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Floquet-enhanced spin swaps
Haifeng Qiao 1, Yadav P. Kandel 1, John S. Van Dyke 2, Saeed Fallahi3,4, Geoffrey C. Gardner4,5,

Michael J. Manfra 3,4,5,6, Edwin Barnes2 & John M. Nichol 1✉

The transfer of information between quantum systems is essential for quantum commu-

nication and computation. In quantum computers, high connectivity between qubits can

improve the efficiency of algorithms, assist in error correction, and enable high-fidelity

readout. However, as with all quantum gates, operations to transfer information between

qubits can suffer from errors associated with spurious interactions and disorder between

qubits, among other things. Here, we harness interactions and disorder between qubits to

improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot

spins. We use a system of four electron spins, which we configure as two exchange-coupled

singlet–triplet qubits. Our approach, which relies on the physics underlying discrete time

crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude.

Our results show how interactions and disorder in multi-qubit systems can stabilize non-

trivial quantum operations and suggest potential uses for non-equilibrium quantum phe-

nomena, like time crystals, in quantum information processing applications. Our results also

confirm the long-predicted emergence of effective Ising interactions between exchange-

coupled singlet–triplet qubits.
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Over the past decades, quantum information processors
have undergone remarkable progress, culminating in
recent demonstrations of their astonishing power1. As

quantum information processors continue to scale-up in size and
complexity, new challenges come to light. In particular, main-
taining the performance of individual qubits and high con-
nectivity are both essential for continued improvement in large
systems2.

At the same time, developments in nonequilibrium many-body
physics have yielded insights into many-qubit phenomena, which
feature, in some sense, improved performance of many-body
quantum systems when disorder and interactions are included.
Chief among these phenomena are many-body localization3 and
time crystals4–8. Although these phenomena are interesting in
their own right, applications of these concepts are only beginning
to emerge.

In this work, we exploit discrete-time-crystal (DTC) physics to
demonstrate Floquet-enhanced spin-eigenstate swaps in a system
of four quantum dot electron spins. When we harness interac-
tions and disorder in our system, the quality factor of spin-
eigenstate swaps improves by nearly an order of magnitude. As
we discuss in detail further below, this system of four exchange-
coupled single spins undergoing repeated SWAP pulses maps
onto a system of two Ising-coupled singlet–triplet (ST) qubits
undergoing repeated π pulses. Periodically driven Ising-coupled
spin chains are the prototypical example of a system predicted to
exhibit DTC behavior4. Experimental signatures of DTC behavior
have been observed in many systems9–12, but nearest-neighbor
Ising-coupled spin chains have yet to be experimentally investi-
gated in this regard.

Our system of two ST qubits is clearly not a DTC in the strict
sense, because it is not a many-body system13. However, this
system does exhibit some of the key characteristics of DTC
behavior, including robustness against interactions, noise, and
pulse imperfections13,14. We also find that the required experi-
mental conditions for observing the quality-factor enhancement
are identical to some of the theoretical conditions for the DTC
phase in infinite spin chains. In total, these observations suggest
the Floquet-enhanced spin-eigenstate swaps in our device are
closely related to discrete time-translation symmetry breaking.

Our results also illustrate how nonequilibrium many-body
phenomena could potentially be used for quantum information
processing. On the one hand, we observe Floquet-enhanced π
rotations in two ST qubits. But on the other hand, these ST π
rotations correspond to spin-eigenstate swaps, when we view the
system as four single spins. The enhanced spin-eigenstate swaps
are not coherent SWAP gates, but instead are “projection-SWAP”
gates15. Because of the critical importance of such operations for
reading out linear qubit arrays, these results may point the way
toward the use of nonequilibrium quantum phenomena in
quantum information processing applications, especially for
initialization, readout, and information transfer. Moreover, recent
theoretical work shows how entangled states can be preserved,
and robust single-, and two-qubit gates can be implemented,
within this framework16. Our results are also significant because
they provide experimental evidence of the predicted Ising cou-
pling that emerges between exchange-coupled ST qubits17.

Results
Device and Hamiltonian. We fabricate a quadruple quantum dot
array in a GaAs/AlGaAs heterostructure with overlapping gates
(Fig. 1a)18–20. The confinement potentials of the dots are controlled
through “virtual gates”21–24. Two extra quantum dots are placed
nearby and serve as fast charge sensors25,26. We configure the four-
spin array into two pairs (“left” and “right”) for initialization and

readout. Each pair of spins can be prepared in a product state ( "#
�� �

or #"
�� �

) via adiabatic separation of a singlet in the hyperfine
gradient27–29. We can also initialize either pair as Tþ

�� � ¼ ""
�� �

by
exchanging electrons with the reservoirs28,30. Both pairs are mea-
sured through spin-to-charge conversion via Pauli spin blockade27,
together with a shelving mechanism31 for high readout fidelity.
Further details about the device can be found in “Methods”.

The four-spin array is governed by the following Hamiltonian:

H ¼ h
4
∑
3

i¼1
Jiðσ i � σ iþ1Þ þ

h
2
∑
4

i¼1
Bz
i σ

z
i ; ð1Þ

where Ji is the tunable exchange coupling strength (with units of
frequency), σ i ¼ ½σxi ; σyi ; σzi � is the Pauli vector describing the
components of spin i, h is Planck’s constant, and Bz

i is the z
component of the magnetic field (also with units of frequency)
experienced by spin i. Bz

i includes both a large 0.5-T external
magnetic field and the smaller hyperfine field. The exchange
couplings J1, J2, and J3 are controlled by pulsing virtual barrier
gate voltages32. We model the dependence of the exchange
couplings on the virtual barrier gate voltages in the
Heitler–London framework32,33. The model allows us to predict
the required barrier gate voltages for a set of desired exchange
couplings. In our device, we estimate the residual exchange
coupling at the idling tuning of the device to be a few MHz.

