution has an even symmetry with respect to the

center of the lattice. We follow this solution for K/J ≥ 1 to yield
symmetry-preserving HF solutions; however, performing a
stability analysis on these solutions yields a more stable
broken-symmetry solution. The “molecular” orbitals (MOs)
from both the symmetry-preserving and symmetry-broken HF
solutions are then used to transform the local Hamiltonians into
non-local MO bases.
We perform second-order Møller−Plesset perturbation

theory (MP2)5 and traditional (non-unitary) CC theory with
single and double excitations (CCSD)83 on top of these HF
solutions with PySCF. The non-local fermionic Hamiltonians
are then translated into non-local qubit Hamiltonians within the
ADAPT-VQE procedure. This process of transforming from
local spin Hamiltonians to non-local spin Hamiltonians is
illustrated in Figure 1.
For linear H4, we survey H−H separations from 0.50 to 3.00

Å. Classical electronic structure calculations are performed with

Table 1. Different Cases of the Hamiltonian in eq 12 and Comparisons to Fermionic Models When Fermionized

case Hamiltonian features

K = 0 = +H J S S S S2 ( )
ij

i
x

j
x

i
y

j
yXY

free fermion model, completely delocalized, no entanglement at the ground state

K = J = + +H J S S S S S S2 ( )
ij

i
x

j
x

i
y

j
y

i
z

j
zHDvV

isotropic, competition between localization and delocalization, entangled ground state

J = 0 =H K S S2
ij

i
z

j
zIsing

degenerate Neél ground states, completely localized, no entanglement at the ground state

Figure 1. Depiction of the use of the JW transformation and Hartree−
Fock to transform the anisotropic Heisenberg Hamiltonian from a local
representation to a non-local representation. Gray lines between points
depict interactions (not all are shown, but meant to represent the
locality/non-locality of the system). Constant terms are neglected, and
J is set to 1.
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PySCF, and the STO-3G minimal basis84 is used for both the
classical methods and ADAPT-VQE simulations.
The ADAPT-VQE calculations are simulated without noise

on a development branch of our in-house code,85 which in turn
uses OpenFermion79 for the JW operator transformations and
SciPy86 for BFGS optimization of the parameters in the VQE
subroutine.
For the fermionized, anisotropic Heisenberg Hamiltonians,

we perform ADAPT-VQE simulations with five combinations of
reference states and orbital bases (used to transform the
Hamiltonians and define the fermionic operator pools) to
investigate the roles that symmetry plays in ADAPT-VQE as
correlation increases.

1. Symmetry-preserving HF orbitals and the reference
state: The canonical HF orbitals are used to transform the
Hamiltonians from the local-site orbital basis to the
nonlocal, symmetry-preserving MO bases. When the
parity of the system is enforced at the HF level, these
canonical orbitals are of either g or u character, and as
such, the determinants are eigenstates of the parity
operator with parities determined from the occupied
orbitals. Similarly, the parities of the pool operators are
determined from the orbitals used to define the
excitations/de-excitations. The reference state is the
JW-transformed HF state,

| = |11110000 ,HF
(0)

(16)

which has g symmetry and where orbitals are ordered in
increasing energy from left to right. This reference state is the
exact ground state at the free-fermion limit (K → 0).

2. Symmetry-breaking HF orbitals and the reference
state: The canonical HF orbitals are used to transform
the Hamiltonian from the local site basis to the nonlocal,
broken-symmetry HF orbitals. With the onset of
symmetry breaking, these canonical orbitals are of neither
g nor u character, and therefore, neither the determinants
nor operators have parity symmetry. The reference state is
the JW-transformed HF state (eq 16), which also breaks
parity symmetry due to the symmetry breaking of the
underlying orbitals.

3. Local orbital basis and the Neél reference state: The
Hamiltonian is expressed on the local-site basis. As the site
orbital basis has no parity symmetry, the determinant

basis and operators lack parity symmetry. The reference
state is the Neél state,

| = |10101010Neel
(0)

(17)

which does not have parity symmetry. This reference state is
energetically exact, although symmetry-broken, at the Ising limit
(J → 0), analogous to how unrestricted HF becomes exact for
separated hydrogen atoms.

4. Local orbital basis and the cat+reference state: The
Hamiltonian is expressed on the local-site orbital basis.
Although the basis and operators have no parity symmetry
due to the asymmetry of the site orbital basis, the cat+
state, given as the plus superposition of the two
complementary Neél states, is used as the reference
state and has g symmetry. This reference state lies in the
twofold degenerate subspace of the exact ground state at
the Ising limit (J → 0).

| = | + |
+

1
2

( 10101010 01010101 )cat
(0)

(18)

5. SALC orbital basis and the cat+reference state: A
symmetry-adapted basis formed by taking the plus and
minus linear combinations of complementary site orbitals
is used to transform theHamiltonians from the site orbital
basis to the SALC orbital basis. By construction, these
SALC orbitals are of either g or u character, and as such,
the determinant basis has parity symmetry. Similarly, the
parities of the operators are determined from the orbitals
used to define the excitations/de-excitations. The
reference state is the cat+ state in the SALC orbital basis,

| = | + |

+ | + |
| |

| |

+

1
2 2

( 10101010 01100110

10011001 01010101

01101001 10100101

01011010 10010110 ),

SALC,cat
(0)

(19)

which has g symmetry.
For all five combinations of orbital bases and reference states,

we use a fermionic generalized singles and doubles (GSD)

Figure 2. Absolute energy errors from FCI for HF, MP2, and CCSD versus the correlation parameter K/J presented alongside the energy gap between
the ground and first-excited FCI states (FCI E1). (a) Reference state is the symmetry-preserving orbitals. (b) Reference state is the broken-symmetry
orbitals.
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operator pool without symmetry adaptation of the fermionic
operators (App. A).
For the symmetric dissociation of H4, we compare the

performance of ADAPT-VQE when performed with spin-
restricted HF (rHF) and spin-unrestricted HF (uHF) orbitals.
This allows us to determine the impact of symmetry breaking in
the representation. For rHF, we further explore the impact of
spin-adapting the operator pool, by using both the singlet-GSD
(sGSD) pool, where the pool operators are symmetry-adapted
linear combinations of excitation/de-excitation operators, and
the unrestricted-GSD (uGSD) pool, where the excitation/de-

excitation operators in the operator pool are not symmetry-
adapted (App. A).

