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Floguet-enhanced spin swaps

Haifeng Qiao® ', Yadav P. Kandel® ', John S. Van Dyke® 2, Saeed Fallahi®4, Geoffrey C. Gardner®>,
Michael J. Manfra® 34>, Edwin Barnes? & John M. Nichol® 1%

The transfer of information between guantum systems is essential for quantum commu-
nication and computation. In quantum computers, high connectivity between qubits can
improve the efficiency of algorithms, assist in error correction, and enable high-fidelity
readout. However, as with all quantum gates, operations to transfer information between
qubits can suffer from errors associated with spurious interactions and disorder between
qubits, among other things. Here, we harness interactions and disorder between qubits to
improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot
spins. We use a system of four electron spins, which we configure as two exchange-coupled
singlet-triplet qubits. Our approach, which relies on the physics underlying discrete time
crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude.
Our results show how interactions and disorder in multi-qubit systems can stabilize non-
trivial quantum operations and suggest potential uses for non-equilibrium quantum phe-
nomena, like time crystals, in quantum information processing applications. Our results also
confirm the long-predicted emergence of effective Ising interactions between exchange-
coupled singlet-triplet qubits.
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ver the past decades, quantum information processors

have undergone remarkable progress, culminating in

recent demonstrations of their astonishing power!. As
quantum information processors continue to scale-up in size and
complexity, new challenges come to light. In particular, main-
taining the performance of individual qubits and high con-
nectivity are both essential for continued improvement in large
systems?.

At the same time, developments in nonequilibrium many-body
physics have yielded insights into many-qubit phenomena, which
feature, in some sense, improved performance of many-body
quantum systems when disorder and interactions are included.
Chief among these phenomena are many-body localization3 and
time crystals*-8, Although these phenomena are interesting in
their own right, applications of these concepts are only beginning
to emerge.

In this work, we exploit discrete-time-crystal (DTC) physics to
demonstrate Floquet-enhanced spin-eigenstate swaps in a system
of four quantum dot electron spins. When we harness interac-
tions and disorder in our system, the quality factor of spin-
eigenstate swaps improves by nearly an order of magnitude. As
we discuss in detail further below, this system of four exchange-
coupled single spins undergoing repeated SWAP pulses maps
onto a system of two Ising-coupled singlet-triplet (ST) qubits
undergoing repeated m pulses. Periodically driven Ising-coupled
spin chains are the prototypical example of a system predicted to
exhibit DTC behavior*. Experimental signatures of DTC behavior
have been observed in many systems®~!2, but nearest-neighbor
Ising-coupled spin chains have yet to be experimentally investi-
gated in this regard.

Our system of two ST qubits is clearly not a DTC in the strict
sense, because it is not a many-body system!3. However, this
system does exhibit some of the key characteristics of DTC
behavior, including robustness against interactions, noise, and
pulse imperfections!3-14, We also find that the required experi-
mental conditions for observing the quality-factor enhancement
are identical to some of the theoretical conditions for the DTC
phase in infinite spin chains. In total, these observations suggest
the Floquet-enhanced spin-eigenstate swaps in our device are
closely related to discrete time-translation symmetry breaking.

Our results also illustrate how nonequilibrium many-body
phenomena could potentially be used for quantum information
processing. On the one hand, we observe Floquet-enhanced 7
rotations in two ST qubits. But on the other hand, these ST
rotations correspond to spin-eigenstate swaps, when we view the
system as four single spins. The enhanced spin-eigenstate swaps
are not coherent SWAP gates, but instead are “projection-SWAP”
gates!®. Because of the critical importance of such operations for
reading out linear qubit arrays, these results may point the way
toward the use of nonequilibrium quantum phenomena in
quantum information processing applications, especially for
initialization, readout, and information transfer. Moreover, recent
theoretical work shows how entangled states can be preserved,
and robust single-, and two-qubit gates can be implemented,
within this framework!®. Our results are also significant because
they provide experimental evidence of the predicted Ising cou-
pling that emerges between exchange-coupled ST qubits!”.

