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Quantum simulation of strongly corre-
lated systems is potentially the most feasi-
ble useful application of near-term quan-
tum computers [1]. Minimizing quan-
tum computational resources is crucial to
achieving this goal. A promising class of
algorithms for this purpose consists of vari-
ational quantum eigensolvers (VQEs) [2–
7]. Among these, problem-tailored ver-
sions such as ADAPT-VQE [8, 9] that
build variational ansätze step by step from
a predefined operator pool perform par-
ticularly well in terms of circuit depths
and variational parameter counts. How-
ever, this improved performance comes at
the expense of an additional measurement
overhead compared to standard VQEs.
Here, we show that this overhead can be
reduced to an amount that grows only lin-
early with the number n of qubits, instead
of quartically as in the original ADAPT-
VQE. We do this by proving that operator
pools of size 2n− 2 can represent any state
in Hilbert space if chosen appropriately.
We prove that this is the minimal size
of such "complete" pools, discuss their al-
gebraic properties, and present necessary
and sufficient conditions for their com-
pleteness that allow us to find such pools
efficiently. We further show that, if the
simulated problem possesses symmetries,
then complete pools can fail to yield con-
vergent results, unless the pool is chosen to
obey certain symmetry rules. We demon-
strate the performance of such symmetry-
adapted complete pools by using them in
classical simulations of ADAPT-VQE for
several strongly correlated molecules. Our
findings are relevant for any VQE that uses

an ansatz based on Pauli strings.

1 Introduction

Achieving an accurate description of strongly cor-
related systems is one of the most challenging sci-
entific problems of our time [10, 11]. It manifests
itself when the approximation in which electrons
occupy orbitals independently from each other
breaks down. In other words, strongly corre-
lated materials cannot adequately be described
by a single Slater determinant, no matter how we
choose the orbital basis. In these cases, classical
methods like density functional theory [12, 13] or
mean-field approaches are not able to capture the
behavior of the system. Although classical com-
putational chemistry methods do exist (such as
coupled cluster (CC) methods) [14–16] that go
beyond the single Slater determinant, strong cor-
relation quickly degrades their quantitative accu-
racy. For small enough systems, exact diagonal-
ization (i.e., full configuration interaction (FCI))
can be used to obtain the ground and excited
state energies to arbitrary precision. However,
the dimension of the Hilbert space grows combi-
natorially, such that even for molecules of mod-
est size, it becomes practically impossible to ap-
ply these methods. For example, the electronic
wave function of a zero-spin molecule with twenty
spatial orbitals (forty spin orbitals) at half-filling
is represented by approximately 34 billion coeffi-
cients, which already takes about 275 Gb of mem-
ory and makes the calculations extremely chal-
lenging and time-consuming.

This "curse of dimensionality" can be avoided
entirely if another, controllable quantum system
is used to simulate the system of interest. For the
example above, forty quantum bits would suffice
to represent the many-body state we are inter-
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ested in. If additionally the state of the simu-
lator can be manipulated universally in any de-
sired way, we can mimic the behavior of the orig-
inal system under arbitrary conditions and thus
gain access to its behavior and properties. Unfor-
tunately, simulating the quantum system in this
way requires a functional universal quantum com-
puter, something that is not yet available. The
biggest challenge here is that the quantum state
of the simulator is prone to unwanted interactions
with the environment that decohere the qubits
and scramble its quantum state. As the current
quantum machines have no error correction im-
plemented [17], it is impossible to perform long
gate sequences on the state of the simulator; such
sequences are essential for quantum algorithms
that require universal control of the state [18, 19].

In this work, we focus on another paradigm
of quantum simulation, one that trades universal
control for shorter gate sequences. A promising
class of simulation algorithms that operate in this
paradigm are called variational quantum eigen-
solvers (VQEs) [2–5]. These algorithms are based
on the standard variational principle of quantum
mechanics, which states that the ground state
energy is a global minimum of the expectation
value of the Hamiltonian. The main steps of any
VQE algorithm are as follows. First of all, one
needs to map the Hilbert space of the system
onto that of the simulator. There are a vari-
ety of ways to do the mapping, the most com-
mon being Jordan-Wigner, Bravyi-Kitaev, and
parity mappings [20]. In this work, we focus
on the Jordan-Wigner mapping. VQEs operate
by preparing the simulator system in some ini-
tial state |ψ⟩ and then applying a sequence of
parametrized unitary gates, Û(θ⃗), referred to as
an ansatz. The goal is then to find the mini-
mum of E(θ⃗) = ⟨ψ|Û(θ⃗)†ĤÛ(θ⃗)|ψ⟩ with respect
to θ⃗, where Ĥ is the problem Hamiltonian ex-
pressed in terms of operators acting on the simu-
lator. According to the variational principle, this
minimum is the best approximation to the ground
state allowed by the chosen ansatz. The advan-
tage of VQEs is that the quantum hardware is
only used to prepare the ansatz and measure the
expectation value of Ĥ, thus computing E(θ⃗) for
a given θ⃗. The actual minimization procedure
is performed on a classical computer that effec-
tively uses the quantum simulator as a subroutine
to compute E(θ⃗).

The performance of any VQE algorithm de-
pends critically on the choice of the ansatz. In
general, an ansatz is constructed from a product
of individual quantum gates, each generated by
some anti-Hermitian operator. The first question
that arises is thus, "which sets of anti-Hermitian
operators can serve in a VQE ansatz?" There are
two general approaches taken in the community:
(i) Use products of fermionic operators that re-
semble those appearing in the Hamiltonian of the
system under study [2, 14, 16, 21]. This operator
choice is typically what is used in classical chem-
istry simulations, but it has the disadvantage that
when mapped to qubit operators and transpiled
into the native gates of a quantum simulator,
the circuit significantly deepens, and the imple-
mentation of the algorithm becomes problematic
(although there has been recent progress in re-
ducing these circuit depths [22]). An alternative
approach is the following: (ii) Use sets of anti-
Hermitian operators that are native or at least
easily implementable on the quantum simulator
[23, 24]. Regardless of which approach is taken,
there is no unique way to choose an ansatz, and
there is currently no general answer as to what
constitutes the best ansatz for a given problem.

An important step toward addressing these is-
sues was taken in Refs. [8, 9], which introduced
an algorithm known as ADAPT-VQE that al-
lows the system under study to determine its
own problem-tailored ansatz by constructing it
step by step from a predefined operator pool. It
was shown that this leads to substantial reduc-
tions in circuit depths and variational parameter
counts. Other types of iterative variational algo-
rithms have also been proposed [25–28]. The orig-
inal work on ADAPT-VQE [8] utilized pools com-
prised of fermionic operators (fermionic-ADAPT-
VQE), while follow-up work [9] considered anti-
Hermitian Pauli strings instead (qubit-ADAPT-
VQE). Because Pauli strings can be transpiled
into a small number of native gates, this choice
leads to shorter ansatz circuits. Pools comprised
of operators that lie somewhere in between these
two cases have also been shown to yield good
performance [29]. The advantages afforded by
ADAPT-VQE come at the expense of an increase
in measurement overhead. This comes from the
need to perform additional measurements (be-
yond those needed to obtain E(θ⃗)) of the energy
gradient to determine which operator to add in
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each iteration of the algorithm. The number of
additional measurements is proportional to the
size of the operator pool. Refs. [8, 9, 29] used
pools of size O(n4), where n is the number of
qubits, to perform molecular simulations. Be-
cause the number of terms in Ĥ for a molecule
is also quartic, the total number of measurements
per iteration would naively scale as O(n8) instead
of the O(n4) scaling of a fixed-ansatz VQE ap-
plied to a molecular problem. However, by refor-
mulating the energy gradient in terms of the 3-
particle reduced density matrix, Ref. [30] showed
that this measurement cost is actually O(n6).1

An important consideration in choosing a pool
is that it should be possible to construct from it
an ansatz that represents the exact ground state
to arbitrary accuracy. Pools that satisfy this cri-
terion are called "complete" [9]. In Ref. [9], it
was shown that the O(n4) pool can be reduced by
over 90% without sacrificing the performance of
qubit-ADAPT-VQE, provided the completeness
property is maintained. It was further proven
(by constructing an explicit example) that there
exist complete pools of size 2n − 2, and it was
conjectured that this is the minimal size of such
pools. This would in principle reduce the mea-
surement overhead for molecules from O(n8) to
O(n5). However, while such pools perform well
for random Hamiltonians [9], they have not yet
been tested on molecules or other problems of
practical interest, so this overhead reduction has
not been confirmed. Many additional questions
remain as well: Is 2n− 2 really the minimal pos-
sible pool size or are there even smaller complete
pools? Can we find all possible minimal complete
pools, and how can we check if a pool is minimal
and complete or not? Is it possible to reduce the
necessary resources even further if one takes into
account the details of the problem being solved,
such as symmetries of the Hamiltonian? How
does the choice of the minimal complete pool af-
fect the convergence of the ansatz in the context
of ADAPT-VQE?

1By accepting some amount of approximation to the
energy gradient expressions, they also showed that an ap-
proximate 2-particle reduced density matrix reconstruc-
tion of the 3-particle reduced density matrix admits a
measurement count that scales the same as the energy it-
self, O(n4). Although this approximate gradient estimate
created significant convergence problems, they have also
developed a technique to mitigate these problems called
ADAPT-Vx.

In this paper, we address all of these questions.
We prove that the minimum size of a complete
pool comprised of Pauli strings is indeed 2n− 2.
We also derive necessary and sufficient conditions
for pool completeness that facilitate the process
of constructing new examples of minimal com-
plete pools. We further show that while generic
minimal complete pools work well for random
Hamiltonians, they generally do not perform well
for molecular Hamiltonians. We show that this is
due to the presence of symmetries in the latter.
If symmetry-adapted minimal complete pools are
used instead, then qubit-ADAPT-VQE success-
fully obtains the desired ground state of molecu-
lar problems while achieving the reduced O(n5)
measurement overhead. Although our main moti-
vation is to improve the performance of ADAPT-
VQE, it is important to stress that our results are
relevant to any VQE that utilizes ansätze built
from Pauli strings. Our findings allow one to de-
termine when such ansätze are capable of exactly
representing the desired state.