4. RESULTS
4.1. Anisotropic Heisenberg Model. Figure 2(a) presents

the absolute errors for the symmetry-preserving HF, MP2, and
CCSD on top of these references, and the energy gaps between
the ground and first-excited FCI states. For K/J > 10, the HF
solutions begin to spontaneously break the parity symmetry of
the system even when using the previous solutions at lower
values of K/J as initial guesses. We are also unable to converge
the CCSD amplitude equations for K/J > 3.16. The kink in the

Figure 3. ADAPT-VQE results for the fermionized, anisotropic Heisenberg Hamiltonian. Absolute energy errors [(a), (d), and (g)], ADAPT-VQE
gradient norms [(b), (e), and (h)], and infidelities from the exact wavefunction [(c), (f), and (i)] as the ADAPT-VQE ansaẗze grow are presented for
K/J = 0.1, K/J = 1, and K/J = 10. The ADAPT-VQE methods surveyed use symmetry-preserving HF orbitals and the reference state (HF); broken-
symmetryHF orbitals and reference state (BS−HF); local site orbital basis and theNeél reference state (local, Neél); local site orbital basis and the cat+
reference state (local, cat+); and symmetry-adapted linear combination orbital basis and the cat+ reference state (SALC, cat+). Absolute energy errors
for the classical methods and the energy gap between the ground and first-excited FCI states are presented alongside the ADAPT-VQE errors.
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CCSD data observed at K/J = 1.12 corresponds to the onset of
CCSD having a lower energy than that of the FCI ground state.
This non-variational behavior persists for all larger values ofK/J.
At the weakly correlated limit K/J ≪ 1, MP2 reduces the

energy error of HF by three orders of magnitude, demonstrating
a success of simple perturbation theory. As more correlation is
added to the system, the breakdown of MP2 becomes evident as
its improvement over HF decreases significantly. For K/J > 1,
the error of HF and MP2 continues to increase with increasing
K/J. TheHF andMP2 errors exceed the gap between the ground
and first-excited FCI states for K/J > 1.78 and K/J > 3.16,
respectively. The error reduction of CCSD is more resilient to
increasing correlation, although scanning from K/J = 0.001 to
K/J = 1, the improvement in errors over HF reduces from over
seven orders of magnitude to three orders of magnitude.
For K/J≥ 1, the symmetry-preserving HF solutions are found

to be unstable to symmetry breaking. Figure 2(b) presents the
absolute errors for HF (BS−HF), MP2 (BS-MP2), and CCSD
(BS-CCSD), where the HF solutions are allowed to break the
parity symmetry of the lattice. The energy gap between the
ground and first-excited FCI states is also plotted. For K/J < 1,
the HF solutions do not break symmetry, and therefore, the HF,
MP2, and CCSD curves in this region are identical to those in
Figure 2(a). The cusp seen at K/J = 1 in the CCSD data arises
from the change in character of the underlying HF reference due
to symmetry breaking. Unlike in the symmetry-preserving case,
the symmetry-broken CCSD remains above the FCI value for all
surveyed values of K/J.
In the symmetry-breaking regime, the errors in the HF, MP2,

and CCSD solutions are much closer to one another compared
to those in the K/J < 1 regime. CCSD improves upon the HF
error by two orders of magnitude (1× 10−3J vs 2× 10−1J) forK/
J = 1, while at K/J = 100, CCSD only improves on the HF error
by 20% (8 × 10−6J vs 1 × 10−5J). For all K/J, the errors in the
broken-symmetry HF, MP2, and CCSD results fall below the
energy gap between the ground and first-excited FCI states.
The instability of HF to symmetry breaking for K/J > 1 is an

example of the “symmetry dilemma” discussed by Löwdin,87

wherein the most energetically favorable single determinant
(classical state) breaks an intrinsic symmetry of the system,
while the most energetically favorable symmetry-preserving
state is higher in energy.
Using the five calculation settings described above, we now

investigate the roles that parity symmetry and locality play in the
compactness of the ADAPT-VQE ansaẗze. In Figure 3, we report
the absolute error from the exact ground-state energy, the norm
of the ADAPT-VQE gradient, and the infidelity from the exact
ground-state wavefunction all versus the number of parameters
at the ADAPT-VQE trial state. The infidelity, presented as a
measure of closeness of the ADAPT-VQE wavefunction
|ψADAPT⟩ to the exact ground-state wavefunction | 0

FCI , is
given as follows

| | = | |FInf( , ) 1 ( , )0
FCI ADAPT

0
FCI ADAPT

(20)

= | | |1 0
FCI ADAPT 2

(21)

where F is the fidelity of the two states. We note that for systems
where there is a near degeneracy between eigenstates, a trial state
may nearly converge to an excited eigenstate such that it
simultaneously possesses a high infidelity (low overlap with the
exact ground state) and small energy error.