Results

Device and Hamiltonian. We fabricate a quadruple quantum dot
array in a GaAs/AlGaAs heterostructure with overlapping gates
(Fig. 1a)18-20, The confinement potentials of the dots are controlled
through “virtual gates”1-24, Two extra quantum dots are placed
nearby and serve as fast charge sensors2>26, We configure the four-
spin array into two pairs (“left” and “right”) for initialization and
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Fig. 1 Experimental setup. a Scanning electron micrograph of the quadruple
quantum dot device. The locations of the electron spins are overlaid.

b Schematic showing the two-qubit Ising system in a four-spin Heisenberg
chain. ¢ The pulse sequence used in the experiments.

readout. Each pair of spins can be prepared in a product state (’TU
or |¢T>) via adiabatic separation of a singlet in the hyperfine
gradient?’-2%. We can also initialize either pair as [T ) = |t1) by
exchanging electrons with the reservoirs?®30. Both pairs are mea-
sured through spin-to-charge conversion via Pauli spin blockade??,
together with a shelving mechanism3! for high readout fidelity.
Further details about the device can be found in “Methods”.

The four-spin array is governed by the following Hamiltonian:

h3 h&
H:*;l]i(ai'ai+1)+523fgf> (1)

where J; is the tunable exchange coupling strength (with units of
frequency), o; = [07,0),07] is the Pauli vector describing the
components of spin i, h is Planck’s constant, and B; is the z
component of the magnetic field (also with units of frequency)
experienced by spin i. Bf includes both a large 0.5-T external
magnetic field and the smaller hyperfine field. The exchange
couplings J;, /,, and J; are controlled by pulsing virtual barrier
gate voltages’2. We model the dependence of the exchange
couplings on the virtual barrier gate voltages in the
Heitler-London framework3233, The model allows us to predict
the required barrier gate voltages for a set of desired exchange
couplings. In our device, we estimate the residual exchange
coupling at the idling tuning of the device to be a few MHz.

Heisenberg exchange coupling does not naturally enable the
creation of a DTC phase®. Additional control pulses can convert
the Heisenberg interaction into an Ising interaction®, which
permits the emergence of a DTC phase. A DTC can also be
created using a sufficiently strong magnetic field gradient instead
of applying extra pulses®4. Here, we introduce a new method for
generating DTC behavior that does not require complicated pulse
sequences or large field gradients, but instead relies only on
periodic exchange pulses.

To see how we can still obtain an effective Ising interaction in
this case, it helps to view each pair of spins as an individual ST
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qubit (Fig. 1b)?7. Specifically, consider the scenario where the
joint spin state of each pair is confined to the subspace spanned

by [S) = 25 (11) — [11)) and | To) = 5 (|11) + [11)). According

to ref. 17, when J; = J; = 0 and J, > 0, the effective Hamiltonian of
the system is

h ., h . h_ .
Hy = E(AIZ + B)o7 + 5(A34 +B)o; — ijofog . (2)

Here, o7 is the Pauli z-operator for ST qubit k, A; = Bf — B is
the intraqubit gradient between spins i and j, and B is the effective
global magnetic field gradient, which depends on A; and J;
(ref. 17). In this system, all magnetic gradients result from the
hyperfine interaction between the electron and nuclear spins3>.
The gradients are quasistatic on typical qubit manipulation
timescales’®. The basis for the ST-qubit operator & is
{I11),111)} provided that J, < |B, — Bs| (refs. 17:3637). In our
experiments, the typical value of ], is a few MHz, while the typical
value of the magnetic field gradient in the device is tens of MHz.
Now let us define

i (h hd .,
Sint = €Xp _%T 1]2(0'2'“3)+El;Bi0i ) (3)

where 7 is an interaction time. Within the {|S),|T,)} subspace of
each pair, this operator is equivalent to S = exp [— +TH eff] , and
it describes the evolution of the two Ising-coupled qubits!”.
Systems of exchange-coupled ST qubits have been the focus of
significant theoretical research!7-38-40, Until now, such a system
has evaded implementation.