The paper is organized as follows. In the next
section, we prove that minimal complete pools
contain 2n − 2 operators, and we establish nec-
essary and sufficient conditions for completeness.
In Sec. 3, we then apply our results to random
real Hamiltonians. In Sec. 4, we discuss min-
imal complete pools in the context of molecu-
lar simulations. We show that generic minimal
complete pools lead to convergence difficulties.
We then show that this problem is resolved by
incorporating symmetries into the pool, and we
analyze the performance of ADAPT-VQE with
these symmetry-adapted minimal complete pools
for several different molecules.

2 Minimal complete pools

In this section we discuss our main results related
to minimal complete pools (MCPs). This sec-
tion only gives an overview of the main theorems
and does not present all proofs in detail. For a
more rigorous discussion please see Appendix A.
In this work, operator pools are defined as sets of
anti-Hermitian Pauli strings {P̂i}, each of which
is capable of generating a parameterized unitary
exp(αP̂i). We call an operator pool complete if
for any two real states |ψ⟩ and |ϕ⟩ there exists a
product of these unitaries that can transform one
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to the other:

|ψ⟩ =
∏

i

exp(αiP̂i) |ϕ⟩ . (1)

Here, we focus on real states because we are pri-
marily interested in simulating systems that pos-
sess time-reversal symmetry, such as molecules.
This means that the P̂i should contain odd num-
bers of Pauli Y operators. In order to not work
with imaginary matrix entries, we will use iY in-
stead of ordinary Pauli Y . Still, for clarity we
will omit writing the factor i in all expressions.
The Pauli strings containing odd numbers of Y
operators will be referred to as odd Pauli strings
(O operators). In contrast, the Pauli strings with
even numbers of Y operators will be referred to
as even (E operators). We call a complete pool
minimal if there is no complete pool of smaller
size. In this section, we show how to identify all
MCPs and discuss their main properties.

The basic features of an MCP are summarized
by the following theorem:

Theorem 1. An MCP must contain 2n−2 Pauli
string generators O1, O2, ..., O2n−2. If we use
matrix multiplication to build the set of all pos-
sible products of these operators (a product group
generated by an MCP), this set will coincide with
the product group G generated by Z1, Z2, ...,
Zn−2, Y1, Y2, ..., Yn−2, Yn−1, Zn−1Yn up to a
similarity transformation. The Lie algebra gen-
erated by an MCP is the subset of odd strings
from this product group.

The similarity transformation referred to in the
theorem above is defined as follows for any two
odd Pauli strings O1 and O2 that anticommute:

exp
(
π

4O1

)
O2 exp

(
−π

4O1

)
= 1

2[O1, O2]. (2)

Here, we briefly describe the main ideas be-
hind the proof of Theorem 1. For a more de-
tailed discussion, see Theorem 2 and its proof in
Appendix A. Completeness is related to the abil-
ity of the pool to generate a unitary that trans-
forms the initial state of the system to the target
ground state. The theory of Lie groups relates
the unitaries a pool can generate to the size and
structure of the Lie algebra generated by the pool
through all possible commutators of its elements.
We can understand this relationship in detail by
taking advantage of the fact that our pool con-
sists of Pauli strings. If any two Pauli strings do

not commute, then their product coincides with
their commutator up to a coefficient. This means
that if we build a product group from a pool us-
ing matrix multiplication, then the Lie algebra
will be a subset of this group. Therefore, if the
product group is too small to host the operators
necessary to generate the unitary we need, then
the algebra will also be too small and so the pool
cannot be complete. Thus in Appendix A, we first
identify which operators we need in the group to
be able to transform any real state to any other
(as in Eq. 1), and then we use group theory to
show that a minimal group that can host those
operators must have the canonical form described
in Theorem 1. From now on, when we discuss
an MCP, we will always assume it generates this
canonical form of the product group G.

Theorem 1 only considers the size and structure
of the product group that an MCP must generate.
This is a necessary condition for completeness,
but at this point we have not yet shown that pools
satisfying this condition exist. Such pools do in
fact exist. In Appendix B of Ref. [9], a pool of
size 2n− 2 was constructed explicitly and shown
to transform any real state into any other. One
can check that up to renumbering of the qubits,
this pool generates the group G in Theorem 1.

If a pool generates an algebra that spans all
odd strings from the group G in Theorem 1, it
will generate exactly the same algebra as the pool
from Appendix B of [9], thus proving that this
pool is also complete. This is a sufficient condi-
tion for completeness that is part of the following
theorem, which is extremely useful when search-
ing for minimal complete pools numerically:

Theorem 2 (completeness criterion). Let a pool
of 2n − 2 Pauli string generators O1, O2, ...,
O2n−2 generate the product group G defined in
Theorem 1. The following statements are equiv-
alent:

• (a) The pool O1, O2, ..., O2n−2 is complete.

• (b) The pool O1, O2, ..., O2n−2 cannot be
split into two mutually commuting sets.

• (c) The algebra generated by O1, O2, ...,
O2n−2 spans all odd strings from the group
G.

Statement (b) is a necessary condition of com-
pleteness and thus follows from (a), as shown in
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Appendix A. What this statement means is that
we cannot split the pool into two sets of opera-
tors, such that each operator from the first set
commutes with each operator from the second
set. As already discussed above in the context of
Theorem 1, statement (a) follows from (c). Prov-
ing that (c) follows from (b) turns out to be very
challenging. For now we do not have an analytical
proof, but all our numerical calculations confirm
this is true, and we use this statement in practice.

Remark. Theorem 2 consists of completeness cri-
teria that are in part proven analytically and in
part strongly supported numerically. It coincides
with Theorem 5 of Appendix A. The condition
(c) can safely be used to search for complete
pools, as its applicability has been proven an-
alytically. However, computing the Lie algebra
for a given pool is very resource demanding. If
one needs to check many pools for completeness
and select one based on some other criterion, this
approach might take too long. This is why condi-
tion (b) is extremely useful, as its computational
complexity scales polynomially with the size of
the pool, and thus it is a lot easier and faster to
use.
Remark. The above theorems and observations
lead to a practical recipe to search for complete
pools. The problem statement is the following:
given a pool of 2n−2 Pauli strings, check whether
it is complete or not.

• Step 1. Generate the product group and
check if it coincides with that of Theorem 1
up to a similarity transformation. This can
be done using Theorem 1 from Appendix
A, i.e., by checking that the group contains
2n − 1 odd Pauli strings that perform all
possible flippings of the qubits.

• Step 2. If the group is correct, the next step
is to check if the pool obeys the insepara-
bility criterion (condition (b) of Theorem 2).

• Step 3. One could already stop here.
However, if one wants to rely on a fully
analytical completeness proof, one needs to
compute the algebra generated by the pool
and check that it spans all odd strings from
the group G. Equivalently, one needs to
check that the algebra size is 2n−1(2n−1+1)

2 ,

in agreement with Lemma 6 of Appendix A.

3 ADAPT-VQE with minimal com-
plete pools for random Hamiltonians

Now we will apply the results of the previous
section to dense random Hamiltonians. Thus,
we will assume the simulator can perform the
gates exp(αiP̂i), parametrized by a real num-
ber αi, where P̂i is taken from an operator pool
{P̂1, P̂2, ..., P̂k}. In order to perform a simula-
tion, we need to specify how we will construct
the actual ansatz. We follow the protocol of
ADAPT-VQE, which, in each iteration of the al-
gorithm, selects the pool operator that has the
largest energy gradient and adds it to the ansatz
[8, 9]. We first initialize the system in a clas-
sical reference state |ψ(0)⟩. For molecules, this
is typically a Hartree-Fock state, while for ran-
dom Hamiltonians, we just initialize all qubits
to the state |0⟩. We then select an operator
P̂i from the pool by measuring the commuta-
tor ⟨ψ(0)|

[
Ĥ, P̂i

]
|ψ(0)⟩ for each pool operator and

choosing the largest one. The ansatz then be-
comes |ψ(αi)⟩ = exp(αiP̂i) |ψ(0)⟩. The commu-
tators are proportional to the derivative of the
energy ⟨ψ(αi)|Ĥ|ψ(αi)⟩ with respect to αi, jus-
tifying this selection criterion. In the next step
we minimize ⟨ψ(αi)|Ĥ|ψ(αi)⟩ with respect to αi

using a standard VQE procedure, involving both
quantum and classical hardware. The resulting
state |ψ(1)⟩ = |ψ(α∗

i )⟩ = exp(α∗
i P̂i) |ψ(0)⟩ then re-

places |ψ(0)⟩ in the next iteration. We use |ψ(1)⟩
in the gradient criterion to choose the next oper-
ator from the pool. Our ansatz will then take the
form |ψ(α⃗)⟩ = exp(αjP̂j) exp(αiP̂i) |ψ(0)⟩. Note
that after choosing the next operator from the
pool, we unfreeze the coefficient αi and optimize
with respect to the vector α⃗ = (αj , αi). In real
simulations on quantum hardware, the loop ter-
minates when the energy gradient is zero or when
the energy does not decrease significantly after
several steps of the algorithm. Here, however,
we focus on classically tractable problems to test
the performance of various pools; in this case,
we can compare the resulting energy to the true
(FCI) ground state energy obtained from exact
diagonalization and terminate the loop when the
difference between them is below a predefined
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threshold. This can only work of course for small
molecules or Hamiltonians that can be diagonal-
ized numerically.

To illustrate the theory from the previous sec-
tion, we randomly generate real Hamiltonians for
n = 6 and n = 8 qubits. We use MCPs selected
randomly. To create these, we take random sets
of 2n−2 operators and check if they generate the
correct product group and obey the inseparability
criterion. To be on the safe side, we also gener-
ate the algebra and make sure it spans all odd
Pauli strings from the product group (following
the steps in the second remark below Theorem
2). In the case of 6 qubits, one such pool has the
following 10 operators:

XZIIXY,ZXYZII,YZYYII,YYIIXY, IZXXZY,
XZIXZY,ZYIYYI,XIYYYI,YIYZYI,XYZYYI,

(3)
while in the case of 8 qubits, the pool has 14
operators, for example:

ZYIZIYZY,ZXXZYYYI,YZIIIXII,YZXYIIXY,
IIXXIIYI, IYYYZZII, IYXZIYZY,ZXZIIXYI,
YYZZZIYI,YIXYZZXY, IIXXXIYI, IYXXIYXY,
ZYIXIXII,XYXIZZII.