4.1.1. Symmetry Breaking Slows Energy Convergence.
Looking across panels 3(a), 3(d), and 3(g), we see that in each
case, both symmetry-preserving calculations (HF and SALC/
cat+) converged to the exact solution with only 37 parameters.
This reduced number of parameters arises from the fact that
when symmetry is preserved throughout the state preparation,
we only need to parameterize states within the corresponding g-
symmetry subspace, which for this eight-site lattice has a
dimension of 38. For all the other cases, which involve some
symmetry breaking (either in the orbitals, reference state, or
both), the full 70-dimensional Hilbert space must be spanned to
achieve exact convergence. The 52 CCSD amplitudes can be
divided into 28 g excitations and 24 u excitations. In Figure 3, we
only report CCSD as having 28 parameters since the remaining
24 u-symmetry excitations cannot contribute when applied to a
symmetry-preserving reference state. As such, CCSD does not
have enough parameters to span the 38-dimensional g subspace.
This is also obvious from the fact that CCSD has neither
connected triple nor quadruple excitations, interactions that
ADAPT-VQE is able to include by sequential application of one-
and two-particle rotations.
For the weaker-correlation case (K/J = 0.1), the symmetry-

preserving calculations always outperform the symmetry-
violating cases (the red curve is always below the rest). This is
not too surprising, given that the HF reference state is the most
stable product state available. With the onset of symmetry
breaking in HF (K/J = 1), the broken-symmetry HF is slightly
more favorable. However, ADAPT(HF) begins to outperform
ADAPT(BS-HF) after a single iteration. On the other hand,
when the correlation increases to K/J = 10, the symmetry-
preserving HF reference is no longer the lowest-energy product
state but instead is now the highest-energy reference state
considered in our data. As a consequence, in this strong-
correlation regime, the use of a broken-symmetry reference leads
to lower energy at early stages of the algorithm. However, this
energetic advantage of the broken-symmetry reference quickly
becomes a disadvantage due to a very slow convergence at later
stages [seen as the flat lining of the green and orange curves in
Figure 3(g)].
4.1.2. Symmetry Breaking Worsens Gradient Troughs. As

reported recently,88 strongly correlated systems are susceptible
to exhibiting gradient troughs, whereby the gradients of the pool
operators initially diminish before eventually increasing prior to
convergence. This non-monotonic convergence is problematic
because it appears to the user as false convergence. For the
fermionized, anisotropic Heisenberg model studied here, we
again observe the onset of gradient troughs when the correlation
is increased, as is clearly evident in Figure 3(h). However, when
we allow the symmetry to break, we find that problems with
gradient troughs worsen.
For both symmetry-breaking references, ADAPT(BS-HF)

(orange) and ADAPT(local/Neél) (green), the norm of the
operator pool gradient is seen to decrease with the addition of
operators to the ansatz and then suddenly increase by several
orders of magnitude. Before escaping from the gradient trough,
the energy errors for ADAPT(BS-HF) and ADAPT(local/Neél)
lie close to those of broken-symmetry CCSD, which is
approximately one-half of the gap between the exact ground
and first-excited FCI states [panel 3(g)]. Additionally, the
infidelities of the ADAPT(BS-HF) and ADAPT(local/Neél)
states are approximately 0.5 before escaping the gradient trough
[panel 3(i)]. In these cases, broken-symmetry CCSD, ADAPT-
(BS-HF), and ADAPT(local/Neél) appear to be approximating
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a broken-symmetry state, which is an equal superposition of the
ground and first-excited states

| = | + |1
2

( ).BS
0
FCI

1
FCI

(22)

The energy error associated with this state is

= | |

= +

=

E H E

E E E

E E

1
2

( )

1
2

( )

BS BS BS
0

1 0 0

1 0 (23)

Also the infidelity of this state is

| | = | | |

=

Infidelity( , ) 1

1
2

.

0
FCI BS

0
FCI BS 2

(24)

To explain this behavior, the Neél reference state |10101010⟩
and its complement |01010101⟩are considered. The exact
solution has equal weights for these states.89 As K/J becomes
large, the Hamiltonian more strongly penalizes states with
occupation at consecutive sites. Because the operator pool
includes only single and double excitations, a single operator
cannot enact the quadruple excitation required to go between
the reference state and its complement. The weight of the
complementary state in the ADAPT-VQE wavefunction there-
fore is generated via products of multiple lower-rank excitation
operators, putting it out of reach for a single pool operator.
ADAPT-VQE(local/Neél) first touches the complementary
Neél state after four operator additions. Despite having access to
this determinant, ADAPT-VQE does not have the variational
flexibility to significantly weigh this state as doing so would
consequently weigh higher-energy intermediate determinants,
raising the energy. As ADAPT-VQE continues to add operators,
additional excitation pathways begin to form, although the VQE
subroutine keeps the weight on the complementary state small.
With the addition of the 52nd operator, ADAPT-VQE achieves
the variational flexibility to substantially increase the weight of
the complementary Neél state. This significant change in the

character of the ADAPT-VQE state is reflected in subplots 3(g),
3(h), and 3(i): the energy begins to significantly decrease again,
the gradient norm jumps, and the infidelity drops.
The suppression of these pathways leads to a deeper gradient

trough with increasing K/J. To further explain this suppression
of the operator gradient, we consider eq 6 with the ADAPT-
VQE state being expressed in terms of the eigenstates | i

FCI of Ĥ

| = |cn

i
i

n
i

( ) ( ) FCI

(25)

= |[ ]|*E c c H A,
k i j

i
n

j
n

i k j
( ) ( ) FCI FCI

(26)

= | |*c c E E A( ) .
ij

i
n

j
n

i j i k j
( ) ( ) FCI FCI

(27)