In the case when J,=0, but when J;,J5>0, the overall
Hamiltonian describes two uncoupled ST qubits. Thus, let us
define

i h h& z _Z
Sl:exp[*ﬁtl(ijl(al'%)JFEEIBiUi)] ) (4)
i (h ha4
S, = exp [—%tz (1]3(03 - 0y) +51§13f0f>] . (5)

In the {|S),|T,)} subspace of each pair, these operators are
equivalent to S =exp[—it,4(A,5] +/,5})] and S =
exp[—it,%(A3,05 +7503)]. In writing S and S5, we have
ignored overall energy shifts J;/4 and J3/4 of the single-qubit
Hamiltonians, because the system dynamics do not depend on
these shifts. Assuming J; > A, and J;>> A3y, when t]; = 1,); =
0.5, these two operators implement SWAP gates between spins
1-2 and 3-4. Equivalently, they induce nominal 7 pulses about
the x-axis of each ST qubit. The presence of the intraqubit
gradients A;, and As, slightly tilts the rotation axis toward the z-
axis for each ST qubit, introducing uncontrolled errors to the 7
pulses. We can also manually introduce additional pulse errors by
changing J; and J;, while fixing #; and #,. We represent the error
as ¢, with J; = J7(1+¢) and J; = J5(1 + €). Here JT and J} are
the interaction strengths that yield 7 pulses.

Floquet-enhanced spin swaps. We define a Floquet operator
U= Sin -S>+ S; (Fig. 1¢), and we repeatedly apply this operator to
our system of four spins. As discussed above, U implements spin
SWAP gates between spins 1-2 and 3-4 followed by a period of
exchange interaction between spins 2 and 3. Equivalently, U
implements 7 pulses on both ST qubits and then a period of Ising
coupling between them. One might naively imagine that the
highest fidelity SWAP operations between spins should occur
when J, =0 and 7 =0, given the presence of intraqubit hyperfine
gradients. In this case, as we have discussed in ref. 2, repeated

SWAP operations are especially susceptible to errors from the
hyperfine gradients A;;.

However, by allowing J,>0 and 7>0, we find specific
conditions in which we observe a significant enhancement of
the spin-eigenstate-swap quality factor (Fig. 2). To explore this
phenomenon, we prepare each ST qubit in |T]) or ||T). (The
specific state is governed by the sign of Aj, and Aj4, which are
random quasistatic gradients resulting from the nuclear hyperfine
interaction.) We apply multiple instances of the Floquet operator
U to the system and measure the ground-state return probabilities
for both ST qubits.

First, we set the interaction time 7= 1.4 us and SWAP pulse
times f; =t, = 5ns, and apply four Floquet steps. We sweep ],
linearly from 0.05 to 5 MHz (Fig. 2a, b). (Setting ], < 0.05 MHz
would require large negative voltage pulses applied to the barrier
gate due to the residual exchange, which could disrupt the tuning
of the device.) We also sweep J; from 80 to 460 MHz, and J5 from
50 to 260 MHz. The ranges of J; and J; roughly center around JT
and J7, respectively. Away from the center, J; and J5 induce pulse
errors. The experimental values of ¢,JT and t,J§ are much larger
than 0.5, because the voltage pulses experienced by the qubits
have rise times of ~1ns (see “Methods” and Supplementary
Fig. 1). To compensate for the pulse rise times (which are slightly
different for each qubit), ¢,JT and t,J; must be larger than 0.5 in
order to properly induce 7 pulses.