Heisenberg exchange coupling does not naturally enable the
creation of a DTC phase8. Additional control pulses can convert
the Heisenberg interaction into an Ising interaction8, which
permits the emergence of a DTC phase. A DTC can also be
created using a sufficiently strong magnetic field gradient instead
of applying extra pulses34. Here, we introduce a new method for
generating DTC behavior that does not require complicated pulse
sequences or large field gradients, but instead relies only on
periodic exchange pulses.

To see how we can still obtain an effective Ising interaction in
this case, it helps to view each pair of spins as an individual ST

Fig. 1 Experimental setup. a Scanning electron micrograph of the quadruple
quantum dot device. The locations of the electron spins are overlaid.
b Schematic showing the two-qubit Ising system in a four-spin Heisenberg
chain. c The pulse sequence used in the experiments.
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qubit (Fig. 1b)27. Specifically, consider the scenario where the
joint spin state of each pair is confined to the subspace spanned
by Sj i ¼ 1ffiffi

2
p "#j i � #"j ið Þ and T0j i ¼ 1ffiffi

2
p "#j i þ #"j ið Þ. According

to ref. 17, when J1= J3= 0 and J2 > 0, the effective Hamiltonian of
the system is

Heff ¼
h
2

Δ12 þ �Bð Þ~σz1 þ
h
2

Δ34 þ �Bð Þ~σz2 �
h
4
J2~σ

z
1~σ

z
2 : ð2Þ

Here, ~σzk is the Pauli z-operator for ST qubit k, Δij ¼ Bz
i � Bz

j is
the intraqubit gradient between spins i and j, and �B is the effective
global magnetic field gradient, which depends on Δij and Ji
(ref. 17). In this system, all magnetic gradients result from the
hyperfine interaction between the electron and nuclear spins35.
The gradients are quasistatic on typical qubit manipulation
timescales36. The basis for the ST-qubit operator ~σz is
f "#j i; #"j ig provided that J2≪ ∣B2− B3∣ (refs. 17,36,37). In our
experiments, the typical value of J2 is a few MHz, while the typical
value of the magnetic field gradient in the device is tens of MHz.
Now let us define

Sint ¼ exp � i
_
τ

h
4
J2ðσ2 � σ3Þ þ

h
2
∑
4

i¼1
Bz
i σ

z
i

� �� �
; ð3Þ

where τ is an interaction time. Within the f Sj i; T0j ig subspace of
each pair, this operator is equivalent to Seffint ¼ exp � i

_ τHeff

	 

, and

it describes the evolution of the two Ising-coupled qubits17.
Systems of exchange-coupled ST qubits have been the focus of
significant theoretical research17,38–40. Until now, such a system
has evaded implementation.

In the case when J2= 0, but when J1, J3 > 0, the overall
Hamiltonian describes two uncoupled ST qubits. Thus, let us
define

S1 ¼ exp � i
_
t1

h
4
J1ðσ1 � σ2Þ þ

h
2
∑
4

i¼1
Bz
i σ

z
i

� �� �
; ð4Þ

S2 ¼ exp � i
_
t2

h
4
J3ðσ3 � σ4Þ þ

h
2
∑
4

i¼1
Bz
i σ

z
i

� �� �
: ð5Þ

In the f Sj i; T0j ig subspace of each pair, these operators are
equivalent to Seff1 ¼ exp � i

_ t1
h
2 Δ12~σ

z
1 þ J1~σ

x
1

� �	 

and Seff2 ¼

exp � i
_ t2

h
2 Δ34~σ

z
2 þ J3~σ

x
2

� �	 

. In writing Seff1 and Seff2 , we have

ignored overall energy shifts J1/4 and J3/4 of the single-qubit
Hamiltonians, because the system dynamics do not depend on
these shifts. Assuming J1≫ Δ12 and J3≫ Δ34, when t1J1= t2J3=
0.5, these two operators implement SWAP gates between spins
1–2 and 3–4. Equivalently, they induce nominal π pulses about
the x-axis of each ST qubit. The presence of the intraqubit
gradients Δ12 and Δ34 slightly tilts the rotation axis toward the z-
axis for each ST qubit, introducing uncontrolled errors to the π
pulses. We can also manually introduce additional pulse errors by
changing J1 and J3, while fixing t1 and t2. We represent the error
as ϵ, with J1 ¼ Jπ1ð1þ ϵÞ and J3 ¼ Jπ3ð1þ ϵÞ. Here Jπ1 and Jπ3 are
the interaction strengths that yield π pulses.

Floquet-enhanced spin swaps. We define a Floquet operator
U= Sint ⋅ S2 ⋅ S1 (Fig. 1c), and we repeatedly apply this operator to
our system of four spins. As discussed above, U implements spin
SWAP gates between spins 1–2 and 3–4 followed by a period of
exchange interaction between spins 2 and 3. Equivalently, U
implements π pulses on both ST qubits and then a period of Ising
coupling between them. One might naively imagine that the
highest fidelity SWAP operations between spins should occur
when J2= 0 and τ= 0, given the presence of intraqubit hyperfine
gradients. In this case, as we have discussed in ref. 29, repeated

SWAP operations are especially susceptible to errors from the
hyperfine gradients Δij.