(4)
Figure 1 shows the energy error (relative to the

FCI energy) versus iteration number for two ex-
amples of randomly generated Hamiltonians. The
curve follows a similar pattern for the two cases
considered, and ADAPT-VQE manages to de-
crease the error by six orders of magnitude in each
case. It is evident from the figure that the num-
ber of parameters needed to reach convergence
quickly increases from ∼ 60 to ∼ 250 as the num-
ber of qubits increases from n = 6 to 8. This is
a consequence of the randomness of the Hamilto-
nians. The lack of structure in the ground states
of such Hamiltonians means that they do not
admit an efficient representation, and the num-
ber of parameters needed likely scales with the
Hilbert space dimension. We will see below that
for physical systems such as molecules, where the
Hamiltonian and ground state possess structure,
the number of parameters needed to reach con-
vergence is much smaller than the Hilbert space
dimension. There, we will see that a judicious
choice of MCP can significantly speed up the
algorithm and further reduce parameter counts.
In fact, choosing a random MCP to search for
the ground state energy only works for random
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Figure 1: Energy error versus ADAPT-VQE iteration
number for random Hamiltonians for (a) n = 6 and (b)
n = 8 qubits, and randomly chosen pools (see Eqs. (3)
and (4)). The error is defined as the difference between
the energy at a particular iteration and the FCI energy.

Hamiltonians. Real molecular Hamiltonians have
a lot of structure due to symmetries. In this
case, a random MCP will fail to achieve conver-
gence, and one has to take into account symme-
tries of the problem Hamiltonian to construct a
suitable MCP that is capable of producing the
target ground state. We discuss these issues in
the next section.

4 Symmetry-preserving minimal com-
plete pools for molecular simulations

In this section, we apply MCPs to search for
the ground state of molecular Hamiltonians us-
ing qubit-ADAPT-VQE [9]. We begin with a
discussion of the H4 molecule, before develop-
ing a more general theory of molecular simula-
tions using MCPs. H4 is a linear molecule that
consists of four protons and four electrons. For
simplicity, we only retain four 1s molecular or-
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bitals (one for each hydrogen atom) to span the
state space. This leaves us with eight spin or-
bitals that, under the Jordan-Wigner mapping,
translate to eight qubits. For the initial state,
we choose the classical Hartree-Fock state. When
we run qubit-ADAPT-VQE with a random MCP,
we encounter a problem, namely the algorithm
does not start. In particular, all the gradients
in the first step are exactly zero, and no opera-
tor is identified for inclusion into the ansatz. We
note that this problem is specific to the gradi-
ent criterion of ADAPT-VQE, as in principle any
MCP can, according to our theory, take us to the
ground state. The gradient criterion of ADAPT-
VQE in this case is just unable to provide the
corresponding path. This can be explained sim-
ply by the very sparse structure of the Hamilto-
nian. Indeed, the number of terms in molecular
Hamiltonians is quartic in the number of qubits
(n4) due to the fact that such Hamiltonians only
contain one and two-particle terms. This sparse
structure makes it likely that terms in the Hamil-
tonian will commute with the operators from the
pool, thus making the energy gradient zero. Still,
the fact that all n4 terms commute with all the
operators from the pool must have a different ex-
planation. If we just put n4 random Pauli strings
in a Hamiltonian, the probability that all of them
would commute with the pool would be extremely
low. That means there is a pattern among the
Pauli strings that comprise the Hamiltonian, and
it turns out this pattern is completely defined by
the Hamiltonian symmetries.

First of all, every molecular Hamiltonian con-
serves the spin and the number of particles in the
system. This means the Hamiltonian has van-
ishing matrix elements between states of differ-
ent spin or different particle number. The H4
molecule has an additional symmetry on top of
these, namely inversion symmetry. This implies
all eigenstates of the Hamiltonian are either sym-
metric or antisymmetric with respect to inver-
sion, and the Hamiltonian will have vanishing ma-
trix elements between any two states of different
parity. This can be more strictly formulated using
the theory of group representations; we employ
this approach later, but for now we only discuss
H4 in these simple terms. We start the simu-
lation at the Hartree-Fock state, which has four
electrons, zero spin, and a well defined parity. In
terms of qubits in the simulator, this state can

be expressed as |ψHF ⟩ = |11110000⟩. Accord-
ing to the discussion above, if a Pauli string P̂
changes the number of particles, spin or parity of
this state, its commutator with the Hamiltonian
is exactly zero:

⟨ψHF |[P̂ , Ĥ]|ψHF ⟩ =
= ⟨(P̂ψHF )|Ĥ|ψHF ⟩ − ⟨ψHF |Ĥ|(P̂ψHF )⟩ = 0.

(5)
This suggests that when selecting a pool, at least
some operators in it must conserve the num-
ber of particles, spin, and parity of the Hartree-
Fock state in order for the algorithm to start.
These are not all the limitations we must con-
sider when constructing the pool. Another lim-
itation comes from the fact that a Hartree-Fock
state is the classical state that lies closest in en-
ergy to the ground state. If we consider an op-
erator P̂ that conserves all the quantum num-
bers and at the same time is a single-particle
excitation (contains exactly two X or Y opera-
tors), the commutator ⟨ψHF |[P̂ , Ĥ]|ψHF ⟩ would
again be zero. Otherwise one would be able to
construct a different classical state with energy
lower than that of the Hartree-Fock state. In-
deed, let us assume ⟨ψHF |[P̂ , Ĥ]|ψHF ⟩ is nonzero
for P̂ = IIIY IIIX. That means the matrix ele-
ment

⟨ψHF |ĤP̂ |ψHF ⟩ = ⟨11110000|Ĥ|11100001⟩
(6)

is nonzero as well. In that case there must exist
a superposition state,

a |11110000⟩ + b |11100001⟩ , (7)
that has lower energy than the Hartree-Fock state
|11110000⟩. This would mean that one electron
resides in a superposition of orbitals 2 and 4, and
if one constructs a new basis containing this su-
perposition state, a product state with energy
lower than that of the Hartree-Fock state would
be obtained (an extension of the Brillouin condi-
tion to Pauli operators).

Finally, the commutator ⟨ψHF |[P̂ , Ĥ]|ψHF ⟩
will vanish if we consider a P̂ that creates more
than double excitations on top of the Hartree-
Fock state. This is a consequence of the molecu-
lar Hamiltonian containing only single and double
excitations, so it cannot connect for example the
states |11110000⟩ and |00001111⟩.

These rules fully define the operators that
will have nonzero gradient when qubit-ADAPT-
VQE starts. More generally, these operators can
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quickly lower the energy at the beginning of the
algorithm, so it makes sense to include them in
the pool even when some other VQE procedure is
used that does not directly depend on the energy
gradients. We refer to the operators obeying the
rules above as "starters". They allow the state
to evolve away from the Hartree-Fock state in
the initial steps of the algorithm, thus providing
Pauli contributions to the "first-order interact-
ing space", which is typically expressed in terms
of second-quantized fermionic operators. In our
simulations, we choose at least half of the opera-
tor pool to consist of starters.

Even if we choose the pool to contain some
starters and then add in other operators to satisfy
the completeness criterion, we run into a differ-
ent problem. It turns out all the gradients will of-
ten zero out again, before the ADAPT-VQE algo-
rithm reaches the ground state. Figure 2 demon-
strates this behavior in the case of H4. An MCP
of 14 operators in total is used, 7 of which are
starters. The energy error does not improve be-
yond 2 × 10−3 Ha as the gradient goes to zero.
Although we do not show it here, similar behav-
ior also arises for LiH and BeH2. This can again
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Figure 2: The absolute error (a) and maximal gradient
(b) at each step of the qubit-ADAPT-VQE algorithm
for the H4 molecule mapped onto 8 qubits. The pool
is chosen to be a 14-operator MCP with 7 starters, in
which symmetry is not taken into account. The gradient
goes to zero when the absolute error is only 2 × 10−3

Ha.

be understood as a consequence of symmetry, as
we now explain.

Let us again focus for the moment on the H4
molecule and introduce several new concepts. We
will refer to a state having an even/odd number of
electrons as a state of positive/negative particle-
number parity. This new parity comes on top
of the usual parity related to spatial inversion.
Now one can show that every Pauli string that
changes at least one of these parities will always
have zero gradient and will never be picked. This
can be proved by induction on the iterations of
the ADAPT-VQE algorithm. Let us assume the
statement is true for the first N steps of the al-
gorithm. That is, no operator that would change
one of the parities was picked, so we know that
after N steps of the algorithm, the parities will
still coincide with those of the initial Hartree-
Fock state. Without loss of generality, we can
assume these parities to be positive so that the
total parity state is |+,+⟩. The Hamiltonian will
only connect this state to other states of the same
parity. Note that when acting on a state for which
one of the parities is a good quantum number, a
Pauli string will either change this parity or leave
it intact. Suppose we compute an energy gradi-
ent for a Pauli string that changes parities, so for
example |+,+⟩ → |+,−⟩. Then

⟨+,+|[Ĥ, P̂ ]|+,+⟩ =
2Im ⟨+,+|Ĥ|+,−⟩ = 0.

(8)

This means such a Pauli string will not be picked,
and our statement is also true for the step N + 1.
The base of induction is the fact that at step zero
of the algorithm, no operator was picked at all,
so the statement is true.