Clear, bright diamond patterns are visible in the data (Fig. 2a, b).
These bright regions correspond to improved spin-eigenstate-swap
quality factors. Note that the brightest regions correspond to
configurations when J,>0. Note also that the diamonds are
approximately periodic in /57, as expected for a Floquet operator.
We repeat the same experiments with 7= lus, and we observe
similar diamond patterns, although they have an increased period
in J, (Fig. 2e, f). The diamond patterns of ST qubit 2 appear
narrower due to the large hyperfine gradient As4, which causes
larger pulse errors and reduces the size of the quality-factor-
enhancement region. These data from an effective two-qubit
system resemble predicted DTC phase diagrams of a true nearest-
neighbor many-body system (see “Methods” and Supplementary
Figs. 2 and 3)78.

Our simulations agree well with the data (Fig. 2¢, d, g, h; see
“Methods”). In the simulations, the diamond pattern is periodic in
J,7 with the periodicity of exactly 1, and the strongest quality-
factor enhancement occurs at J,7=0.5. In the experimental data,
however, the periodicity is slightly larger than 1, and the strongest
quality-factor enhancement occurs at J,7> 0.5. This is due to the
imperfect calibration of the exchange coupling J, (ref. 32). In
particular, the presence of the hyperfine field gradient makes it
difficult to measure and control the exchange couplings with sub-
MHz resolution. If our modeling of the exchange coupling were
more precise, then we would expect the periodicity of the diamond
patterns to be closer to 1 and the quality-factor enhancement to
occur closer to J,7=0.5 in the experimental data.

We can interpret our data using a semiclassical model inspired by
Choi et al. in ref. 10 to explain DTC behavior (see “Methods”). In
brief, an initial state of ST qubit 1, |y,) = cos(6,/2)|g) + e
sin(6,/2)e) evolves to ‘V/f> = e 10271007 /2mi4,0% /210072 |y )
after two Floquet steps. Here 0 =~ 7 indicates a nominal 7 pulse, and
¢, =2n(J,/2+ Ay, + B)1, and ¢, =2n(—],/2 + A, + B)7. In
this semiclassical model, the effect of ST qubit 2 on ST qubit 1 is to
generate the 77/,7 term in the operator that switches sign after each
Floquet step, because ST qubit 2 undergoes a nominal 7 pulse. As
emphasized in ref. 19, the change in sign of this part between Floquet
steps is entirely a result of interactions in the system. The resulting
single-qubit rotations in this semiclassical model are reminiscent of
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Fig. 2 Floquet-enhanced = rotations. a, b Measured ground-state return probabilities of (a) ST qubit 1 and (b) ST qubit 2, after four Floquet steps, with
interaction time z=1.4 ps. The ranges of J; and J; center around J{ and J5. The values of J; and J; are swept simultaneously. In both figures, the red cross
marks the condition for the Floquet-enhanced # rotations. The black ovals are the semiclassical phase boundaries. ¢, d Simulated return probabilities of (c)
ST qubit 1and (d) ST qubit 2, corresponding to the data in (a) and (b), respectively. e, f Measured ground-state return probabilities of (e) ST qubit 1and (f)
ST qubit 2, after four Floquet steps, with interaction time z=1.0 ps. J; and J; values are the same as in a and b. g, h Simulated return probabilities of (g) ST
qubit 1and (h) ST qubit 2, corresponding to the data in (e) and (f), respectively. The experimental data in (a, b, e, f) are averaged over 8192 realizations. In

all figures, P’; indicates the ground-state return probability for ST qubit k.

dynamical decoupling!®. We have numerically simulated the
semiclassical single-qubit evolution over two Floquet steps for our
system (see “Methods”). The black lines in Fig. 2a, b indicate the
regions where approximate ST-qubit eigenstates are also exactly
eigenstates of the evolution operator over two steps, ie., they are
exactly preseved by the two Floquet steps!?. The size of these regions
confirms that interactions are essential for the effects we observe.
Exactly the same enhancement regions are expected for end spins in
longer chains, because our system is a nearest-neighbor Ising spin
chain. Simulations for an eight-site Ising spin chain at late times show
DTC behavior in exactly these regions (see “Methods” and
Supplementary Fig. 2).