However, by allowing J2 > 0 and τ > 0, we find specific
conditions in which we observe a significant enhancement of
the spin-eigenstate-swap quality factor (Fig. 2). To explore this
phenomenon, we prepare each ST qubit in "#j i or #"j i. (The
specific state is governed by the sign of Δ12 and Δ34, which are
random quasistatic gradients resulting from the nuclear hyperfine
interaction.) We apply multiple instances of the Floquet operator
U to the system and measure the ground-state return probabilities
for both ST qubits.

First, we set the interaction time τ= 1.4 μs and SWAP pulse
times t1= t2= 5 ns, and apply four Floquet steps. We sweep J2
linearly from 0.05 to 5MHz (Fig. 2a, b). (Setting J2 < 0.05MHz
would require large negative voltage pulses applied to the barrier
gate due to the residual exchange, which could disrupt the tuning
of the device.) We also sweep J1 from 80 to 460MHz, and J3 from
50 to 260MHz. The ranges of J1 and J3 roughly center around Jπ1
and Jπ3 , respectively. Away from the center, J1 and J3 induce pulse
errors. The experimental values of t1J

π
1 and t2J

π
3 are much larger

than 0.5, because the voltage pulses experienced by the qubits
have rise times of ~1 ns (see “Methods” and Supplementary
Fig. 1). To compensate for the pulse rise times (which are slightly
different for each qubit), t1J

π
1 and t2J

π
3 must be larger than 0.5 in

order to properly induce π pulses.
Clear, bright diamond patterns are visible in the data (Fig. 2a, b).

These bright regions correspond to improved spin-eigenstate-swap
quality factors. Note that the brightest regions correspond to
configurations when J2 > 0. Note also that the diamonds are
approximately periodic in J2τ, as expected for a Floquet operator.
We repeat the same experiments with τ= 1μs, and we observe
similar diamond patterns, although they have an increased period
in J2 (Fig. 2e, f). The diamond patterns of ST qubit 2 appear
narrower due to the large hyperfine gradient Δ34, which causes
larger pulse errors and reduces the size of the quality-factor-
enhancement region. These data from an effective two-qubit
system resemble predicted DTC phase diagrams of a true nearest-
neighbor many-body system (see “Methods” and Supplementary
Figs. 2 and 3)7,8.

Our simulations agree well with the data (Fig. 2c, d, g, h; see
“Methods”). In the simulations, the diamond pattern is periodic in
J2τ with the periodicity of exactly 1, and the strongest quality-
factor enhancement occurs at J2τ= 0.5. In the experimental data,
however, the periodicity is slightly larger than 1, and the strongest
quality-factor enhancement occurs at J2τ > 0.5. This is due to the
imperfect calibration of the exchange coupling J2 (ref. 32). In
particular, the presence of the hyperfine field gradient makes it
difficult to measure and control the exchange couplings with sub-
MHz resolution. If our modeling of the exchange coupling were
more precise, then we would expect the periodicity of the diamond
patterns to be closer to 1 and the quality-factor enhancement to
occur closer to J2τ= 0.5 in the experimental data.

We can interpret our data using a semiclassical model inspired by
Choi et al. in ref. 10 to explain DTC behavior (see “Methods”). In
brief, an initial state of ST qubit 1, ψ0

�� � ¼ cosðθ0=2Þ gj i þ eiϕ0

sinðθ0=2Þ ej i evolves to ψf

��� E
¼ e�iϕ1σ

z=2e�iθσx=2e�iϕ2σ
z=2e�iθσx=2 ψ0

�� �
after two Floquet steps. Here θ ≈ π indicates a nominal π pulse, and
ϕ1 ¼ 2πðJ2=2þ Δ12 þ �BÞτ, and ϕ2 ¼ 2πð�J2=2þ Δ12 þ �BÞτ. In
this semiclassical model, the effect of ST qubit 2 on ST qubit 1 is to
generate the πJ2τ term in the operator that switches sign after each
Floquet step, because ST qubit 2 undergoes a nominal π pulse. As
emphasized in ref. 10, the change in sign of this part between Floquet
steps is entirely a result of interactions in the system. The resulting
single-qubit rotations in this semiclassical model are reminiscent of
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dynamical decoupling10. We have numerically simulated the
semiclassical single-qubit evolution over two Floquet steps for our
system (see “Methods”). The black lines in Fig. 2a, b indicate the
regions where approximate ST-qubit eigenstates are also exactly
eigenstates of the evolution operator over two steps, i.e., they are
exactly preseved by the two Floquet steps10. The size of these regions
confirms that interactions are essential for the effects we observe.
Exactly the same enhancement regions are expected for end spins in
longer chains, because our system is a nearest-neighbor Ising spin
chain. Simulations for an eight-site Ising spin chain at late times show
DTC behavior in exactly these regions (see “Methods” and
Supplementary Fig. 2).

Next, we also sweep J3 from 220 to 430MHz. In this case, the
range of J3 roughly centers around J2π3 . The interaction time is
τ= 1.4 μs and the ranges of J1 and J2 remain the same. Again, we
apply four Floquet steps and measure the ground-state return
probabilities. This time the data do not show diamond patterns
(Fig. 3), and the return probability of ST qubit 1 is lower than the
Floquet-enhanced return probability shown in Fig. 2a. This
indicates that the Floquet enhancement is no longer present. In
fact, if either of the Floquet operators S1 or S2 fails to induce
approximately a π rotation, then the Floquet enhancement does
not appear.