Now we can explain why ADAPT-VQE stops
before it converges, even though we are using a
complete pool (more specifically, an MCP). Our
definition of completeness requires that we can
reach any point in the Hilbert space from any
other point. That means we must have opera-
tors that will change parities. But they are never
picked by the ADAPT-VQE gradient criterion
and thus are never added to the ansatz, so ef-
fectively our pool is smaller and thus it might
be incomplete in practice. We again note that
this result does not mean that there is no path
to the ground state, it just means the ADAPT-
VQE gradient criterion is not able to find the
path in this case; another ADAPT-VQE crite-
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rion or other VQE algorithms could in principle
succeed with the same pool. However, resorting
to a different operator-selection criterion or algo-
rithm is not necessary, as we can actually still use
the ADAPT-VQE gradient criterion to solve our
problem if we notice that the MCP requirement
that we can go from any point in the Hilbert space
to any other point is actually too strict. Indeed,
going from the Hartree-Fock state to the ground
state can be written as

|ψgs⟩ = exp(M̂) |ψHF ⟩ , (9)

where M̂ is a real antisymmetric matrix. This
matrix, according to Lie group theory, is a su-
perposition of operators from the complete alge-
bra generated by the MCP. On the other hand,
the operators present in this superposition obey
all the symmetry requirements, namely they do
not change the number of particles, the spin, or
the parity of the Hartree-Fock state (this is a re-
sult of the fact that these quantum numbers are
exactly the same for the Hartree-Fock state as
they are for the ground state of the system). But
then they will also keep both parities intact. Con-
sider the subgroup of the product group and the
subalgebra of the complete algebra that consist
of operators conserving the parities. It follows
that M̂ is a superposition of the operators from
this subalgebra (and thus from the subgroup). It
is now clear that the most efficient pools should
consist of odd Pauli strings that belong to this
subalgebra and thus preserve parity. Due to the
binary nature of the parities, the size of the sub-
group is 4 times smaller than that of the group
generated by a generic MCP. That means we can
expect the parity-preserving pool of operators to
contain 2 fewer operators compared to a general
MCP. The importance of restricting ansatz gener-
ators according to symmetry considerations was
also emphasized in Ref. [31] in the context of the
Qubit Coupled Cluster algorithm [25].

Is this parity-preserving pool the smallest that
will work or can we reduce the size of the pool
even further? If we could do this, then it would
mean the matrix M̂ is a superposition of Pauli
strings that belong to an even smaller subalge-
bra of the original algebra. This turns out to be
exactly the case, as we only used parities in our
above considerations and have not yet taken into
account spin symmetry (Ŝz). In order to do so,
let us first notice that Pauli strings come in one

of two symmetry types. The first type are those
Pauli strings that are not able to conserve spin
and particle number at the same time for any clas-
sical state. An example of such a Pauli string in
the four-qubit case is XYII if the spin orbitals are
ordered with alternating spin, e.g., αβαβ, where
α and β represent the 1/2 and −1/2 spin projec-
tion, respectively, for the electron occupying the
corresponding orbital. Indeed, this Pauli string
will only conserve the number of particles if the
classical state belongs to one of the two cases:

|01...⟩ or |10...⟩ . (10)

In either of these cases, the spin will change by 1,
so particle number and spin cannot be conserved
at the same time by this Pauli string for any clas-
sical state. The second type of Pauli strings are
those that are able to conserve spin and particle
number at the same time. These are exactly those
Pauli strings for which the number of X or Y op-
erators acting on the α−orbitals is a multiple of
two (same is true for β orbitals). In other words,
X and Y operators come in pairs for a given spin
projection. In our four-qubit case, an example
of such a Pauli string is YIXI, as it contains two
X or Y Pauli operators acting on the α orbitals
and no operators acting on the β orbitals. This
observation makes it clear that Pauli strings of
the second type form a group under matrix mul-
tiplication. The matrix M̂ conserves the spin and
particle number of the Hartree-Fock state, so it
must be a superposition of Pauli strings belong-
ing to the second type. That means the parity-
preserving subgroup we identified above can be
further restricted by these conditions. This re-
duces the size of the symmetry-preserving sub-
group by another factor of 2, and hence reduces
the pool size by one more operator.

We can now precisely formulate how to choose
the pool in order to ensure convergence to the tar-
get ground state. It must generate the symmetry-
preserving product subgroup and subalgebra that
we described above, as well as contain enough
starters to allow ADAPT-VQE to start. In other
words, the pool must obey the following condi-
tions:

1. The number of electrons with a given spin
changes by a multiple of 2. That is, there is
an even number of X, Y operators acting on
α orbitals, and there is an even number of
X, Y operators acting on β orbitals.

9



2. Each operator in the pool must conserve spa-
tial parity. This condition will be generalized
below for more complicated molecules.

3. The pool must contain enough starters for
ADAPT-VQE to start.

4. The pool generates the biggest subgroup and
subalgebra of those generated by a general
non-symmetry-preserving MCP, that con-
tain Pauli strings obeying conditions 1-2.

We refer to pools that satisfy these criteria as
symmetry-preserving MCPs.

We now construct a pool obeying the condi-
tions above for the H4 molecule. Due to the bi-
nary nature of parity, the size of the subgroup is 8
times smaller than that of the group generated by
the general, non-symmetry-preserving MCP. The
pool we construct thus contains 3 fewer opera-
tors than the general MCP, which leaves us with
11 operators in the pool (see Eq. (4)). We do
not impose any further restrictions on the choice
of the pool—the remaining choices are conducted
randomly. For our simulation of H4 dissociation
curve (Fig. 3), we use the following symmetry-
preserving MCP:

YIXIYIYI,ZYXIYIZY,YIZYXIZY,ZZYXYYII,
XXIZIIXY,YIZYZXYI,XIYZYZYI,XZIIYZII,
ZXXZZXYI,XXIIIIXY, IYYZXIZY.

(11)
Let us analyze this pool in more detail. In order

to do that we have to first understand how our
basis orbitals look in terms of symmetry. If we
choose the Hartree-Fock state of the H4 molecule
to have the first four qubits in state |1⟩, |ψHF ⟩ =
|11110000⟩, the ordering of the orbitals in terms
of parity and spin can be chosen to be

|αβ︸︷︷︸
+

αβ︸︷︷︸
-

αβ︸︷︷︸
+

αβ︸︷︷︸
-

⟩ . (12)

The underbrace shows whether the correspond-
ing orbital has a positive or negative spatial par-
ity. Looking at the orbital structure in Eq. (12),
one infers that all the operators from the pool
in Eq. (11) except the 8th one, XZIIYZII, are
starters. Indeed, they all conserve the number
of particles, spin and parity of the Hartree-Fock
state, as well as contain exactly four X and Y
operators. The operator XZIIYZII is a single-
excitation operator, so it is not a starter even

though it conserves all three symmetries (Bril-
louin condition). In Fig. 3 we show the dis-
sociation curve for the H4 molecule, computed
using the pool from Eq. (11). At all bond
lengths, ADAPT-VQE converges to FCI with
an error less than 10−8 Ha in about 60 steps.
The symmetry-preserving pool clearly outper-
forms the symmetry-violating MCP used in Fig. 2
even though the symmetry-preserving one con-
tains fewer operators. This clearly highlights the
importance of incorporating symmetry consider-
ations into the pool.

To further examine the role of starters, we can
construct and compare several MCPs containing
different numbers of them following the approach
used to construct the pool in Eq. (11). Using the
three starters

ZYXZZYYI,YZIYZXYI,XYZZYYII, (13)

gives rise to the following MCP:

ZYXZZYYI,XIIIYZII,YZIYZXYI,ZIXZXXZY,
XYZZYYII,ZXXXYZII, IXYYZXXY, IZZXIZZY,
YYXIXXYI,XYXXZIII,ZYXXIYXY.

(14)
On the other hand, using the six starters

YIIXYZZY, IXXZXIZY,ZZXYYYII,
YZZYXZZY, IXXZIXYI,YYZIIIXY,

(15)

leads to a different MCP:

YIIXYZZY, IXXZXIZY,ZZXYYYII,YZZYXZZY,
IXXZIXYI,YYZIIIXY,ZIXIIZYI, IYYYIYXY,
YIZIXZII,ZZXIZZYI,ZXZXXIYI.

(16)
The following nine starters

ZYYZXIZY, IXXIXZZY,YIZXIYYI,
IXYIYIZY, IZYXYYII,XXIZXYII,
YYIZXYII, IXZYIYZY,XXZIXYII,

(17)

yield this MCP:

ZYYZXIZY, IXXIXZZY,YIZXIYYI, IXYIYIZY,
IZYXYYII,XXIZXYII,YYIZXYII, IXZYIYZY,
XXZIXYII,XZYIZYZY, IIIXXXYI.

(18)
We use the pools in Eqs. (11), (14), (14),

(18) to calculate the ground state energy of the
H4 molecule at the minimum of the dissocia-
tion curve, with the results shown in Fig. 3(b).
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The pool without starters does not allow the sys-
tem to converge, and so that result is not shown
here. The pool with three starters converges more
slowly and has a longer plateau compared to us-
ing the pools with 6 or more starters. This illus-
trates the role and importance of starters when
choosing the pool. On the other hand, all MCPs
approach full convergence around the same num-
ber of iterations (∼ 30 in this case), and so the
differences between the MCPs may only matter if
one stops the calculation before full convergence
is reached. This could be the case, for instance, if
achieving chemical accuracy is sufficient. In such
cases, using an MCP with more starters is advan-
tageous.
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Figure 3: (a) Dissociation curve for the H4 molecule
obtained using qubit-ADAPT-VQE on 8 qubits with a
symmetry-preserving 11-operator MCP (Eq. (11)). The
dots are the results of individual VQE simulations, while
the line is a guide to the eye. The absolute error at
each bond length is less than 10−8 Ha. (b) Absolute
error vs. iteration number of the ADAPT-VQE simu-
lation at the minimum of the dissociation curve com-
puted for the different symmetry preserving MCPs listed
in Eqs. (11), (14), (16), (18) (the pools differ by the
number of starters included). For comparison, we also
include the result from Fig. 2 (red line). One can clearly
see that when a symmetry-adapted pool is used, the er-
ror reduces substantially, and an insufficient number of
starters makes the convergence slower.