Next, we also sweep J5 from 220 to 430 MHz. In this case, the
range of J5 roughly centers around ]ﬁ”. The interaction time is
7= 1.4 ps and the ranges of J; and ], remain the same. Again, we
apply four Floquet steps and measure the ground-state return
probabilities. This time the data do not show diamond patterns
(Fig. 3), and the return probability of ST qubit 1 is lower than the
Floquet-enhanced return probability shown in Fig. 2a. This
indicates that the Floquet enhancement is no longer present. In
fact, if either of the Floquet operators S; or S, fails to induce
approximately a 7 rotation, then the Floquet enhancement does
not appear.

On the one hand, this effect is striking, when one considers the
individual spins themselves. Recall that the ST-qubit splittings A,
and A;, are generated by the hyperfine interaction between the
Ga and As nuclei in the semiconductor heterostructure and
the electron spins in the quantum dots. Although A;, and A3, are
quasistatic on millisecond timescales, they each independently
fluctuate randomly, and can change sign, over the duration of a
typical data-taking run, which is ~1 h. Each of the 8192 different
realizations for each pixel in the data of Fig. 2 likely contain
instances, where both ST qubits have the same or different
ground-state spin orientations. (The ground state of each ST

a [¢]
0.9
400
N 0.8
T
= 300 o 07
- 200 06
100 05
1 2 3 4 5
J (MHz)

Fig. 3 Absence of Floquet enhancement due to the omission of a z pulse.
a, b Measured ground-state return probabilities of (a) ST qubit 1and (b) ST
qubit 2, after four Floquet steps, with interaction time z =1.4 ps. The ranges
of J; and J5 center around Ji and J%”, respectively. The values of J; and J3 are
swept simultaneously. The data are averaged over 8192 realizations.

qubit is either |T]) or ||T), depending on the sign of the
instantaneous hyperfine gradient.)

Thus, the data of Fig. 2 likely include realizations with all
possible combinations of the orientations of spins 2 and 3 before
the interaction period. Despite the random orientations of spins 2
and 3, the Floquet enhancement still appears. It might therefore
seem that whether or not spins 1-2 or 3-4 undergo a SWAP
before the interaction period should not affect the behavior of the
system. However, as shown in Fig. 3, implementing a 27 rotation,
as opposed to a 7 rotation, on one of the ST qubits eliminates the
Floquet enhancement.

On the other hand, when one considers the semiclassical
picture described above, the absence of a 7 pulse on one of the ST
qubits spoils the semiclassical decoupling evolution discussed
above and in ref. 19 In this case, ST-qubit eigenstates are no
longer eigenstates of two instances of the Floquet operator, and
the enhancement no longer occurs.
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Fig. 4 Floquet-enhanced spin swaps. a-d Quality-factor enhancement of spin-eigenstate swaps for different initial states. In each figure, the top panel
shows the measurements of ST qubit 1, and the bottom panel shows the measurements of ST qubit 2. The initial states are shown on the top, where |g) and
le) represent the ground state and the excited state of the ST qubit, respectively. The Floquet-enhanced z-pulse data are shown in blue, and the non-

enhanced regular z-pulse data are shown in red. The fitted exponential decay envelopes are overlaid as dashed lines for all data except for the bottom panel

in (d). The data are averaged over 4096 realizations.