On the one hand, this effect is striking, when one considers the
individual spins themselves. Recall that the ST-qubit splittings Δ12

and Δ34 are generated by the hyperfine interaction between the
Ga and As nuclei in the semiconductor heterostructure and
the electron spins in the quantum dots. Although Δ12 and Δ34 are
quasistatic on millisecond timescales, they each independently
fluctuate randomly, and can change sign, over the duration of a
typical data-taking run, which is ~1 h. Each of the 8192 different
realizations for each pixel in the data of Fig. 2 likely contain
instances, where both ST qubits have the same or different
ground-state spin orientations. (The ground state of each ST

qubit is either "#j i or #"j i, depending on the sign of the
instantaneous hyperfine gradient.)

Thus, the data of Fig. 2 likely include realizations with all
possible combinations of the orientations of spins 2 and 3 before
the interaction period. Despite the random orientations of spins 2
and 3, the Floquet enhancement still appears. It might therefore
seem that whether or not spins 1–2 or 3–4 undergo a SWAP
before the interaction period should not affect the behavior of the
system. However, as shown in Fig. 3, implementing a 2π rotation,
as opposed to a π rotation, on one of the ST qubits eliminates the
Floquet enhancement.

On the other hand, when one considers the semiclassical
picture described above, the absence of a π pulse on one of the ST
qubits spoils the semiclassical decoupling evolution discussed
above and in ref. 10. In this case, ST-qubit eigenstates are no
longer eigenstates of two instances of the Floquet operator, and
the enhancement no longer occurs.
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Fig. 3 Absence of Floquet enhancement due to the omission of a π pulse.
a, b Measured ground-state return probabilities of (a) ST qubit 1 and (b) ST
qubit 2, after four Floquet steps, with interaction time τ= 1.4 μs. The ranges
of J1 and J3 center around Jπ1 and J2π3 , respectively. The values of J1 and J3 are
swept simultaneously. The data are averaged over 8192 realizations.
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Fig. 2 Floquet-enhanced π rotations. a, b Measured ground-state return probabilities of (a) ST qubit 1 and (b) ST qubit 2, after four Floquet steps, with
interaction time τ= 1.4 μs. The ranges of J1 and J3 center around Jπ1 and Jπ3 . The values of J1 and J3 are swept simultaneously. In both figures, the red cross
marks the condition for the Floquet-enhanced π rotations. The black ovals are the semiclassical phase boundaries. c, d Simulated return probabilities of (c)
ST qubit 1 and (d) ST qubit 2, corresponding to the data in (a) and (b), respectively. e, fMeasured ground-state return probabilities of (e) ST qubit 1 and (f)
ST qubit 2, after four Floquet steps, with interaction time τ= 1.0 μs. J1 and J3 values are the same as in a and b. g, h Simulated return probabilities of (g) ST
qubit 1 and (h) ST qubit 2, corresponding to the data in (e) and (f), respectively. The experimental data in (a, b, e, f) are averaged over 8192 realizations. In
all figures, Pkg indicates the ground-state return probability for ST qubit k.
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We have now determined the optimal conditions for the
Floquet enhancement. For the remainder of the paper, we set
J1= 270MHz and J3= 150MHz with t1= t2= 5 ns for the
SWAP operators S1 and S2, respectively, and we set τ= 1.4 μs
and J2= 0.41MHz for the Ising interaction. To quantify the
Floquet enhancement, we evolve the system for 50 Floquet steps
and measure the ground-state return probabilities for both qubits
after each step. The results are shown in Fig. 4a. Note that the
system exhibits a clear subharmonic response to the Floquet
operator. We extract a swap quality Q by fitting the data with a
decaying sinusoidal function PgðnÞ ¼ α expð�n=QÞ cosðnπÞ þ β,
where Pg(n) denotes the return probability at the nth Floquet step,
and Q, α, and β are fit parameters. We also investigate the quality
factor of the qubits under non-enhanced regular π pulses. Here,
we use the same interaction time τ= 1.4 μs, but we turn off the
interaction strength J2 by setting the barrier gate pulse to zero. To
further eliminate any effects associated with Floquet enhance-
ment, we only apply π pulses to one qubit, while the other qubit
remains idle after initialization. Again, we apply 50 π pulses and
measure the ground-state return probability, and we fit the data
with the same decaying sinusoidal function. By comparing the fit
parameter Q, we can obtain the ratio between the quality factors
of the qubits under Floquet-enhanced and non-enhanced π
rotations.

We find a ~3-fold quality-factor improvement on qubit 1, and
~9-fold improvement on qubit 2. The significant discrepancy
between the quality-factor improvements of the two qubits is
likely due to the large hyperfine gradient Δ34 in qubit 2, which
causes an exceptionally low quality factor for non-enhanced π
rotations. The quality-factor enhancement is striking in this case.
To extract an estimated uncertainty, we repeat the same
experiment 30 times, and calculate the mean and the standard
deviation of the quality-factor ratio, as shown in the first row of
Table 1.

So far, we have initialized both ST qubits in their ground states.
We can also initialize either ST qubit in its excited state by
applying an extra π pulse to the qubit immediately before the first

Floquet step. We run the same experiment with different initial
states and extract the quality factors by fitting the data (Fig. 4b, c).
Again, for each initial state, we repeat the experiment 30 times
and calculate the mean and the variance of the quality-factor
ratio, which are listed in Table 1. The quality-factor improve-
ments of both qubits are consistent across different initial states.

