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Photonic resource state generation from a minimal number of
quantum emitters
Bikun Li 1✉, Sophia E. Economou 1✉ and Edwin Barnes1✉

Multi-photon entangled graph states are a fundamental resource in quantum communication networks, distributed quantum
computing, and sensing. These states can in principle be created deterministically from quantum emitters such as optically active
quantum dots or defects, atomic systems, or superconducting qubits. However, finding efficient schemes to produce such states
has been a long-standing challenge. Here, we present an algorithm that, given a desired multi-photon graph state, determines the
minimum number of quantum emitters and precise operation sequences that can produce it. The algorithm itself and the resulting
operation sequence both scale polynomially in the size of the photonic graph state, allowing one to obtain efficient schemes to
generate graph states containing hundreds or thousands of photons.
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INTRODUCTION
Entanglement is widely recognized as playing a critical role in
quantum computation, error correction, communication, and
sensing. A family of entangled states that features prominently
in these applications are graph (or cluster) states. They are key
resources in one-way quantum computing paradigms1,2 and in
quantum error correction3–6. In addition, many quantum
repeater schemes7–11 and quantum sensing protocols12,13 rely
on graph states. Photonic graph states are especially important
because photons are the predominant platform for measure-
ment- and fusion-based computing, and, as flying qubits, they
are the only viable choice for quantum networks14 and
quantum imaging15,16.
Unfortunately, creating photonic resource states is fundamen-

tally difficult. Because photons do not interact with each other,
most attempts have focused on probabilistic generation schemes
using linear optics and postselection17, which are very resource-
intensive, severely limiting the size of the resulting states18,19. This
bottleneck can in principle be overcome by instead using a
deterministic approach in which entangled photons are produced
directly from quantum emitters (i.e., matter qubits). One possibility
would be to prepare a graph state on emitters20,21 and transduce
it to photons, but this requires a number of emitters equal to the
size of the target photonic graph state. This daunting resource
overhead can be avoided by instead using sequential generation
schemes. References22,23 put forward such an approach that works
well for one-dimensional (1D) graph states24 and has led to
experimental demonstrations25,26. However, in the general case
where the entanglement structure is more complicated, this
method scales exponentially in the size of the target state and can
lead to long generation circuits, motivating the search for more
efficient approaches. References27,28 put forward protocols for 2D
lattice graphs that leverage the principle that entangled emitters
can emit entangled photons. This idea was extended further
to develop protocols that deterministically generate resource
states for quantum repeaters29–32—tailored to color centers in
refs. 33,34—and one-way computing35,36. References32,35 allowed
for the re-interference of photons with emitters to further enhance
flexibility in entanglement creation.

Despite this progress and the intense interest this approach has
generated among experimentalists, existing graph state genera-
tion protocols are limited to a small subset of graphs or require a
number of emitters that scales linearly with the graph size36,37.
This is extremely resource-intensive, especially in light of the
schemes for generating repeater graph states presented in
refs. 29,31, which require only two emitters regardless of the
number of photons. The required resources (number of emitters
and entangling gates) is a critical factor that determines the
practical feasibility of the protocol. For a general graph state,
finding resource-efficient generation protocols in polynomial time
remains an open problem.
Here, we address this challenge by presenting a general

approach to generating arbitrary photonic graph states from
quantum emitters. Given a target graph state, we show how to
determine in polynomial time both the minimal number of
emitters required to create it and an explicit generation protocol.
The latter consists of a sequence of gate operations and
measurements performed on the emitters. Moreover, our protocol
naturally takes into account the order in which photons should be
emitted, which can be an important consideration for applications,
as it is generally preferable to emit photons in the order they are
measured to avoid photon storage. Our method provides a recipe
for doing this. The broad applicability of our method, its practical
relevance, and its efficient use of resources make it ideally suited
to the generation of any photonic graph state from various types
of quantum emitters.