The energy difference term here is seen to suppress the
gradients when a contaminant state and the target state become
close in energy. AsK/J becomes large, the gap between the exact
ground and first-excited states shrinks, suppressing the gradients
in this regime when the first-excited state is a major contaminant
in the ADAPT-VQE trial state, as in the cases with broken-
symmetry reference states.
For even stronger correlation (K/J = 100), ADAPT(BS-HF)

and ADAPT(local/Neél) become fatally trapped in a gradient
trough (see Supporting Information). This can be seen as
suppression of the operator gradient below the tolerance of the
numerical noise of the VQE optimizer. As such, these methods
with broken-symmetry reference states retain high infidelities
and energy errors. We speculate that, with a numerically exact
optimizer, ADAPT-VQE should be able to escape even these
gradient troughs, although this would not be possible for a
quantum computer with finite noise.
The emergence of deep gradient troughs is not seen for

ADAPT(local/cat+), even for large K/J. ADAPT(HF) exhibits a
shallow gradient trough at the start of the ADAPT-VQE
procedure. In this case, the g-symmetry reference state is a
superposition of the ground state and excited states with g
symmetry. The high infidelity (0.98) of the initial state indicates
severe contamination. The symmetry of the operator pool made
from symmetry-preserving HF orbitals, however, prevents

Figure 4. Absolute energy errors from FCI for HF, MP2, and CCSD versus the H−H separation presented alongside the energy gaps between the
ground and next lowest singlet (S1), triplet (T0), and quintet (Q0) excited states. HF spontaneously breaksS

2
symmetry for RH−H > 1.00 Å. The shaded

area denotes “chemical accuracy” (errors less than 1 kcal mol−1). (a) Reference state is restricted HF (rHF). (b) Reference state is unrestricted HF
(uHF).
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contamination from the low-lying, u-symmetry first-excited
state. This restriction is seen to limit the depth of the trough.
These results highlight the importance of symmetry in avoiding
these deep gradient troughs.
4.2. H4. In Figure 4 we present the absolute errors for a series

of “classical” quantum chemistry methods. Figure 4(a) presents
restricted HF (rHF), MP2, and CCSD on top of this reference
(rMP2 and rCCSD, respectively) and the energy gaps between
the FCI singlet ground state and the next lowest singlet (S1),
triplet (T0), and quintet (Q0) FCI excited states for the
dissociation of H4. These excited states become degenerate with

the ground state at the dissociation limit. CCSD yields a lower
energy than the FCI ground state for values of RH−H > 1.05 Å,
yielding a kink in the absolute energy errors.
For RH−H = 0.90 Å, near the equilibrium geometry, rMP2

improves upon the rHF reference error by more than a factor of
2 (2 × 10−2Eh vs 6 × 10−2Eh), while rCCSD improves upon the
reference by nearly four orders of magnitude. A reduction in the
error of rMP2 over rHF occurs in the intermediate regime, with
the rMP2 energy peaking at RH−H = 2.45 Å before ultimately
diverging at the asymptotic limit. Beginning at the onset of the
non-variational behavior, the improvement of rCCSD over rHF

Figure 5. ADAPT-VQE results for the symmetric dissociation of linear H4. Absolute energy errors [(a), (d), and (g)], ADAPT-VQE gradient norms
[(b), (e), and (h)], and infidelities relative to the exact wavefunction [(c), (f), and (i)] as the ADAPT-VQE ansaẗze grow are presented for RH−H = 1.00
Å, RH−H = 2.00 Å, and RH−H = 3.00 Å. The ADAPT-VQEmethods with restricted HF orbitals, reference states, and singlet GSD operator pools (rHF/
sGSD); restricted HF orbitals, reference states, and unrestricted GSD pools (rHF/uGSD); and unrestricted HF orbitals, reference states, and
unrestricted GSD operator pools (uHF/uGSD) are presented. Absolute energy errors for the classical methods and the energy gaps between the
ground state and the nine lowest excited states are presented alongside the ADAPT-VQE errors.
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absolute errors decreases with increasing H−H separation to
just over one order of magnitude (−0.03 Eh vs 0.5 Eh) at RH−H =
2.50 Å, the point at which the rCCSD energy begins to “turn up”.
The rCCSD energies are seen to be “chemically accurate”
(errors less than 1 kcal mol−1) for RH−H ≤ 1.50 Å. For large H−
H separations, the rHF, rMP2, and rCCSD absolute errors
exceed the energy gaps between the FCI ground state and theT0,
S1, and Q0 states.
Figure 4(b) presents the absolute errors for unrestricted HF

(uHF), MP2, and CCSD on top of this reference (uMP2 and
uCCSD, respectively), and the energy gaps between the FCI
singlet ground state and the next lowest singlet (S1), triplet (T0),
and quintet (Q0) FCI excited states for the dissociation of H4.
The uHF references spontaneously break S