We also initialize the right pair as Tþ
�� � ¼ ""j i and measure

the quality-factor improvement on qubit 1 (Fig. 4d). We notice
that the quality-factor ratio is much lower when the right pair is
initialized in Tþ

�� �
. This is not surprising since the effective Ising

interaction between qubit 1 and qubit 2 (Eq. (2)) is only valid
when both qubits are restricted to the Sz= 0 subspace. The reason
why we still see a ~2-fold quality-factor improvement instead of
no improvement at all is likely because of the imperfect Tþ

�� �
preparation due to thermal population of excited states30. Load
errors will cause the right pair to occupy the ST-qubit ground or
excited states a small fraction of the time. In these cases, the
Floquet enhancement of the left-pair ST qubit is expected to
occur. Thus, the overall quality factor should appear to improve
slightly, because of the imperfect initialization. Correspondingly,
it is likely that the imperfect initialization limits the quality-factor

Fig. 4 Floquet-enhanced spin swaps. a–d Quality-factor enhancement of spin-eigenstate swaps for different initial states. In each figure, the top panel
shows the measurements of ST qubit 1, and the bottom panel shows the measurements of ST qubit 2. The initial states are shown on the top, where gj i and
ej i represent the ground state and the excited state of the ST qubit, respectively. The Floquet-enhanced π-pulse data are shown in blue, and the non-
enhanced regular π-pulse data are shown in red. The fitted exponential decay envelopes are overlaid as dashed lines for all data except for the bottom panel
in (d). The data are averaged over 4096 realizations.

Table 1 Quality-factor enhancements of both qubits for
different initial states.

Initialization Quality-factor enhancement

Qubit 1 Qubit 2

gj i � gj i 3.60 ± 0.89 8.47 ± 3.29
ej i � gj i 3.24 ± 0.94 9.33 ± 2.96
gj i � ej i 3.15 ± 0.79 9.10 ± 2.87
gj i � Tþ

�� �
1.92 ± 0.27 N/A

Here, gj i and ej i represent the ground state and the excited state of the ST qubit, respectively.
Thirty sets of data are taken for each initialization, from which the means and the standard
deviations are calculated.
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enhancement when both qubits are initialized in ST-qubit
eigenstates.

Finally, we emphasize that a Floquet drive, i.e., repeated SWAP
gates, is required to realize the enhancement shown in Fig. 4.
Based on the data of Fig. 4, the first SWAP gate is not
substantially enhanced by the protocol. It is only subsequent
SWAP gates that are enhanced. This is consistent with the
requirement for a periodic drive in a DTC. As we discuss below,
this periodic drive is also useful for constructing quantum gates.

Discussion
Strictly speaking, a DTC only occurs in the thermodynamic
limit13. Nonetheless, we argue the quality-factor enhancement we
observe relies on the essential elements of DTC physics. The
disordered Ising-coupled system in our device demonstrates a
clear subharmonic response, as well as a robustness against pulse
errors, both expected as defining signatures of the DTC. Our
experiments also indicate the necessity of two essential ingre-
dients for realizing the Floquet-enhanced π pulses: (1) an effective
Ising interaction, and (2) global π pulses. If either of the com-
ponents is missing, we no longer observe the significant quality-
factor enhancement (Figs. 3 and 4d). These two components both
ensure that the semiclassical dynamical decoupling can occur. In
the thermodynamic limit, these components would ensure that
eigenstates of the Floquet operator are long-range correlated,
which is required for discrete time-translation symmetry
breaking5. We have also shown that the quality-factor enhance-
ment does not depend on the eigenstate into which either ST
qubit is initialized (provided that the effective Ising coupling is
maintained), which is another key feature of the DTC13. In the
future, implementing these experiments in larger spin chains
could lead to a verification that these effects in fact originate from
the DTC phase.

We emphasize that we have observed Floquet enhancement
associated with ST-qubit eigenstates undergoing π pulses. In the
language of single spins, we observed Floquet enhancement
associated with swaps between spin eigenstates, when the total z
component of angular momentum for both spins vanishes. This
observation is qualitatively consistent with expectations for qubits
in a true many-body DTC, where the components of the qubits
oriented along the direction defined by the Ising coupling are
preserved8. While not a coherent SWAP gate, a spin-eigenstate
swap (projection-SWAP), has significant potential to aid in
readout for large qubit arrays41.

The Floquet enhancement we observe can immediately be
leveraged to perform additional quantum information processing
tasks of significant importance. For example, recent theoretical
work shows that entangled states of single spins (or superposition
states of ST qubits) can be preserved, using Floquet operators
identical to what we have demonstrated16. The same work also
shows that single-qubit gates can be incorporated into this fra-
mework, and even two-qubit CZ gates can be implemented16. A
significant potential advantage of these operations, compared
with conventional single- and two-qubit gates, is that dynamical
decoupling is an essential component of these operations, as
discussed above.

As an illustration of the above capabilities, we perform simu-
lations that show the preservation of the singlet state of an ST
qubit by periodic driving under the evolution U= Sint ⋅ S12, where
S12 represents the execution of S1 and S2 in parallel. Figure 5a
shows the return probability for the singlet state of an ST qubit
defined on sites 3 and 4 of an L= 6 site spin chain. The ST qubits
defined on the pairs of sites (1,2) and (5,6) are initialized to the
product state "#j i. When the interaction J between neighboring
ST qubits (the generalization of J2 in Eq. (3)) is turned off, the

maximum return probability decreases to ~0.75 at long times. In
contrast, when τJ= 0.25, with τ= 1.4 μs as before, the maxima of
the return probability remain higher than the noninteracting case
out to 20 periods of evolution. In this case, the return probability
shows a 4T periodicity, as the interactions produce a relative
phase between the basis states "#j i and #"j i such that the original
state is recovered only after four periods (after two periods this
phase yields the T0j i state, and the Sj i return probability
vanishes)16. We note that the calculated return probability p ¼
Tr½ρð3;4Þ Sj i Sh j� accounts for the fact that interactions will entangle
the (3,4) pair with its neighbors through the use of the reduced
density matrix ρ(3,4). The optimal value of J is reduced by half
compared to the previous simulations and experiments, due to
the presence of two neighbors in the interior of the spin chain34.
The possibility of stabilizing superposition states of ST qubits,
such as singlets, also highlights the possibility of interleaving
arbitrary single-qubit operations within this Floquet framework.