We have now determined the optimal conditions for the
Floquet enhancement. For the remainder of the paper, we set
J1=270MHz and J;=150 MHz with t,=t,=5ns for the
SWAP operators S; and S,, respectively, and we set 7= 1.4 s
and J, =0.41 MHz for the Ising interaction. To quantify the
Floquet enhancement, we evolve the system for 50 Floquet steps
and measure the ground-state return probabilities for both qubits
after each step. The results are shown in Fig. 4a. Note that the
system exhibits a clear subharmonic response to the Floquet
operator. We extract a swap quality Q by fitting the data with a
decaying sinusoidal function P,(n) = aexp(—n/Q) cos(nm) + f,
where Py(n) denotes the return probability at the nth Floquet step,
and Q, , and p are fit parameters. We also investigate the quality
factor of the qubits under non-enhanced regular 7 pulses. Here,
we use the same interaction time 7= 1.4 us, but we turn off the
interaction strength J, by setting the barrier gate pulse to zero. To
further eliminate any effects associated with Floquet enhance-
ment, we only apply 7 pulses to one qubit, while the other qubit
remains idle after initialization. Again, we apply 50 7 pulses and
measure the ground-state return probability, and we fit the data
with the same decaying sinusoidal function. By comparing the fit
parameter Q, we can obtain the ratio between the quality factors
of the qubits under Floquet-enhanced and non-enhanced
rotations.

We find a ~3-fold quality-factor improvement on qubit 1, and
~9-fold improvement on qubit 2. The significant discrepancy
between the quality-factor improvements of the two qubits is
likely due to the large hyperfine gradient Az, in qubit 2, which
causes an exceptionally low quality factor for non-enhanced
rotations. The quality-factor enhancement is striking in this case.
To extract an estimated uncertainty, we repeat the same
experiment 30 times, and calculate the mean and the standard
deviation of the quality-factor ratio, as shown in the first row of
Table 1.

So far, we have initialized both ST qubits in their ground states.
We can also initialize either ST qubit in its excited state by
applying an extra 7 pulse to the qubit immediately before the first

Table 1 Quality-factor enhancements of both qubits for
different initial states.

Initialization Quality-factor enhancement

Qubit 1 Qubit 2
lg) ® 19) 3.60+0.89 8.47 +£3.29
le) ® |g) 324094 9.33+296
lg) ® le) 315+0.79 9.10 £2.87
o) ®|T,) 1.92+0.27 N/A

Here, |g) and |e) represent the ground state and the excited state of the ST qubit, respectively.
Thirty sets of data are taken for each initialization, from which the means and the standard
deviations are calculated.

Floquet step. We run the same experiment with different initial
states and extract the quality factors by fitting the data (Fig. 4b, ¢).
Again, for each initial state, we repeat the experiment 30 times
and calculate the mean and the variance of the quality-factor
ratio, which are listed in Table 1. The quality-factor improve-
ments of both qubits are consistent across different initial states.

We also initialize the right pair as |T +> =|11) and measure
the quality-factor improvement on qubit 1 (Fig. 4d). We notice
that the quality-factor ratio is much lower when the right pair is
initialized in |T ). This is not surprising since the effective Ising
interaction between qubit 1 and qubit 2 (Eq. (2)) is only valid
when both qubits are restricted to the S, = 0 subspace. The reason
why we still see a ~2-fold quality-factor improvement instead of
no improvement at all is likely because of the imperfect |T )
preparation due to thermal population of excited states30. Load
errors will cause the right pair to occupy the ST-qubit ground or
excited states a small fraction of the time. In these cases, the
Floquet enhancement of the left-pair ST qubit is expected to
occur. Thus, the overall quality factor should appear to improve
slightly, because of the imperfect initialization. Correspondingly,
it is likely that the imperfect initialization limits the quality-factor
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enhancement when both qubits are initialized in ST-qubit
eigenstates.

Finally, we emphasize that a Floquet drive, i.e., repeated SWAP
gates, is required to realize the enhancement shown in Fig. 4.
Based on the data of Fig. 4, the first SWAP gate is not
substantially enhanced by the protocol. It is only subsequent
SWAP gates that are enhanced. This is consistent with the
requirement for a periodic drive in a DTC. As we discuss below,
this periodic drive is also useful for constructing quantum gates.