2
symmetry for RH−H

> 1.00 Å. The kinks observed in the uMP2 and uCCSD errors at
these points correspond to the change in the underlying HF
reference. The uCCSD energy errors remain positive for all
RH−H being surveyed.
Unlike in the restricted case, the improvement of uMP2 over

uHF becomes negligible as the H−H separation increases. The
improvement of uCCSD over uHF decreases from over two
orders of magnitude at the onset of symmetry breaking (RH−H =
1.05 Å; 3.× 10−4Eh vs 7× 10−2Eh) to a factor of 5 at RH−H = 3.00
Å (6 × 10−4Eh vs 1 × 10−4Eh). The uCCSD energies are
chemically accurate for RH−H ≤ 1.10 Å and RH−H ≥ 2.30 Å. Both
uHF and uMP2 energies are chemically accurate for RH−H ≥
2.75 Å. The errors for uHF, uMP2, and uCCSD fall below the
energy gaps between the FCI ground and excited states for all
H−H separations investigated.
We now investigate the role that spin symmetry plays in the

compactness of the ADAPT-VQE ansaẗze for the symmetric
dissociation of linear H4. Figure 5 presents the absolute energy
errors [(a), (d), and (g)], ADAPT-VQE gradient norms [(b),
(e), and (h)], and infidelities from the exact wavefunction [(c),
(f), and (i)] as the ansaẗze grow for ADAPT-VQE applied to the
symmetric dissociation of H4 at RH−H = 1.00 Å, RH−H = 2.00 Å,
and RH−H = 3.00 Å. The ADAPT-VQE methods surveyed are
ADAPT-VQE using rHF orbitals, rHF reference states, and
singlet GSD operator pools [ADAPT(rHF/sGSD)]; ADAPT-
VQE using rHF orbitals, rHF reference states, and unrestricted
GSD operator pools [ADAPT(rHF/uGSD)]; and ADAPT-
VQE using uHF orbitals, uHF reference states, and unrestricted
GSD operator pools [ADAPT(uHF/uGSD)].
4.2.1. Spin Symmetry Breaking Slows Energy Convergence.

Comparing panels 5(a), 5(d), and 5(g), we see that ADAPT-
(rHF/sGSD) converges to the exact solution with 11, 12, and 13
parameters for RH−H = 1.00 Å, RH−H = 2.00 Å, and RH−H = 3.00
Å, respectively. The use of the sGSD operator pool ensures that
the ADAPT-VQE state remains an eigenstate of S

2
. Although

there are 20 determinants in the basis of rHF orbitals that
contribute to the exact ground state, by enforcing spin
symmetry, ADAPT(rHF/sGSD) is able to converge to the
exact solution with as few as 11 parameters. For RH−H = 2.00 Å
and RH−H = 3.00 Å, ADAPT(rHF/sGSD) converges to local
minima when 11 operators have been added, and the addition of
one and two additional operators, respectively, increases the
variational flexibility of the ADAPT-VQE state and allows it to
recover the global minimum. For ADAPT(rHF/uGSD), the
uGSD operator pool contains operators that break S

2
symmetry.

Therefore, despite beginning with the rHF reference state, as the
ADAPT(rHF/uGSD) ansatz grows, the S

2
expectation value is

seen to deviate from 0. Without the efficient parameterization
offered by the sGSD operator pool, ADAPT(rHF/uGSD)
requires at least 19 parameters to converge to the exact solution
of the 20-dimensional subspace. For ADAPT(uHF/uGSD), the
use of uHF orbitals breaks the symmetries between the α and β
orbitals, and thus, there are 36 unrestricted determinants
(corresponding to all Sz-preserving determinants) that contrib-
ute to the exact ground state. In this case, the full 36-dimensional
Hilbert subspacemust be spanned to achieve convergence to the
exact ground state, requiring at least 35 parameters.
On comparing ADAPT(rHF/sGSD) and ADAPT(rHF/

uGSD), the use of the S
2
-preserving operator pool not only

accelerates convergence to the exact ground state but is also seen
to require fewer parameters to achieve chemical accuracy for all
H−H separations surveyed. After the onset of symmetry
breaking at the HF reference state (beginning near RH−H =
1.05 Å), ADAPT(uHF/uGSD) initially outperforms ADAPT-
(rHF/sGSD) and ADAPT(rHF/uGSD) by virtue of a more
energetically favorable reference state. Despite this, the more
efficient parameterization offered by preserving symmetries
allows both ADAPT(rHF/sGSD) and ADAPT(rHF/uGSD) to
outperform ADAPT(uHF/uGSD) after the addition of only a
few operators. For RH−H = 2.00 Å, these cross-overs occur before
ADAPT(uHF/uGSD) has achieved chemical accuracy, whereas
for RH−H = 3.00 Å, ADAPT(uHF/uGSD) achieves chemical
accuracy before ADAPT(rHF/sGSD) and ADAPT(rHF/
uGSD) as the uHF reference state is already chemically
accurate. Despite this, ADAPT(uHF/uGSD) shows very limited
improvement in error as more operators are added, and it has
not significantly improved upon the reference energy when the
cross-overs with ADAPT(rHF/sGSD) and ADAPT(rHF/
uGSD) are reached.
For RH−H = 1.00 Å, the rHF reference state provides a

reasonable zeroth-order description of the system, and as such,
rCCSD is able to provide a competitive performance to
ADAPT(rHF/uGSD) with the same number of parameters
despite the lack of connected triple and quadruple excitations.
As the H−H separation increases, the rHF reference state
becomes a poorer description of the true ground state, as seen by
the initial infidelities [panels 5(c), 5(f), and 5(i)]. Here, these
excitations become more important in accurately describing the
ansatz, and as such, the performance of rCCSD is seen to suffer
relative to ADAPT(rHF/uGSD) for the same number of
parameters.
4.2.2. Spin Symmetry BreakingWorsens Gradient Troughs.