The condition τJ= 0.25 also serves to implement a two-qubit
CZ gate, for which simulations are shown in Fig. 5b for the L= 4
chain. Here, the ordinary DTC protocol with τJ= 0.5 is applied
for eight periods, followed by two periods with the reduced value
τJ= 0.25. Since the effective interaction between ST qubits is of
Ising form, this yields a CZ gate up to single-qubit z rotations:
CZ ¼ eiπ=4e�iðπ=4Þ~σz1e�iðπ=4Þ~σz2eiðπ=4Þ~σ

z
1~σ

z
2 (ref. 42). Applying the

necessary rotations by appropriately timed SWAP pulses during
an additional evolution step with trot= 4 μs executes a full CZ
gate16, which we then preserve for another eight periods using the
DTC protocol. Unlike the case of the Floquet-enhanced SWAP,
here the gate itself is necessarily produced by the inter-ST-qubit
coupling, and so it is not enhanced but rather enabled by it. Since
the CZ gate and arbitrary single-qubit unitaries form a universal
gate set, this suggests that the DTC-inspired methods presented
here yield a promising direction for spin-based quantum
computing.

The experimental investigation of all of these ideas remains an
important subject of future work. We expect that these phenomena

Fig. 5 Preserving and generating entangled states. a Return probability for
the singlet state of an ST qubit defined on sites 3 and 4 of an L= 6 spin
chain. The two remaining ST qubits are initialized in the state "#

�� �
. b Two-

qubit probabilities before and after the execution of a two-qubit CZ gate,
using the modified DTC protocol (for a chain of length L= 4). The initial
state of ST qubit 1 is the triplet T0

�� �
and of qubit 2 is the singlet. The x

coordinate of each point is the total time of all the pulse sequences. The y
coordinate of each point is the joint two-qubit probability. The “expected
post-CZ state'' is an entangled state of the two ST qubits. The results in
both panels are averaged over 4096 realizations.
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can readily be explored in Si spin qubits. Barrier-controlled
exchange coupling between Si spin qubits is now routine43. The
operation of Si ST qubits in the regime where magnetic gradients
exceed exchange couplings has also been demonstrated15,44.

Note that to observe the Floquet enhancement, or to perform
any of the protocols described in ref. 16, multiple Sz= 0 electron
pairs undergoing the same Floquet operators are typically
required. As we have shown above, one ST qubit alone cannot
experience the Floquet enhancement without the other. This
notion is consistent with expectations for many-body DTCs,
which are true many-body phenomena. One can view the “extra”
qubits undergoing repeated instances of the Floquet operator as
the resource required to implement an improved operation on a
specific qubit. It is also interesting to note that DTC-like behavior
can emerge in systems with as few as two qubits in this nearest-
neighbor-coupled system, as we have shown. Thus, only a rela-
tively small number of qubits is required in order to realize the
benefits of Floquet enhancement, highlighting its potential for
further use in quantum information processing applications.

In summary, we have demonstrated Floquet-enhanced spin-
eigenstate swaps in a four-spin two-qubit Ising chain in a
quadruple quantum dot array. The system shows a subharmonic
response to the driving frequency, and it also shows an
improvement in swap quality factor even in the presence of pulse
imperfections. We have also shown that the necessary conditions
for this quality-factor enhancement are identical to some key
components for realizing discrete time crystals. Our results also
confirm the prediction of an effective Ising coupling that emerges
between two exchange-coupled singlet–triplet qubits. This work
indicates the possibility of realizing discrete time crystals using
extended Heisenberg spin chains in semiconductor quantum
dots, and suggests potential uses for discrete time crystals in
quantum information processing applications.

Methods
Device. The quadruple quantum dot device is fabricated on a GaAs/AlGaAs
heterostructure substrate with three layers of overlapping Al confinement gates and
a final Al top gate. The Al gates are patterned and deposited using E-beam
lithography and thermal evaporation, and each layer is isolated from the other
layers by a few nanometers of native oxide. The top gate covers the main device
area and is grounded during the experiments. It likely smooths anomalies in the
quantum dot potentials. The two-dimensional electron gas resides at the GaAs and
AlGaAs interface, 91 nm below the semiconductor surface. The device is cooled in
a dilution refrigerator with base temperature of ~10 mK. A 0.5-T external magnetic
field is applied parallel to the device surface and perpendicular to the axis con-
necting the quantum dots.

Pulse rise times. The experimental values of t1J
π
1 and t2J

π
3 are much larger than

0.5, because the voltage pulses experienced by the qubits have rise times of ~1 ns.
Supplementary Fig. 1 shows measured exchange oscillations for both ST qubits vs.
evolution time. The observable frequency chirp at early evolution times demon-
strates the effects of rise times in our system and shows that the π-pulse times yield
tJ > 0.5.