We now discuss how to account for symmetries
more generally. For more complicated molecules,

the simple picture above cannot be applied di-
rectly, and we need to invoke group theory to
construct the correct pool. More precisely, our
arguments regarding the number of particles and
spin will always be valid for any molecule (con-
dition 1 above), but the spatial symmetry will
generally be more complicated than the simple
inversion symmetry we have for H4, and group
representation theory is required. The following
discussion relies on the group theoretical notation
used for example in Ref. [32]. In order not to over-
complicate the discussion, we will concentrate on
the most frequently encountered case, when the
ground state is a non-degenerate fully symmetric
state. In other words, this state belongs to the A1
irreducible representation of the molecular sym-
metry group. We assume the Hartree-Fock state
to belong to the same A1 irreducible representa-
tion. Let us first describe how the starters should
look. In the case of the H4 molecule, we said
that the starters must conserve the parity of the
Hartree-Fock state. Generalizing this statement
requires the application of the Wigner-Eckart the-
orem. Every Pauli string operator can be thought
of as a sum of symmetric components,

P̂ =
⊕

i

Ŝi, (19)

where each Ŝi transforms according to the ith ir-
reducible representation of the symmetry group
(Ri). In order for the Pauli string P̂ to be a
starter, the commutator ⟨ψHF |[P̂ , Ĥ]|ψHF ⟩ must
be nonzero, which means that the Hamiltonian
must have a nonzero matrix element between
the states |ψHF ⟩ and P̂ |ψHF ⟩. According to
the Wigner-Eckart theorem, this will hold true
if A1 ∈ Ri ⊗ A1 for some i. Because we assume
A1 to be the fully symmetric irreducible repre-
sentation, it follows that Ri ⊗A1 = Ri and

A1 ∈ Ri ⊗A1 ⇐⇒ A1 ∈ Ri ⇐⇒ Ri = A1,
(20)

so the fully symmetric component must be
present in the symmetry decomposition of the
Pauli string P̂ (Eq. (19)).

The next question we need to answer is whether
we can restrict the complete group and algebra
based on symmetry arguments like we did above
in the case of parity. The answer is that we
need to choose the subgroup and subalgebra to
span as few irreducible representations as possi-
ble while including the A1 irreducible represen-
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tation. That is, we do not want to allow the
state to leak into symmetry spaces other than A1
if it can be avoided. Let us separately consider
the case where each Pauli string transforms as
an irreducible representation (and is not a sum
of irreducible representations). In that case we
just restrict our subgroup and subalgebra to op-
erators that transform as the A1 representation,
which means they transformA1 states to otherA1
states. That is what we did when we restricted
to operators that conserve parity in the case of
the H4 molecule. We illustrate these consider-
ations with two other simulations, the 10-qubit
LiH problem and the 12-qubit BeH2 problem.

Figure 4 shows a schematic of the LiH
molecule. Here, we analyze symmetries in the
context of symmetry-adapted atomic orbitals for
the sake of simplicity. Although our HF refer-
ence state is always given by a Slater determinant
of molecular orbitals, we can equivalently use
symmetry-adapted atomic orbitals for the anal-
ysis since they possess all the same symmetries
and quantum numbers as the molecular orbitals
that we build from them. We freeze two elec-
trons in the 1s orbital of Li and include the 1s
orbital of H, as well as the 2s and 2p orbitals of
Li in the state space, which the remaining two
electrons are allowed to occupy. We do not need

Figure 4: Schematic of the orbitals included in the
ADAPT-VQE simulation of the LiH molecule. We freeze
two 1s electrons in the Li atom. The remaining two elec-
trons are assumed to occupy the second shell of Li and
the first shell of the H atom.

to consider the full symmetry group of LiH. It is
enough to include those symmetry operators that

allow us to discriminate between different orbitals
in terms of symmetry. In our case it suffices to
include reflection in the xy and xz planes and a
π-rotation around the x-axis. Table 1 shows the
character table of the irreducible representations
of LiH. Including more operators into the sym-
metry group would not allow us to split the three
A1 orbitals in this case. In the case of LiH, each

Id σxy σxz Rx(180)
A1 (sH , sLi, px) 1 1 1 1

B (pz) 1 −1 1 −1
C (py) 1 1 −1 −1

D (not present) 1 −1 −1 1

Table 1: The character table of the LiH reduced sym-
metry point group (C∞V). Out of all the symmetries of
the system, we only include the rotation by 180o around
the x-axis and two reflection planes (xy and xz).

Pauli string transforms as an irreducible repre-
sentation, and not as a direct sum of irreducible
representations. To see why this is the case, one
has to notice that each classical state of the sim-
ulator represents a state of the system that be-
longs to a representation defined as a direct prod-
uct of irreducible representations of occupied or-
bitals. In our case each such irreducible represen-
tation is one-dimensional, as shown in Table 1,
so the product will also be a one-dimensional ir-
reducible representation. Thus, we conclude that
each classical state transforms according to a one-
dimensional irreducible representation. Now a
Pauli string always transforms one classical state
to another (not to a superposition state). It fol-
lows from the above then that a state belonging
to a particular irreducible representation will still
belong to a single irreducible representation af-
ter a Pauli string acts on it. This in turn can
only be the case if each Pauli string transforms
as a one-dimensional irreducible representation.
As mentioned above, in this case we can simply
restrict the operators in the pool to those trans-
forming as the A1 representation. In other words,
these operators will always keep the state inside
of the A1 representation, meaning that they will
change the occupation of pz and py orbitals by
zero or two. Combined with the restrictions on
the particle number and spin quantum numbers
(condition 1 above), the rules described above al-
low us to construct a pool for the LiH problem
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(here starters are distinquished with bold test):

XYYZIIZIZY,XYYYIZZZII,YYIZZZIZXY,
XXZXZIIIYI,XYZYIZZIYI,XXXZIIZZZY,
XXIIYXZZII,YXZZIZYYII,XXIYIIXYZY,
IIZIZZYYXY,ZZXZXXIIZY,YZZZXYZZZY,
XYXZXXXYZY, IXIZXXZZYI.

(21)
In Appendix B.1 we consider this pool in detail
and show how it obeys rules 1-5 above. Fig-
ure 5(a) shows the dissociation curve for the LiH
molecule, modeled as a 10-qubit system. Running
ADAPT-VQE with the pool given in Eq. (21) al-
lows us to converge the simulator state to the
LiH ground state with an energy error less than
10−8 Ha relative to the FCI energy. Figure 5(b,c)
shows the absolute error relative to the FCI en-
ergy, as well as the ADAPT gradient, as a func-
tion of iteration number for three different bond
lengths of 1.1 Å, 1.5 Å, and 2.5 Å. We see that
the ADAPT-VQE convergence pattern is similar
to that shown in Fig. 1 across a wide range of
bond lengths near and far from equilibrium.

As our final example, we consider the BeH2
molecule. Figure 6 shows a schematic of this
molecule along with the orbitals relevant for the
simulation. We again apply the frozen-core ap-
proximation and freeze two electrons in the 1s
coordination shell of the Be atom. We restrict
which atomic orbitals the electrons are allowed
to occupy to two 1s orbitals of the H atoms and
to the second coordination shell of Be (2s and
2p orbitals), which leaves us with 6 atomic and
12 spin orbitals in total, resulting in a 12-qubit
simulation problem. We introduce the symmetry
adapted orbitals:

S+ = SH1 + SH2,

S− = SH1 − SH2.
(22)

Again, we do not need to consider the full sym-
metry group of the BeH2 molecule. In order to
discriminate between different relevant orbitals in
terms of symmetry, it suffices to include the in-
version, rotations by 180o around the axes x, y, z
and reflection with respect to the xy, xz and yz
planes. Table 2 shows the character table of the
corresponding symmetry group. Including more
operators into the symmetry group would not al-
low us to separate by symmetry the two A1 or two
B orbitals in this case. Similar to LiH, in the case
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Figure 5: (a) The dissociation curve for the LiH
molecule, obtained from a 10-qubit ADAPT-VQE sim-
ulation using the 14-operator symmetry-preserving pool
from Eq. (21). The dots are the results of individual
VQE simulations, while the curve is a guide to the eye.
The absolute error in each simulation is less than 10−8

Ha relative to the FCI energy. (b) The absolute error
and (c) the energy gradient vs. iteration number of the
ADAPT-VQE simulation at three different bond lengths
of 1.1 Å, 1.5 Å and 2.5 Å.

Id I σxy σxz σyz Rx Ry Rz

A1 (s+, sBe) 1 1 1 1 1 1 1 1
B (s−, pz) 1 −1 −1 1 1 −1 −1 1
C (px) 1 −1 1 1 −1 1 −1 −1
D (py) 1 −1 1 −1 1 −1 1 −1

Table 2: The character table of the BeH2 reduced sym-
metry point group. Not all irreducible representations
are displayed.

of BeH2 each Pauli string transforms as an irre-
ducible representation, and not as a direct sum of
irreducible representations. As mentioned above,
in this case we can simply restrict the operators
in the pool to those transforming like the A1 rep-
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Figure 6: Schematic of the orbitals included in the VQE
simulation of the BeH2 molecule. We freeze two elec-
trons in the first coordination shell of the Be atom. The
remaining electrons are allowed to occupy the second
shell of Be and the first shells of the two H atoms.

resentation. In other words, these operators will
always keep the state within the A1 representa-
tion, meaning that they will change the occupa-
tion of each of the B, C, and D representations by
an even number of electrons. Combined with the
restrictions on the number of particles and spin
quantum numbers, the rules described above al-
low us to construct a pool for the BeH2 problem
(here starters are distinquished with bold):

ZYXIZZZZZYYI,YXIIZZIIYYII,ZIXYZZZIYYII,
XXIZZZYXIIII,XYZIZIYYZIII, IIYXYYZZZZII,
ZZYXIZYYIIII,YZIXZZZIIYYI, IXXZIIIZZXYI,
YZXZZIZZYZYI,XXXZYXXXYXYI,
ZXIIIZZZZYII,XIZZIZXYZXII,XIIIZZXYYIXY,
YZYXZIZIXZXY,ZZZIZIIZXXXY,
IZZZYYYXYXXY.