For large H−H separations, all three of the ADAPT-VQE
methods surveyed exhibit gradient troughs, as is evident in
Figure 5(h). These gradient troughs are accompanied by a
flattening of the energy error curve [Figure 5(g)] and large
infidelities [Figure 5(i)].
The rHF and uHF reference states in this geometry have high

infidelities with respect to the exact ground state, (0.482 and
0.442, respectively), indicating that these trial ground states
contain significant contributions from excited FCI states.
Additionally, the lowest singlet (S1), lowest triplet (T0), and
lowest quintet (Q0) excited states lie close in energy to the
ground state. Recalling eq 27, we see that the ADAPT-VQE
gradients are suppressed when the overlap between the ADAPT-
VQE state and the target state is small (small c0(n)) and when the
contaminant states are close in energy to the target state [small
(Ej−E0)].
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For ADAPT(rHF/sGSD), the rHF reference state is a singlet,
and as such, all states contributing to it are singlet in nature. By
enforcing the ADAPT-VQE trial state to be a singlet, the effect of
the sGSD operator pool is to limit the possible contaminant
states. This results in a gradient trough that is relatively shallow,
and ADAPT(rHF/sGSD) acquires the variational flexibility to
escape the trough by adding only a few operators. Although
ADAPT(rHF/uGSD) utilizes the same singlet rHF reference
state as ADAPT(rHF/sGSD) and as such begins with only
singlet contaminant states, the use of the uGSD operator pool
introduces contaminant states of higher spin multiplicities as the
ADAPT-VQE procedure proceeds, beginning with the second
operator addition. This is evidenced by the initial growth of the
S

2
expectation value and can be understood as a variational

conversion of higher-energy, singlet contaminant states to
lower-energy, higher-spin-multiplet states. The uHF reference
state has an S

2
expectation value of 1.996, indicating significant

contamination from the T0 andQ0 excited states. ADAPT(rHF/
uGSD) and ADAPT(uHF/uGSD) are both seen to exhibit two
gradient troughs. Escaping each of these gradient troughs is
accompanied by a drop in the S

2
expectation value. In the case

of ADAPT(uHF/uGSD), this can be understood as ADAPT-
VQE acquiring the variational flexibility to project out
contamination from Q0, corresponding to a drop in S

2
from

∼2 to∼0.6, and subsequently acquiring the variational flexibility
to project out contamination from T0, corresponding to a drop
in S

2
from ∼0.6 to 0 at convergence to the exact ground state.

5. CONCLUSIONS
In this work, we have investigated two strongly correlated
systems that exhibit two different kinds of spontaneous
symmetry breaking at the mean-field level as correlation
increases. In each case, we explore the role that breaking/
preserving these symmetries in the reference states, operator
pools, and representations of the Hamiltonian has on the
performance of ADAPT-VQE.
Although reducing symmetry through the use of UHF orbitals

often improves the energy accuracy of classical electronic
structure theory methods, the use of broken-symmetry HF
solutions is a detriment to ADAPT-VQE. For fermionic
operator pools without symmetry adaptation of the operators,
the symmetry (or lack thereof) of the pools is determined by the
symmetries of underlying orbitals. With the onset of symmetry
breaking in the MO basis, the number of determinants with
nonzero weights in the expansion of the exact ground state
increases significantly. In order to create the exact ground state,
each of the determinants contributing to the exact ground state
requires the addition of an operator to the ansatz. Thus, the use
of symmetry-broken HF as a reference for ADAPT-VQE,
although improving the energy of the reference, leads to much
larger exact ansaẗze compared to symmetry-preserving HF/rHF.
In the local representation of the Hamiltonian, the underlying

site orbital basis is inherently symmetry-broken, and as such, the
representation of the exact ground state in the determinant basis
made of the site orbitals is dense. For these systems, the use of
operator pools that are not symmetry adapted again requires a
larger number of operators to converge ADAPT-VQE. This is
the case whether the reference state is symmetrized (cat+) or
broken symmetry (Neél).
Symmetries can be introduced to the operator pool by

changing the underlying orbital basis (SALC) or via symmetry

adaptation of the pool operators (using the sGSD pool for H4).
In both cases, the preservation of these symmetries leads to
shorter ansaẗze with ADAPT-VQE. In the former, trans-
formation of the site basis yields a sparser representation of
the exact ground state in the new orbital basis, and thus, an
operator pool without symmetry adaptation using this orbital
basis leads to ADAPT-VQE convergence with a smaller number
of operators compared to those of the original site orbital basis.
In the latter, the singlet GSD pool more efficiently spans the
subspace of determinants that overlap with the exact ground
state by parameterizing a symmetry-adapted combination of
fermionic operators with a single parameter.
With respect to the issue of gradient troughs in ADAPT-VQE,

we make the following observations:
1. Gradient troughs appear when excited states become
close in energy to the ground state, such as the large K/J
limit of the fermionized, anisotropic Heisenberg model or
in the limit of large H−H separation in linear H4.

2. Reference states that have a high fidelity with the exact
ground state do not exhibit deep gradient troughs (cat+),
while the reference states with low fidelities are seen to
exhibit them when low-lying excited states are present.

3. For systems where the reference state is symmetry
preserving, the use of symmetry-adapted operator pools
leads to shallow troughs [ADAPT(HF) and ADAPT-
(rHF/sGSD)], while symmetry-agnostic operator pools
can lead to deep gradient troughs when the overlap with
the exact ground state is low [ADAPT(rHF/uGSD)].
Using symmetry-adapted operator pools limits the
possible contaminant states in the ADAPT-VQE state
to those that obey the symmetry in question, while
symmetry-agnostic pools may introduce new contami-
nants into trial states that were not initially present.

4. For symmetry-broken reference states, the presence of
deep gradient troughs is endemic [ADAPT(BS-HF),
ADAPT(local/Neél), and ADAPT(uHF/uGSD)].