Simulation. We simulate the Floquet-enhanced phenomena by evolving a four-
spin array according to the Floquet operator U= Sint ⋅ S2 ⋅ S1, as defined in the main
text. We set t1= t2= 2 ns, and Jπ1 ¼ Jπ3 ¼ 250MHz for the SWAP operators S1 and
S2 to give π pulses. While t1 and t2 are chosen to be 5 ns in the experiments, we
expect the realistic SWAP times to be ~2–3 ns due to the pulse rise and fall times of
~1 ns. We include the π-pulse errors by adjusting the exchange couplings as J1 ¼
Jπ1 ð1þ ϵÞ and J3 ¼ Jπ3 ð1þ ϵÞ, where ϵ represents the fractional error in the rotation
angle of the π pulse applied to ST qubits 1 and 2.

For better comparison with the experimental data, the simulations take into
account all known error sources, including state preparation, readout, charge noise,
and hyperfine field noise. The initial state of each ST qubit is prepared as

ψi

�� � ¼ s1 gj i þ s2 ej i þ s3 Tþ
�� �þ s4 T�j i ; ð6Þ

where gj i and ej i are the ground state and the excited state in the f "#j i; #"j ig basis.
The exact spin orientation for the ground state is determined by the hyperfine
gradient. The coefficient ∣s1∣2= fg represents the ground-state preparation fidelity,
and we assume js2j2 ¼ js3j2 ¼ js4j2 ¼ 1

3 ð1� f gÞ for simplicity. We estimate fg to be

0.9 for ST qubit 1 and 0.95 for ST qubit 2 in our device. The preparation fidelity
assumes errors from both the singlet loading and the charge separation. The
readout errors are included by calculating the final ground-state return probability
as

~Pg ¼ ð1� r � 2qÞPg þ r þ q ; ð7Þ

where Pg ¼ j gjψf

D E
j
2
is the true ground-state return probability. Here r ¼

1� expð�tm=T1Þ is the probability of the excited state relaxing to the ground state
during measurements, with tm being the measurement time and T1 being the
relaxation time. Also q= 1− fm is the probability of misidentifying the ground
state as the excited state due to random noise. We set tm= 4 μs, T1= 60 μs, and fm
= 0.99 for ST qubit 1, and tm= 6 μs, T1= 50 μs, and fm= 0.95 for ST qubit 2.

We use a Monte-Carlo method to incorporate charge noise and hyperfine field
fluctuations. The values of the exchange couplings Ji and the local hyperfine fields
Bz
i are randomly sampled from a normal distribution for each simulation run. We

set the standard deviation for Ji to be Ji=ð
ffiffiffi
2

p
πQÞ, where Q= 21 is the exchange

oscillation quality factor. We set the standard deviation for Bz
i to be σBz ¼18MHz,

and we assume the mean values to be [0, 20, 0, 50] MHz plus a uniform magnetic
field of 3.075 GHz (which accounts for the 0.5-T external magnetic field). The
simulated data in Fig. 2 in the main text are obtained by averaging over 128
realizations.

The simulations of Fig. 5 do not include exchange coupling noise or state
preparation and measurement errors. We neglected these errors to clearly illustrate
the mechanisms underlying the singlet-state preservation and CZ gate. Hyperfine
fluctuations with σBz ¼18MHz were included, and the magnetic field values at the
locations of each dot were 3.075 GHz, to account for the external magnetic field. To
simulate the CZ gate of Fig. 5b in the main text, we simulate two periods of
the Floquet operator U= Sint ⋅ S12, where S12 represents the execution of S1 and S2
in parallel, with τJ= 0.25. These two periods implement the CZ gate, up to single-
qubit rotations. In the simulation, we evolve the system for two additional periods
with the operator Urot=U1⊗U2, where

U1 ¼ S1 � exp �i
_

Tg�2Ts�tr1
2

h i
h
2Δ12~σ

z
1


 �
� S1 � exp �i

_

Tg�2Tsþtr1
2

h i
h
2Δ12~σ

z
1


 �

U2 ¼ S2 � exp �i
_

Tg�2Ts�tr2
2

h i
h
2Δ34~σ

z
2


 �
� S2 � exp �i

_

Tg�2Tsþtr2
2

h i
h
2Δ34~σ

z
2


 �

where Tg is the overall time of the operation (Urot lasts for a duration Tg), and Ts is
duration of the SWAP gate. We define the rotation time

tr1 ¼
π=ð2Δ12Þ; if Δ12 > 0

3π=ð2jΔ12jÞ; if Δ12 < 0

�
ð8Þ

and

tr2 ¼
π=ð2Δ34Þ; if Δ34 > 0

3π=ð2jΔ34jÞ; if Δ34 < 0

�
: ð9Þ

In total, Urot implements a π/2 rotation about the z-axis of both ST qubits via a
spin-echo-like sequence, such that the overall operation over the four periods is an
exact CZ gate16.

To confirm that the behavior we report in the two ST qubits corresponds to that
of an effective Ising spin chain, we also simulate an Ising spin chain. Define

HI ¼
h
4
∑
N�1

i¼1
Jσzi σ

z
iþ1 þ

h
2
∑
N

i¼1
Bz
i σ

z
i ; ð10Þ

and denote a Floquet operator

UðτÞ ¼ exp � i
_
HIτ

� �

´
YN
1

exp � i
_

ð1þ ϵÞ h
2
Jπσ

x
i þ

h
2
Bz
i σ

z
i

� �
TR
i

� �
;

ð11Þ

where ϵ is a pulse error, and TR
i ¼ 1=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2π þ ðBz

i Þ2
q

Þ, with Jπ= 250MHz.