RESULTS AND DISCUSSION
Overview of the algorithm
Determining how to efficiently generate an arbitrary photonic
graph state from a set of quantum emitters is highly nontrivial and
markedly distinct from the problem of finding an efficient
quantum circuit that creates a target state on a register of
qubits38. Several additional challenges arise in the former,
including the fact that qubits are both created and removed,
and that different types of qubits (photons vs. emitters), with
different roles and allowed gates, are involved. Depending on the
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experimental setup, there may also be further restrictions, e.g.,
emitted photons cannot interact with any other qubits following
their emission (although schemes that re-interfere photons with
emitters have been proposed32,35). Our method addresses these
challenges by leveraging three main ingredients: the notion of the
height function (which is related to the entanglement entropy),
the stabilizer formalism, and the concept of time-reversed
emission events and measurements, which we introduce here.
The first insight is to utilize the so-called height function, which

is the entanglement entropy of the system as a function of the
partition point when the system is arranged in a 1D lattice and
partitioned into two subsystems39,40. This function provides
information about the entanglement structure of the target state
as well as the number of emitters required to produce it. The latter
is equal to the maximum value of the height function (see below),
which depends on the photon emission order. Optimizing this
order is NP-hard in general, although we show that heuristic
approaches exist for more structured graphs. Moreover, the height
function plays a crucial role in determining the sequence of
operations (gates and measurements) needed to generate the
target graph state from the emitters.
A second key ingredient is the use of gates from the Clifford

group. Given that arbitrary graph states can be generated solely
with Clifford gates41,42, which were also exclusively used in the
protocols of refs. 24,25,27–31,36, restricting ourselves to this set does
not affect the generality of our approach. Clifford gates enable the
use of the stabilizer formalism, such that we can manipulate Pauli
operators instead of keeping track of the whole state. This makes
the problem of finding the emission operation sequence tractable,
reducing it from exponential to polynomial scaling due to the
Gottesman–Knill theorem43.
A final key element in our algorithm is that we time-reverse the

emission sequence. That is, we start from a target multi-photon
graph state and an appropriate number of decoupled emitters
(obtained from the height function for the target state), and we
determine a sequence of emitter gates, “time-reversed measure-
ments", and “photon absorption" events such that the target state
is converted to a product state. This is somewhat reminiscent of
disentangling circuits used for quantum state tomography of 1D
systems44. The final state is a product state because, without loss
of generality, photons that have not yet been emitted can be
described by qubits prepared in the computational basis state 0j i.
Photon emission is then modeled as a two-qubit photon-emitter
gate that brings the photon from 0j i into an entangled state with
the emitters24. Because the photon absorption steps are time-
reversed versions of photon emission, these too are described by
photon-emitter gates.

The run time of the protocol solver algorithm scales as Oðn4pÞ,
where np is the number of photons in the target graph state. This
is a direct consequence of the fact that the algorithm is based on
the stabilizer formalism (see Methods section). This is in contrast
to previous methods22,23, which scale exponentially in np due to
the need to perform singular value decompositions repeatedly.
We also show that the number of gates in the final emission
sequence scales at most as Oðn2pÞ (see “Methods”). However, this
assumes two-qubit gates can be applied between any pair of
emitters. If this is not the case, then additional SWAP operations
are needed, bringing the gate count up to Oðn3pÞ. Therefore, both
the protocol solver and the resulting gate sequence obtains scale
polynomially in the size of the target graph state.
Now we provide a more detailed description of the protocol

solver algorithm. We begin with a target graph state ψp

�
�

�

of np
photons and ne decoupled emitters, so that the total state is
Ψj i ¼ ψp

�
�

�� 0j i�ne . An np= 4 photon example graph is shown in
Fig. 1a. This is what the state of the total system should be at the
end of the generation sequence. np is set by the size of the desired
photonic graph state ψp

�
�

�

, while ne remains to be determined. We
assume the graph representing ψp

�
�

�

is connected; if this is not the
case, then the algorithm can be run separately for each connected
subgraph. The state Ψj i is fully described by a set of n= np+ ne
stabilizers gm, m= 1,…, n, defined such that gm Ψj i ¼ Ψj i. The full
set of n qubits can be arranged in a 1D lattice with site index x ∈
{0, 1, 2,…, n} (see Fig. 1b). Sites x= 1,…, np correspond to the
photons and are ordered according to the desired photon
emission ordering, while the sites x= np+ 1,…, n are the emitters.
The additional x= 0 site is included as a matter of convention.
We can now define the height function h(x)= SA to be the
bipartite entanglement entropy when the 1D lattice is divided
into the subregion A= {1, 2,…, x} and its complement. Note that
SA ¼ 1