Discussion

Strictly speaking, a DTC only occurs in the thermodynamic
limit!3. Nonetheless, we argue the quality-factor enhancement we
observe relies on the essential elements of DTC physics. The
disordered Ising-coupled system in our device demonstrates a
clear subharmonic response, as well as a robustness against pulse
errors, both expected as defining signatures of the DTC. Our
experiments also indicate the necessity of two essential ingre-
dients for realizing the Floquet-enhanced 7 pulses: (1) an effective
Ising interaction, and (2) global 7 pulses. If either of the com-
ponents is missing, we no longer observe the significant quality-
factor enhancement (Figs. 3 and 4d). These two components both
ensure that the semiclassical dynamical decoupling can occur. In
the thermodynamic limit, these components would ensure that
eigenstates of the Floquet operator are long-range correlated,
which is required for discrete time-translation symmetry
breaking®. We have also shown that the quality-factor enhance-
ment does not depend on the eigenstate into which either ST
qubit is initialized (provided that the effective Ising coupling is
maintained), which is another key feature of the DTC!3. In the
future, implementing these experiments in larger spin chains
could lead to a verification that these effects in fact originate from
the DTC phase.

We emphasize that we have observed Floquet enhancement
associated with ST-qubit eigenstates undergoing 7 pulses. In the
language of single spins, we observed Floquet enhancement
associated with swaps between spin eigenstates, when the total z
component of angular momentum for both spins vanishes. This
observation is qualitatively consistent with expectations for qubits
in a true many-body DTC, where the components of the qubits
oriented along the direction defined by the Ising coupling are
preserved®. While not a coherent SWAP gate, a spin-eigenstate
swap (projection-SWAP), has significant potential to aid in
readout for large qubit arrays*!

The Floquet enhancement we observe can immediately be
leveraged to perform additional quantum information processing
tasks of significant importance. For example, recent theoretical
work shows that entangled states of single spins (or superposition
states of ST qubits) can be preserved, using Floquet operators
identical to what we have demonstrated!®. The same work also
shows that single-qubit gates can be incorporated into this fra-
mework, and even two-qubit CZ gates can be implemented!®. A
significant potential advantage of these operations, compared
with conventional single- and two-qubit gates, is that dynamical
decoupling is an essential component of these operations, as
discussed above.

As an illustration of the above capabilities, we perform simu-
lations that show the preservation of the singlet state of an ST
qubit by periodic driving under the evolution U = Sy, - S;,, where
S1» represents the execution of S; and S, in parallel. Figure 5a
shows the return probability for the singlet state of an ST qubit
defined on sites 3 and 4 of an L = 6 site spin chain. The ST qubits
defined on the pairs of sites (1,2) and (5,6) are initialized to the
product state |T|). When the interaction ] between neighboring
ST qubits (the generalization of J, in Eq. (3)) is turned off, the
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Fig. 5 Preserving and generating entangled states. a Return probability for
the singlet state of an ST qubit defined on sites 3 and 4 of an L =6 spin
chain. The two remaining ST qubits are initialized in the state M‘w. b Two-
qubit probabilities before and after the execution of a two-qubit CZ gate,
using the modified DTC protocol (for a chain of length L = 4). The initial
state of ST qubit 1 is the triplet {T0> and of qubit 2 is the singlet. The x
coordinate of each point is the total time of all the pulse sequences. The y
coordinate of each point is the joint two-qubit probability. The “expected
post-CZ state" is an entangled state of the two ST qubits. The results in
both panels are averaged over 4096 realizations.

maximum return probability decreases to ~0.75 at long times. In
contrast, when 7] = 0.25, with 7= 1.4 ps as before, the maxima of
the return probability remain higher than the noninteracting case
out to 20 periods of evolution. In this case, the return probability
shows a 4T periodicity, as the interactions produce 