(23)

Figure 7(a) shows the dissociation curve for
the BeH2 molecule, modeled as a 12-qubit prob-
lem. Running ADAPT-VQE with the pool from
Eq. (23) allows us to converge the simulator state
to the BeH2 ground state with an error less than
10−8 Ha relative to the FCI energy. Figure 7(b,c)
shows the absolute error relative to the FCI en-
ergy, as well as the ADAPT gradient, at three
different bond lengths of 1.0 Å, 1.3 Å, and 1.8
Å. These results again show the importance of
building symmetries into the operator pool.
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Figure 7: (a) The dissociation curve for the BeH2
molecule, obtained from a 12-qubit ADAPT-VQE sim-
ulation using the 17-operator symmetry-preserving pool
from Eq. (23). The dots are the results of individual
VQE simulations, while the curve is a guide to the eye.
The absolute error in each simulation is less than 10−8

Ha relative to the FCI energy. (b) The absolute error
and (c) the energy gradient vs. iteration number of the
ADAPT-VQE simulation at three different bond lengths
of 1.0 Å, 1.3 Å and 1.8 Å.

5 Conclusion

In this work, we showed how to minimize
the number of measurements that need to be
performed during adaptive variational quantum
eigensolver algorithms. We did this by establish-
ing a general set of criteria that determine when
a given Pauli operator pool is capable of exactly
representing the true ground state of the system
being simulated, and we proved that the minimal
size of such pools scales linearly in the number
n of qubits. This finding means that we can re-
duce the measurement cost from O(n8) to O(n5)
in the case of molecular problems. The general
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criteria we introduced also allow us to systemati-
cally construct these minimal complete pools. We
further showed that, when the simulated system
possesses symmetries, we must take care to in-
corporate these into the pool to avoid algorithmic
convergence issues. This can also be done system-
atically by leveraging group theoretic techniques.
We demonstrated the utility of our approach
by finding explicit, symmetry-adapted operator
pools for several different molecules and showed
that when these are used in the qubit-ADAPT-
VQE algorithm, rapid convergence to the exact
ground state can be achieved. Combining qubit-
ADAPT-VQE with symmetry-adapted minimal
complete pools allows one to minimize both cir-
cuit depths and measurement counts, bringing
the quantum simulation of practical, classically
intractable problems on near-term devices closer
to fruition.
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Appendices
A Minimal complete pools

Preliminaries and Notation

In this appendix we discuss the generic properties
of minimal complete pools (MCPs). We investi-
gate the properties of operator pools, that are de-
fined as sets of Pauli strings {P̂i}, each of which
is capable of generating a parametrized unitary
exp(αP̂i). We call an operator pool complete if
for any two real states |ψ⟩ and |ϕ⟩ the product of
these unitaries can transform one to the other:

|ψ⟩ =
∏

i

exp(αiP̂i) |ϕ⟩ . (24)

We call a complete pool minimal if there is no
complete pool of smaller size. In this section we
show how to identify all minimal complete pools
and discuss their algebraic properties. In order
to not work with imaginary matrix entries, we
will use iY instead of ordinary Pauli Y . Still, for
conciseness we will omit writing the factor i in

all expressions. The Pauli strings containing odd
numbers of Y operators will be referred to as odd
Pauli strings (O operators). In contrast, the Pauli
strings with even numbers of Y operators will be
referred to as even (E operators). The following
multiplication rules apply for Pauli operators in
this notation

Y ·X = −X · Y = Z,

Z ·X = −X · Z = Y,

Z · Y = −Y · Z = X.

(25)

These rules indicate that any two Pauli strings, A
and B, either commute or anticommute. Table 3
lists the parity of their product, depending on
whether A and B are odd (O) or even (E).

[A,B]=0 {A,B}=0
O ·O = E O ·O = O

E · E = E E · E = O

O · E = O O · E = E

Table 3: Parity of A ·B, depending on whether A and B
are odd (O) or even (E) and on whether they commute
or anticommute.

Now let two odd Pauli strings O1 and O2 an-
ticommute. Then we can perform the following
similarity transformation:

exp(π4O1)O2 exp(−π

4O1) = 1
2[O1, O2]. (26)

Theorem 1 (necessary condition of complete-
ness). Let odd Pauli strings O1, O2, . . . , Ok

form a complete pool in the space of n qubits.
Then they generate an algebra, containing at least
2n − 1 operators, each flipping different sets of
qubits (for example for two qubits that could be
Y1, Z1Y2, X1Y2).

Proof. Assume we want to transform |00...0⟩ to√
1 − p |00...0⟩ + √

p |1i11i2 ....1ir 00....0⟩. Accord-
ing to the completeness definition, we have to be
able to do this with a finite product ∏

i exp(αiOi),
which according to the theory of Lie groups can
be expressed as exp(ĝ), where the operator ĝ be-
longs to the Lie algebra generated by the pool
O1, O2, . . . , Ok. This Lie algebra contains odd
Pauli strings only, as the commutator of two
Pauli strings coincides with their product when-
ever it is nonzero, and the product is again odd
according to Table 3. In the limit p → 0, it
holds that ĝ → 0 and thus for small p we can
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expand exp(ĝ) = 1 + ĝ. The operator ĝ must
be of the form √

p × operator, flipping 0ij → 1ij

(j ∈ {1, . . . , r}), and so the Lie algebra must con-
tain the Pauli strings that flip the corresponding
qubits. Arbitrariness of the set {i1, . . . , ir} means
the number of the strings in the complete algebra
is at least 2n − 1.

Remark. Most probably this condition is also suf-
ficient; to prove it one would have to show that
the Lie algebra, which contains Pauli strings that
flip any set of qubits, can transform |00....0⟩ to
any other state. Then one would have to show
that any exp(ĝ), where ĝ ∈ Lie algebra, can be
expressed as a finite product of exp(αiOi). We
will not prove sufficiency here, as it will be an
automatic consequence of the theory later.

Product group of Pauli strings and their Lie
algebra

Let O1, O2, . . . , Ok be odd Pauli strings that gen-
erate a Lie algebra through all possible commu-
tators [Oi, Oj ], [[Oi, Oj ], Om], [[Oi, Oj ], [Om, On]],
.... Let us also consider a product group of arbi-
trary products OiOj ...Om, generated by O1, O2,
. . . , Ok. Regarding this group, one important
remark must be made. If [O1, O2] ̸= 0, then
{O1, O2} = 0 and thus O1O2 = −O2O1. We do
not need to consider negative Pauli strings, so we
will work with a factor group G generated over a
normal subgroup {I × I × ...× I,−I × I × ...× I}
of the total group. In this new group G, the ele-
ments A and −A are considered the same, making
this group Abelian. Note that we will still refer to
commutation or anticommutation of Pauli strings
from this group, but in our case the products Z ·Y
and Y · Z correspond to the same element of G.
Whenever we consider commutators, we will ar-
range it such that the result is a positive Pauli
string.

If we notice that the nonzero commutator of
Pauli strings coincides with their product up to a
numerical factor (irrelevant for our purposes), we
arrive at the following Lemma:

Lemma 1. The Lie algebra generated by O1, O2,
. . . , Ok is a subset of odd Pauli strings from the
group G.

Remark. The Lie algebra must not span all odd
strings from the group G. For example, if the

generators are Y1, Y2, Y3, then the group G con-
tains the odd string Y1Y2Y3, but this operator
cannot be obtained through commutators, and
thus this element is not in the Lie algebra.
Remark. The important consequence of Lemma
1 is that if group G is too small to contain the
operators necessary for completeness, then the
algebra is also too small for that.

Lemma 2. Let A1 and A2 be two Pauli
strings that flip the same qubits: A1 |00....0⟩ =
±A2 |00....0⟩. Then A2 = P · A1, where P is an
even Pauli string containing only Z and I oper-
ators, and iff A1 and A2 have the same parity,
[A1, P ] = 0.

Proof. Let us choose an arbitrary odd Pauli
string, e.g.,

A1 = Y XIZY XY. (27)

Whenever one encounters Y or X in A1, for
the operator A2 they either remain invariant or
transform according to Y → X and X → Y .
This can only be achieved by multiplying the cor-
responding Pauli operator by I or Z. Whenever I
or Z is encountered in A1, they do not flip qubits
and thus they must be multiplied by I or Z to
remain like that. So P consists of only I and Z
operators. Whenever A1 and A2 are both odd or
both even, X and Y are flipped an even number
of times to transform A1 into A2. Thus it must
be that [A1, P ] = 0. (This can also be deduced
from the rules in Table 3.)

Internal structure of the group G

Consider a product group G generated by O1,
O2, . . . , Op. Let us also consider all Pauli strings
H = {P1, . . . , Pl} from G, such that they con-
sist of operators I and Z only. This set forms a
subgroup of G. Because this subgroup is Abelian
and each element is its own inverse, we conclude
that there are only k independent Pauli strings
P1, . . . , Pk in H, and all others are just products
of these (of which there are l = 2k).

Lemma 3. We say a unitary operator Û per-
forms a similarity transformation on the operator
Ô, if Ô → Û †ÔÛ . Then the k independent gen-
erators P1, . . . , Pk can be chosen in such a way
that they can be transformed into Z1, Z2, . . . , Zk

using a certain similarity transformation.

16



Proof. Without loss of generality, we can assume
P1 contains the operator Z1. If it does not, then
we can perform a similarity transformation with
a SWAP operation (which is implemented by a
real and orthogonal matrix), such that P1 con-
tains Z1. Now if Pi (i ̸= 1) also contains Z1, we
replace Pi → PiP1 with the other matrix from
the subgroup H, so Pi will contain I instead of
Z1. We can now assume P2 contains I1Z2; if it
does not, we perform a SWAP such that P2 then
contains Z2. Whenever Pi (i ̸= 2) contains Z2,
we replace Pi → P2Pi. Repeating this procedure,
we will construct the generators

Z1I2I3 . . . IkP
1
kn,

I1Z2I3 . . . IkP
2
kn,

...
I1I2I3 . . . ZkP

k
kn,

(28)

where P i
kn is a string on the qubits k + 1 to n

that contains Z or I operators. Let us perform a
similarity transformation generated by I1 × I2 ×
...× Yi × ...× Ik × P i

kn, according to Eq. (26). It
will only transform Pi (the generator commutes
with all others), and the result will be

I1 ×I2 × ...Zi...×Ik ×P i
kn → I1 ×I2 × ...Xi...×In.

(29)
Now performing a similarity transformation gen-
erated by I1 × I2 × ...Yi...× In, we obtain

I1 ×I2 × ...Xi...×In → I1 ×I2 × ...Zi...×In. (30)

All other Pj strings are left intact by this trans-
formation. Performing this procedure for every
Pi, we bring the generators P1, . . . , Pk to Z1, Z2,
. . . , Zk.