While preparing this article for publication, a relevant preprint
by Tsuchimochi et al.90 appeared that also looks at spin-
symmetry breaking in ADAPT-VQE. In their work, they
highlight the unfavorable behavior of the “spin-dependent
fermionic operator pool” (unrestricted operator pools in this
work) and spin-complemented operator pools to break S

2

symmetry. The authors similarly find that spin-symmetry
breaking leads to an increase in the quantum computational
resources (both parameter counts and CNOT gates required)
compared to their spin-projected ADAPT-VQE, which applies a
spin projection operator to restore the S

2
symmetry. They

further apply this spin-projected ADAPT-VQE to the
computation of molecular properties and geometry optimiza-
tion.

■ APPENDIX A

Operator pools
For the fermionized, anisotropic Heisenberg Hamiltonians, we
utilize a fermionic generalized singles and doubles (GSD) pool
without symmetry adaptation of the fermionic operators.

{ } = { } { }A A Ak q
p

rs
pq

(A1)

= † †A a a a aq
p

p q q p (A2)
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= † † † †A a a a a a a a ars
pq

p q s r r s q p (A3)

For this generalized excitation pool the indices p, q, r, s index
molecular orbitals of unspecified occupation in the reference
state.
For the symmetric dissociation of linear H4, we utilize both a

singlet spin-symmetry-adapted generalized singles and doubles
(sGSD) pool and a spin-unrestricted generalized singles and
doubles (uGSD) pool. The operators in the sGSD pool map
between states with =S 0

2
by taking spin-adapted linear

combinations of the excitation/de-excitation operators.

{ } = { } { }A A A .1
k

1
q
p 1

rs
pq

(A4)

The generalized spin-adapted singles operators are given as
follows

= +† †a a a aA
1
2

( ) h. cq
p1

p q p q (A5)

where p, q, ... index the spatial orbitals and pα and pβ index the
spin orbitals with spatial function p and α and β spin functions,
respectively. The generalized spin-adapted doubles operators
are given as follows

{ } = { } { } { } { }
{ }

A A A A A

A ,

1
rs
pq 1

rr
pp 1

rr
pq 1

rs
pp 1A

rs
pq

1B
rs
pq

(A6)

= † † † †a a a a a a a aA ,rr
pp1

p p r r r r p p (A7)

= +† † † †a a a a a a a a p qA
1
2

( ) h. c. ; ,rr
pp1

p q r r q p r r

(A8)

= +† † † †a a a a a a a a r sA
1
2

( ) h. c. ; ,rs
pp1

p p s r p p r s

(A9)

= +

+

+

† † † †

† †

† † † † † †

a a a a a a a a

a a a a

a a a a a a a a a a a a

p q r s

A
1

2 3
(2 2

) h
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pq1A

p q s r p q s r

p q s r

p q r s q p s r q p r s

(A10)

= +

+ +

† † † †

† † † †

a a a a a a a a

a a a a a a a a p q r

s

A
1
2

(

) h. c. ; ,

.

rs
pq1B

p q s r p q r s

q p s r q p r s

(A11)

The operators in the uGSD pool do not enforce S
2
symmetry;

however, they are constructed to preserve Sz symmetry

{ } = { } { }A A A ,u
k q

p
r s
p q

(A12)

where

= † †A a a a a ,q
p

p q q p (A13)

= † † † †A a a a a a a a a ,r s
p q

p q s r r s q p (A14)

and σ, σ′ ∈ {α, β}. Unlike the sGSD operator pool, the uGSD
operator pool does not assume that the spin orbitals pα and pβ
have the same spatial functions, as is the case for molecular
orbitals from a restricted HF reference but not necessarily the
case for molecular orbitals from an unrestricted HF.
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(7) Čízěk, J. On the correlation problem in atomic and molecular
systems. Calculation of wavefunction components in Ursell-type
expansion using quantum-field theoretical methods. J. Chem. Phys.
1966, 45, 4256−4266.
(8) Feynman, R. P. Simulating physics with computers. Int. J. Theor.
Phys. 1982, 21, 467−488.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00709
J. Chem. Theory Comput. 2022, 18, 6656−6669