Supplementary Fig. 2 shows the results of simulations for an N= 2 Ising chain,
after four Floquet steps, with τ= 1.4 μs, Bz

i ¼ ½20; 50�MHz, and σBz ¼ ffiffiffi
2

p
´ 18

MHz. These simulation conditions correspond to the data of Fig. 2 in the main text,
and they agree with the data of that figure. This agreement provides additional
strong evidence of the effective Ising coupling between ST qubits in our system.

Supplementary Fig. 3a shows the results of an N= 8 Ising spin chain after four
Floquet steps, with Bz

i ¼ 20MHz. These results agree with the two-site data of
Supplementary Fig. 2a and Fig. 2 in the main text, providing evidence that the
behavior we observe in a two-qubit system corresponds to the expected behavior
for larger systems. Supplementary Fig. 3b shows the simulated behavior after 1024
Floquet steps. The predicted semiclassical phase diagram discussed further below
and in the main text is overlaid. The close agreement between the semiclassical
phase diagram and the regions of state preservation provide additional
confirmation of the link between the semiclassical phase diagram and the
DTC phase.
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Semiclassical phase diagram calculation. In ref. 10, Choi et al., explain the DTC-
like behavior of their system with a semiclassical model. Inspired by their work, we
present a related semiclassical model for our system. Let us consider an initial state
of ST qubit 1: ψ0

�� � ¼ cosðθ0=2Þ g
�� �þ eiϕ0 sinðθ0=2Þ ej i. Now, in the ideal case,

we can imagine that after two Floquet steps, this initial state evolves to ψf

��� E
¼

e�iϕ1σ
z=2e�iθσx=2e�iϕ2σ

z=2e�iθσx=2 ψ0

�� �
. Here θ ≈ π indicates a nominal π pulse, ϕ1 ¼

2πðJ2=2þ Δ12 þ �BÞτ, and ϕ2 ¼ 2πð�J2=2þ Δ12 þ �BÞτ. The key assumption in this
model is that the net effect of ST qubit 2 on ST qubit 1, is to generate the πJ2τ term
in the propagator that switches sign after each Floquet step, because ST qubit 2
undergoes a nominal π pulse. The change in sign of this part between Floquet steps
is entirely a result of interactions in the system. Figure 3d of ref. 10 shows a single-
qubit trajectory for this type of evolution. One can immediately see the relationship
between this semiclassical approach and dynamical decoupling.

In order to see a period doubling in the system, even in the presence of errors,

we require that ψf

��� E
¼ ψ0

�� �
. In general, we can pick a θ0 and a ϕ0 to ensure that

this is the case for a given θ. To see a robust period doubling for θ ≠ π, we should
see that approximately the same ψ0

�� �
is also unchanged under this evolution, even

as we allow θ ≠ π.
To write down the actual evolution operator for our system, set

S1 ¼ exp � i
_
t1
h
2

Δ12σ
z þ J1σ

xð Þ
� �

; ð12Þ

and let us define

S�int ¼ exp � i
_
τ
h
2

Δ12 þ �B� J2
2

� �
σz

� �
ð13Þ

Sþint ¼ exp � i
_
τ
h
2

Δ12 þ �Bþ J2
2

� �
σz

� �
: ð14Þ

In these definitions, we have suppressed the tildes, although the Pauli operators
refer to the ST qubits. As before, S1 describes a nominal π pulse about the x-axis,
and S�int and Sþint describe the effect of interactions, depending on the state of ST
qubit 2. The total Floquet operator over two steps is U ¼ SþintS1S

�
intS1. To see a

robust period doubling, we require that ψ0

�� � ¼ U ψ0

�� �
for initial states with θ0 ≈ 0.

We numerically calculate the eigenvectors of U for the different interaction
strengths and pulse errors ϵ we discuss in the manuscript. We will say that when
the Floquet eigenstate ψ0

�� �
has a ground-state probability

Pg ¼ j gjψ0

� �j2 ¼ cos2ðθ0=2Þ> 0:9, the system can enter the DTC-like phase. For
each pulse error and J2 configuration, we compute the eigenvectors for 256
different hyperfine and charge realizations. For each realization, we compute the
value of cos2ðθ0=2Þ, and then we average the values of cos2ðθ0=2Þ for all noise
realizations for the same values of J2 and pulse error. The phase diagrams obtained
in this way are shown in Fig. 2 in the main text. To relate the phase diagram to our
data in Fig. 2 in the main text, we rescale the values of the interqubit coupling J2 we
used in the simulation by 0.54/0.5, as discussed in the main text. The need for this
correction occurs because of the error in our calibration of the interqubit coupling.

This construction clearly illustrates that without interactions or global π-pulses,
the robust period doubling will not be observed, as discussed in ref. 10. In this case,
the eigenstates of U are the same as the eigenstates of a single Floquet step, and
there is no symmetry breaking. Without a global π-pulse, initial states with θ0 ≈ 0
can only be approximately preserved after two Floquet steps (they are not exactly
preserved), unlike the case with interactions, where these states are exactly
preserved.

This semiclassical calculation is also valid for an end-spin of a longer spin chain,
because we are considering a nearest-neighbor Ising chain. The argument we have
provided applies to the first spin in the chain, and the interaction part depends on
the state of the second spin. In our model, spin 2 is assumed to undergo perfect π
pulses. In a long spin chain, this assumption becomes more accurate, because one
can view the effect of the third and first spins in the chain as stabilizing the π-
rotations on spin 2, and so on.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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