Without loss of generality, we can now assume
the subgroup H of G to be generated by Z1, Z2,
. . . , Zk. The subgroup H is normal due to the
Abelian property of G, and so we can consider the
factor group G̃ = G/H. Clearly, each element of
G̃ is a set of Pauli strings (odd and even), that
flip the exact same qubits (act upon |00...0⟩ in
exactly the same way). No two elements of the
factor group G̃ act in the same way on |00....0⟩,
as otherwise we would have more than k inde-
pendent Z-Pauli strings (see Lemma 2). The fac-
tor group G̃ thus contains not more than 2n ele-
ments. But according to the necessary condition
of completeness (Theorem 1), we need operators

that flip all possible combinations of qubits, so
the number of elements in the factor group for
a complete pool is 2n. Because again each el-
ement of G̃ is its own inverse and the group is
Abelian, G̃ can be generated with n additional
Pauli strings (multiplied by H), that without
loss of generality can be chosen to be Y1P

1
kn,

Y2P
2
kn,...,YkP

n
kn, Yk+1Q

k+1
kn ,...,YnQ

n
kn. Here P i

kn

is defined as above, while Qi
kn is a Z-Pauli string

on qubits k+ 1 to n, but not on the ith one (this
one is reserved for the Y operator in our case).
When multiplied by H, these generators will re-
cover all the elements of G. Thus we have shown
that the group G, generated by a complete pool,
contains n+ k generators. But k cannot be arbi-
trary, because products of generators containing
Y operators are sometimes even. If such an even
operator commutes with all Z1, Z2,...., Zk, then
according to the rules in Table 3, it will create an
element of G̃ consisting of even Pauli strings only,
and according to Theorem 1 the initial generators
do not form a complete pool. This never hap-
pens for operators containing Y1, Y2, ..., Yk, so we
only have to make sure Yk+1Q

k+1
kn , Yk+2Q

k+2
kn , ...,

YnQ
n
kn do not generate even Pauli strings. First

of all, this means all of them mutually anticom-
mute. Otherwise the product of two commuting
odd Pauli strings would generate an even Pauli
string, commuting with Z1, Z2, ..., Zk (see the
rules in Table 3). Second, there are not more
than two operators (k ≥ n− 2). Indeed, for three
mutually anticommuting strings a, b, c, we would
necessarily have [[a, b], c] = 0, and then abc would
be an even string that commutes with Z1, Z2,....,
Zk. We thus conclude that k ≥ n− 2, and so the
minimal number of generators capable of gener-
ating a complete pool is n+ n− 2 = 2n− 2. We
have thus proved the following lemma:

Lemma 4. The most general form of the gen-
erators of the minimal group G up to a similar-
ity transformation is Z1, Z2, ..., Zn−2, Y1P

1
n−2,n,

Y2P
2
n−2,n, ..., Yn−2P

n
n−2,n, Yn−1, Zn−1Yn. The

last two qubits can always be switched to Yn−1Zn,
Yn using a swap operation (these two options are
the only possible ones).

It turns out we can simplify the whole genera-
tor set even further:

Lemma 5. Using similarity transformations,
Z1, Z2, ..., Zn−2, Y1P

1
n−2,n, Y2P

2
n−2,n, ...,

Yn−2P
n
n−2,n, Yn−1, Zn−1Yn can be transformed
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into Z1, Z2, ..., Zn−2, Y1, Y2, ...,Yn−2, Yn−1,
Zn−1Yn.

Proof. We will prove this by presenting the pro-
tocol.

• Step 1. Apply a similarity transformation
generated by Zn−1Yn × Zi1Zi2 ....Zip ac-
cording to Eq. (26). The operator Zi is
present in this string if P i

n−2,n = Zn−1In or
if P i

n−2,n = In−1Zn and is absent otherwise.

• Step 2. Apply a similarity transforma-
tion generated by Yn × Zi1Zi2 ....Zip . The
operator Zi is present in this string if
P i

n−2,n = Zn−1In or if P i
n−2,n = In−1Zn and

is absent otherwise. These two steps remove
Zn−1 from all P i

n−2,n that initially contain
this operator.

• Step 3. The first two steps scramble Yn−1
into Xn−1YnZi1Zi2 ...Zip . Using other gener-
ators we can return it back to Yn−1.

• Step 4. Apply a similarity transformation
generated by Yn−1ZnZi1 ...Zip . The operator
Zi is present if P i

n−2,n contains Zn and is
absent otherwise.

• Step 5. Apply a similarity transformation
generated by Yn−1Zi1 ...Zip . The operator
Zi is present in this string if P i

n−2,n contains
Zn and is absent otherwise. Steps 4 and 5
together remove Zn from each P i

n−2,n that
initially contains it.

• Step 6. The two previous steps scramble the
generator Zn−1Yn into Xn−1YnZi1Zi2 ...Zip .
Using other generators, we return it back to
Zn−1Yn.

Now we are ready to formulate a theorem that
summarizes several previous lemmas and coin-
cides with Theorem 1 from the main text:

Theorem 2. A minimal complete pool must con-
tain 2n − 2 Pauli string generators O1, O2, ...,

O2n−2 and must generate a product group, which,
up to a similarity transformation, coincides with
the one generated by Z1, Z2, ..., Zn−2, Y1, Y2, ...,
Yn−2, Yn−1, Zn−1Yn. The corresponding algebra
is a subset of odd strings from this group.

From now on whenever we refer to an MCP, we
will always assume it generates the group in the
canonical form above.

Lemma 6. The number of odd Pauli strings in
the group G is exactly 2n−1(2n−1+1)

2 .

Proof. We define the binomial coefficient Ck
n =

n!
k!(n−k)! . This coefficient represents the number
of ways we can choose k out of n elements.

Let us first compute the number of all odd
Pauli strings, generated by Z1, Z2, ..., Zn−2, Y1,
Y2, ..., Yn−2. Let us consider all such strings that
flip certain sets of 2k+ 1 qubits. As an example,
we can take Y1Y2...Y2k+1. We can transform an
even number of Y operators into X in this string
using Z1, ..., Z2k+1 operators. The number of
strings we obtain in this way is

C0
2k+1 + C2

2k+1 + ...+ C2k
2k+1 = 22k. (31)

Each such string can also be multiplied by any
sequence of Z2k+2, ..., Zn−2, of which there are
2n−2−(2k+1). So the total number of odd strings
that flip qubits 1, 2, ..., 2k + 1 is

22k × 2n−2−(2k+1) = 2n−3. (32)

The total number of strings that flip all possible
sets of 2k + 1 qubits is

C2k+1
n−2 2n−3. (33)

If we consider all odd strings that flip 2k qubits,
their number is

C2k
n−2(C1

2k + C3
2k + ...+ C2k−1

2k ) × 2n−2−2k =
C2k

n−2 × 22k−1 × 2n−2−2k = C2k
n−2 × 2n−3.

(34)
So the number of all odd strings generated by Z1,
Z2, ..., Zn−2, Y1, Y2, ..., Yn−2 is

Odd =(C1
n−2 + C2

n−2 + ...+ Cn−2
n−2 ) × 2n−3

=(2n−2 − 1) × 2n−3.
(35)

The number of even strings generated by Z1, Z2,
..., Zn−2, Y1, Y2, ..., Yn−2 is 22n−4 minus the num-
ber of all odd strings, which amounts to

Even = (2n−2 + 1) × 2n−3. (36)
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If we now add two more generators, Yn−1
and Zn−1Yn, (they generate the third oper-
ator Xn−1Yn), then they generate new odd
strings when multiplied by the even strings from
Eq. (36), and so the total number of odd strings
becomes

Odd + 3 × Even = 2n−1(2n−1 + 1)
2 . (37)

Up to this point, we only considered the size
and structure of the product group an MCP
would need to generate. This is a necessary con-
dition of completeness, but at this point we still
have not shown that pools satisfying this condi-
tion exist. Such pools do indeed exist. In Ap-
pendix B of Ref. [9], a pool of size 2n−2 was con-
structed explicitly and shown to transform any
real state into any other state. One can check
that up to renumbering of the qubits, this pool
generates the group in Theorem 2.

If a pool generates an algebra that spans all odd
strings from the group in Theorem 2, it will gen-
erate exactly the same algebra as the pool from
Appendix B of [9], thus proving that this pool
is also complete. This is a sufficient condition of
completeness that we formulate in the following
theorem:

Theorem 3 (sufficient condition of complete-
ness). If a pool O1, O2, ..., O2n−2 generates an
algebra that spans all odd Pauli strings from the
group in Theorem 2, then this pool is minimal
and complete.

Therefore the pools that span all odd strings
from the group G form a class of complete pools
that are unique up to similarity transformations.

We now formulate one more necessary con-
dition of completeness that is extremely useful
when conducting searches for complete pools:

Theorem 4 (necessary condition of complete-
ness). Let a pool of 2n − 2 Pauli strings O1,
O2, ..., O2n−2 generate the product group G from
Theorem 2. If we can split the pool into two sets
of operators {A1, ..., Ak} and {B1, ..., B2n−2−k},
such that [Ai, Bj ] = 0 for any i and j, then the
pool is incomplete.

Proof. Let us assume the opposite is true and
the pool O1, O2, ..., O2n−2 is complete. Each
of the new sets {A} = {A1, ..., Ak} and {B} =

{B1, ..., B2n−2−k} generate subgroups A and B
of the group G. Because the number of genera-
tors of each of these groups is smaller than 2n−2,
we know that the set A is incomplete and the set
B is incomplete, as they fail to fulfill the neces-
sary condition of completeness (Theorem 1), i.e.
generating 2n − 1 different odd flippings in each
of the groups A and B. Now let us assume that
some odd flipping is not part of the group A,
but the corresponding even flipping EA is. (For
example the odd string that flips the first qubit
only Y1ZiZj ... is not in A, but the even string
X1ZkZm... is there.) Then necessarily the group
B must contain the corresponding odd flipping
OB in order for the original pool to be complete
(the algebra is a subset of the groups A and B).
But in that case, according to Lemma 2, EA and
OB anticommute. This cannot be, as all elements
in A must commute with all elements in B due
to the corresponding property of the generators.
This contradiction shows that if an odd flipping
is not part of A, then the corresponding even
flipping is also not there, and thus the flipping
(call it F1) is completely absent in A. Then this
flipping must be present in B with correspond-
ing operator OB. Analogously, the group B does
not contain a certain flipping (call it F2), but it
must be contained in A, and we call the corre-
sponding operator OA. Let us now consider the
new flipping (F ), implemented by the product
OAOB. This flipping can be part of neither A
nor B, as in combination with OA it would gen-
erate the flipping F1 and in combination with OB

it would generate F2, but these flippings must not
be present in the corresponding groups A and B.
Thus the corresponding flipping (F ) is absent in
A and B, and the necessary condition of com-
pleteness cannot be fulfilled for the original pool.
Thus our assumption that the original pool O1,
O2, ..., O2n−2 is complete is wrong, and it must
instead be incomplete.