6667

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00709?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00709/suppl_file/ct2c00709_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+J.+Mayhall"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1312-9781
https://orcid.org/0000-0002-1312-9781
mailto:nmayhall@vt.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Luke+W.+Bertels"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1776-2266
https://orcid.org/0000-0003-1776-2266
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Harper+R.+Grimsley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5672-468X
https://orcid.org/0000-0001-5672-468X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sophia+E.+Economou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edwin+Barnes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00709?ref=pdf
https://doi.org/10.1103/physrev.136.b864
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1103/physrev.140.a1133
https://doi.org/10.1007/bf01340294
https://doi.org/10.1007/bf01340294
https://doi.org/10.1017/s0305004100016108
https://doi.org/10.1017/s0305004100016108
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1016/0029-5582(60)90140-1
https://doi.org/10.1007/bf02650179
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(9) Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M.
Simulated quantum computation of molecular energies. Science 2005,
309, 1704−1707.
(10) Wack, A.; Paik, H.; Javadi-Abhari, A.; Jurcevic, P.; Faro, I.;
Gambetta, J. M.; Johnson, B. R.Quality, speed, and scale: Three key
attributes to measure the performance of near-term quantum
computers, 2021 arXiv 2110.14108v2 .
(11) Underwood, D.; Stehlik, J.; Phung, T.; Zajac, D.; Raftery, J. J.;
Kumph, M.Gate error models for superconducting qubit architectures.
Bull. Am. Phys. Soc.2021.
(12) Preskill, J. Quantum computing in the NISQ era and beyond.
Quantum 2018, 2, 79.
(13) Peruzzo, A.;McClean, J.; Shadbolt, P.; Yung,M.-H.; Zhou, X.-Q.;
Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A variational eigenvalue
solver on a photonic quantum processor.Nat. Commun. 2014, 5, 4213−
7.
(14) McClean, J. R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The
theory of variational hybrid quantum-classical algorithms. New J. Phys.
2016, 18, 023023.
(15) Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.;
Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets. Nature 2017,
549, 242−246.
(16) Rubin, N. C.; Babbush, R.; McClean, J. Application of fermionic
marginal constraints to hybrid quantum algorithms. New J. Phys. 2018,
20, 053020.
(17) O’Gorman, B.; Huggins, W. J.; Rieffel, E. G.; Whaley, K.
B.Generalized swap networks for near-term quantum computing, 2019,
05118. arXiv preprint arXiv:1905.
(18) Gokhale, P.; Angiuli, O.; Ding, Y.; Gui, K.; Tomesh, T.; Suchara,
M.; Martonosi, M.; Chong, F. T.Minimizing state preparations in
variational quantum eigensolver by partitioning into commuting
families, 2019, 13623. arXiv preprint arXiv:1907.
(19) Jena, A.; Genin, S.; Mosca, M.Pauli partitioning with respect to
gate sets, 2019, 07859. arXiv preprint arXiv:1907.
(20) Izmaylov, A. F.; Yen, T.-C.; Lang, R. A.; Verteletskyi, V. Unitary
partitioning approach to the measurement problem in the variational
quantum eigensolver method. J. Chem. Theory Comput. 2019, 16, 190−
195.
(21) Izmaylov, A. F.; Yen, T.-C.; Ryabinkin, I. G. Revising the
measurement process in the variational quantum eigensolver: is it
possible to reduce the number of separately measured operators?Chem.
Sci. 2019, 10, 3746−3755.
(22) Verteletskyi, V.; Yen, T.-C.; Izmaylov, A. F. Measurement
optimization in the variational quantum eigensolver using a minimum
clique cover. J. Chem. Phys. 2020, 152, 124114.
(23) Yen, T.-C.; Verteletskyi, V.; Izmaylov, A. F. Measuring all
compatible operators in one series of single-qubit measurements using
unitary transformations. J. Chem. Theory Comput. 2020, 16, 2400−
2409.
(24)Huggins,W. J.; McClean, J. R.; Rubin, N. C.; Jiang, Z.;Wiebe, N.;
Whaley, K. B.; Babbush, R. Efficient and noise resilient measurements
for quantum chemistry on near-term quantum computers. NPJ
Quantum Inf 2021, 7, 1−9.
(25) Huang, H.-Y.; Kueng, R.; Preskill, J. Predicting many properties
of a quantum system from very few measurements.Nat. Phys. 2020, 16,
1050−1057.
(26) Zhao, A.; Rubin, N. C.; Miyake, A. Fermionic partial tomography
via classical shadows. Phys. Rev. Lett. 2021, 127, 110504.
(27) O’Malley, P. J. J.; et al. Scalable quantum simulation of molecular
energies. Phys. Rev. X 2016, 6, 031007.
(28) McClean, J. R.; Kimchi-Schwartz, M. E.; Carter, J.; De Jong, W.
A. Hybrid quantum-classical hierarchy for mitigation of decoherence
and determination of excited states. Phys. Rev. A 2017, 95, 042308.
(29) Barkoutsos, P. K.; Gonthier, J. F.; Sokolov, I.; Moll, N.; Salis, G.;
Fuhrer, A.; Ganzhorn, M.; Egger, D. J.; Troyer, M.; Mezzacapo, A.;
Filipp, S.; Tavernelli, I. Quantum algorithms for electronic structure
calculations: Particle-hole Hamiltonian and optimized wave-function
expansions. Phys. Rev. A 2018, 98, 022322.

(30) Romero, J.; Babbush, R.; McClean, J. R.; Hempel, C.; Love, P. J.;
Aspuru-Guzik, A. Strategies for quantum computingmolecular energies
using the unitary coupled cluster ansatz.Quantum Sci. Technol. 2018, 4,
014008.
(31) Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; Blok, M. S.; Kimchi-
Schwartz, M. E.; McClean, J. R.; Carter, J.; de Jong, W. A.; Siddiqi, I.
Computation of molecular spectra on a quantum processor with an
error-resilient algorithm. Phys. Rev. X 2018, 8, 011021.
(32) Lee, J.; Huggins, W. J.; Head-Gordon, M.; Whaley, K. B.
Generalized unitary coupled cluster wave functions for quantum
computation. J. Chem. Theory Comput. 2018, 15, 311−324.
(33) Dallaire-Demers, P.-L.; Romero, J.; Veis, L.; Sim, S.; Aspuru-
Guzik, A. Low-depth circuit ansatz for preparing correlated fermionic
states on a quantum computer. Quantum Sci. Technol. 2019, 4, 045005.
(34) Ryabinkin, I. G.; Yen, T.-C.; Genin, S. N.; Izmaylov, A. F. Qubit
coupled cluster method: a systematic approach to quantum chemistry
on a quantum computer. J. Chem. Theory Comput. 2018, 14, 6317−
6326.
(35) Shen, Y.; Zhang, X.; Zhang, S.; Zhang, J.-N.; Yung, M.-H.; Kim,
K. Quantum implementation of the unitary coupled cluster for
simulating molecular electronic structure. Phys. Rev. A 2017, 95,
020501.
(36) Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen,
H.; Jurcevic, P.; Lanyon, B. P.; Love, P.; Babbush, R.; Aspuru-Guzik, A.;
Blatt, R.; Roos, C. F. Quantum chemistry calculations on a trapped-ion
quantum simulator. Phys. Rev. X 2018, 8, 031022.
(37) Bartlett, R. J.; Kucharski, S. A.; Noga, J. Alternative coupled-
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