We now formulate a theorem that is extremely
useful when searching for minimal complete pools
numerically and that coincides with the complete-
ness criteria (Theorem 2) from the main text.

Theorem 5 (completeness criterion). Let a pool
of 2n − 2 Pauli string generators O1, O2, ...,
O2n−2 generate a product group G as defined in
Theorem 2. The following statements are equiv-
alent:
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• (a) The pool O1, O2, ..., O2n−2 is complete.

• (b) The pool O1, O2, ..., O2n−2 cannot be
split into two mutually commuting sets.

• (c) The algebra generated by O1, O2, ...,
O2n−2 spans all odd strings from the group
G.

Proof. If (a) is true, then (b) must be true ac-
cording to Theorem 4. If (c) is true then (a) must
be true according to Theorem 3. Proving that (c)
follows from (b) turns out to be very challenging.
For now we do not have an analytical proof, but
all our numerical calculations confirm this is true,
and we use this statement in practice.

Remark. Theorem 5 is a criterion that is proved
half analytically and half numerically. The condi-
tion (c) can safely be used to search for complete
pools, as its applicability has been proven analyt-
ically. At the same time, computing the Lie al-
gebra for a given pool is very resource-intensive.
If one needs to check many pools for complete-
ness and select one based on some other criterion,
it might take too long to do that. This is why
condition (b) is extremely useful, as its compu-
tational complexity scales polynomially with the
size of the pool, and thus it is a lot easier and
faster to use.

B Preparation of the pool for molecu-
lar simulations LiH and BeH2

In this appendix we analyze the pools used to sim-
ulate the LiH and BeH2 molecules. We already
identified the five conditions each pool must ful-
fill:

1. The number of electrons with a given spin
changes by a multiple of 2 by any Pauli from
the pool. So there is an even number of X,
Y operators acting on α orbitals and there
is an even number of X, Y operators acting
on β orbitals.

2. Each Pauli operator must transform as the
A1 irreducible representation of the symme-
try group. This condition means that the
Pauli strings do not change the symmetry
of the states they act upon. We note that

for more complicated molecules such Pauli
strings might not exist, in which case this
condition should be replaced by the require-
ment that the leakage of states from the A1
symmetry space must be minimal.

3. The pool must contain enough starters for
ADAPT-VQE to start. A starter is a Pauli
string that conserves the symmetries of the
Hartree-Fock state and contains exactly 4 X,
Y operators.

4. The pool generates the biggest subgroup and
subalgebra of those generated by an MCP,
that contain Pauli strings obeying conditions
1-2.

Conditions 3 and 4 here deserve a special com-
ment. We do not have an exact answer on how
many starters must be in the pool to fulfill con-
dition 3. For our simple simulations, it was suf-
ficient to have around half of the operators as
starters. We note that one cannot take all op-
erators in the pool to be starters. In that case
the generated subgroup and subalgebra will not
contain operators that destroy an odd number of
electrons from the Hartree-Fock state and recre-
ate them in other orbitals. We note however
that a pool can contain all but one operator
as starters. We gave this example already in
the pool we used to simulate the H4 molecule
(Eq. (11)).

For the cases of LiH and BeH2, it is still possi-
ble to check condition 4 and make sure the pool
generated the right subgroup and subalgebra (the
biggest ones possible that obey conditions 1-2 be-
low). For bigger molecules of course that might
be challenging, so one might only check the group
and inseparability condition instead.

Below we analyze the pools used to simulate
the LiH and BeH2 molecules and show that the
operators in the pool obey conditions 1-2.

B.1 Pool for LiH 10-qubit problem

To simulate the LiH molecule we used the follow-
ing pool (see [33] for details on the code used to
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generate the pool):

XYYZIIZIZY,XYYYIZZZII,YYIZZZIZXY,
XXZXZIIIYI,XYZYIZZIYI,XXXZIIZZZY,
XXIIYXZZII,XYXZXXXYZY,XXIYIIXYZY,
IIZIZZYYXY,ZZXZXXIIZY,YZZZXYZZZY,
YXZZIZYYII, IXIZXXZZYI.

(38)
In order to describe the pool in terms of sym-

metry, we must first put symmetry and spin la-
bels on each of the 10 spin-orbitals. The fact that
we use Hartree-Fock as an initial state means the
single-particle orbitals are hybridized and can no
longer belong to a particular atom as in Table 1.
Still, single-particle excitations only mix states of
the same symmetry, so we only have three single-
qubit orbitals belonging to A1 irreducible repre-
sentation. Instead of marking the orbital with an
atomic notation (s, p,...), we will label each or-
bital in terms of the irreducible representation it
belongs to from Table 1. Then our orbitals are
represented on the simulator in the following way:

Aα
1A

β
1A

α
1A

β
1C

αCβBαBβAα
1A

β
1 , (39)

while the Hartree-Fock state in the frozen core
approximation looks like

|1100000000⟩ , (40)

where the indices α, β stand for the 1/2 and −1/2
spin projections, respectively. Let us now analyze
each operator from the pool in Eq. (38) and see
how it obeys the symmetry conditions we identi-
fied.

• XYYZIIZIZY−starter
When acting upon the Hartree-Fock state,
this Pauli string destroys electrons in the
first Aα

1 and Aβ
1 orbitals and creates them

in the second Aα
1 and third Aβ

1 orbitals
respectively. The total spin projection and
number of particles of the Hartree-Fock
state do not change. It also remains in the
A1 symmmetry subspace. That means this
Pauli string conserves the symmetries of the
Hartree-Fock state and at the same time
contains exactly 4 X, Y operators, so it is a
starter.

• XYYYIZZZII−starter
This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same

time contains exactly four X, Y operators,
so it is a starter.

• YYIZZZIZXY−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• XXZXZIIIYI−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• XYZYIZZIYI−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• XXXZIIZZZY−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• XXIIYXZZII−starter,

This Pauli will create two electrons in the
C orbital when it acts on the Hartree-Fock
state. The resulting state will still trans-
form as the A1 irreducible representation.
That means this Pauli string conserves the
symmetries of the Hartree-Fock state and at
the same time contains exactly four X, Y
operators, so it is a starter.

• XYXZXXXYZY−not a starter,

This Pauli string contains more than 8 X,
Y operators, so it cannot be a starter. But
it obeys rules 1-2.

• XXIYIIXYZY−not a starter,

This Pauli string contains more than 6 X,
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Y operators, so it cannot be a starter. But
it obeys rules 1-2.

• IIZIZZYYXY−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

• ZZXZXXIIZY−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

• YZZZXYZZZY−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

• YXZZIZYYII−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• IXIZXXZZYI−not a starter.

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

B.2 Pool for BeH2 12-qubit problem

To simulate the BeH2 molecule we used the fol-
lowing pool (see [34] for details on the code used
to generate the pool):

ZYXIZZZZZYYI,YXIIZZIIYYII,ZIXYZZZIYYII,
XXIZZZYXIIII,XYZIZIYYZIII, IIYXYYZZZZII,
ZZYXIZYYIIII,YZIXZZZIIYYI, IXXZIIIZZXYI,
XIIIZZXYYIXY,XXXZYXXXYXYI,ZXIIIZZZZYII,
XIZZIZXYZXII,YZXZZIZZYZYI,YZYXZIZIXZXY,
ZZZIZIIZXXXY, IZZZYYYXYXXY.

(41)
In order to describe the pool in terms of sym-

metry, we must first put symmetry and spin la-
bels on each of the 12 spin-orbitals. We will again

label the orbitals in terms of irreducible represen-
tations from Table 2:

Aα
1A

β
1B

αBβCαCβDαDβAα
1A

β
1B

αBβ, (42)

while the Hartree-Fock state in the frozen-core
approximation looks like

|111100000000⟩ . (43)

Let us now analyze each operator from the pool
in Eq. (41) and see how it obeys the symmetry
conditions we identified.

• ZYXIZZZZZYYI−starter,

The total spin projection and number of
particles of the Hartree-Fock state do not
change. It also remains in the A1 symmetry
subspace. That means this Pauli string con-
serves the symmetries of the Hartree-Fock
state and at the same time contains exactly
4 X, Y operators, so it is a starter.

• YXIIZZIIYYII−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• ZIXYZZZIYYII−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• XXIZZZYXIIII−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• XYZIZIYYZIII−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.
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• IIYXYYZZZZII−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• ZZYXIZYYIIII−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• YZIXZZZIIYYI−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• IXXZIIIZZXYI−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• XIIIZZXYYIXY−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

• XXXZYXXXYXYI−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

• ZXIIIZZZZYII−not a starter,

This Pauli is a single-particle excitation, so
it cannot be a starter. But it obeys rules 1-2.

• XIZZIZXYZXII−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

• YZXZZIZZYZYI−starter,

This Pauli string conserves the symmetries
of the Hartree-Fock state and at the same
time contains exactly four X, Y operators,
so it is a starter.

• YZYXZIZIXZXY−not a starter,

This Pauli contains more than four X, Y
operators, so it is not a starter. But it obeys
rules 1-2.

• ZZZIZIIZXXXY−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so
it cannot be a starter. But it obeys rules 1-2.

• IZZZYYYXYXXY−not a starter,

This Pauli does not preserve the number
of particles in the Hartree-Fock state, so it
cannot be a starter. But it obeys the rules
1-2.
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