1�α log 2TrðραAÞ can be any of the Rényi entropies; for
stabilizer states, they are all equal45. In ref. 22, it was shown that
the state of the emitted photons, ψp

�
�

�

, can be represented by a
matrix product state (MPS) with bond dimension 2ne . Because the
entanglement entropy of a MPS is given by the base-2 logarithm
of the bond dimension46, it follows that ne is equal to the
maximum value of h(x). The height function for the graph in
Fig. 1a is shown in Fig. 1c. In this example, its maximum is 2,
implying 2 emitters are needed. In general, the maximum of the
height function is in fact the minimal number of emitters capable
of generating the target graph state, as fewer emitters would be
insufficient to match the bond dimension of any exact MPS
representation.
The height function can be computed efficiently from the

stabilizers. Because products of stabilizers are also stabilizers, there
are many equivalent choices for the set {gm}. Here, we focus on a
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Fig. 1 Illustration of the protocol solver algorithm. a An example of a 4-photon graph state. b The graph is mapped to a 1D lattice. c The
height function is computed and found to have maximum value 2, implying 2 emitters are needed. These are added to the 1D lattice.
d Starting from the target state and decoupled emitters, a time-reversed sequence of emitter gates, photon absorption events, and time-
reversed emitter measurements is constructed, until all qubits are disentangled. Further details about this example can be found in
the Supplementary Information.
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particular choice of the stabilizers that we refer to as the echelon
gauge47, in which the stabilizer matrix has a row-reduced echelon
form (see Methods). When the gm are in this gauge, the height
function can be expressed as47

hðxÞ ¼ n� x �# gmjlðgmÞ>xf g; (1)

where l(gm) is the index of the left-most (smallest index) site on
which gm acts nontrivially. The last term in Eq. (1) counts the
number of stabilizers that act nontrivially only on sites to the
right of (i.e., larger than) x. Although Eq. (1) depends on ne, this
dependence cancels out for states like Ψj i in which the emitters
are decoupled. Therefore we can obtain ne from the maximum of
h(x) on the photonic sites, using only the stabilizers of ψp

�
�

�

.
Once we have the number of emitters ne, we can run the

protocol solver algorithm to determine the sequence of gates,
time-reversed measurements, and photon absorption events
needed to transform the target state Ψj i into the initial state
0j i�n, which corresponds to decoupled emitters and no photons.
We first introduce a photon index j and initialize it to j= np. The
algorithm then consists of four steps:

(i) Transform the stabilizers gm into echelon gauge if they are
not already, then compute the height function h(x).

(ii) If h(j) ≥ h(j− 1), skip to step (iii). Otherwise apply a time-
reversed measurement and update the gm accordingly.

(iii) Apply a photon absorption operation on the j-th photon
and update the gm accordingly. If j > 1, then set j→ j− 1 and
go to step (i). Otherwise, go to step (iv).

(iv) All photons are now in state 0j i. Apply a series of gates on
the emitters to disentangle them, bringing the total state
to 0j i�n.

This algorithm involves repeated applications of two basic
operational primitives: time-reversed measurement and photon
absorption. During the algorithm, the height function of the
current state tells us which of these we need to perform next to
bring the state closer to 0j i�n. Each photon absorption step
disentangles one photon qubit from the rest, starting with the
last-emitted photon, j= np, and working down to the first photon,
j= 1. For our 4-photon example, the graphs at intermediate steps
of the algorithm are shown in Fig. 1d. A step by step explanation
of this example is given in the Supplementary Information. When
the algorithm concludes, we can reverse the entire sequence to
obtain an operation sequence that generates ψp

�
�

�

starting from ne
decoupled emitters. We now describe each of the two operational
primitives in more detail, the precise gates they introduce into the
generation sequence, and their connection to the height function.
Photon absorption of the jth photon refers to a time-reversed

version of photon emission. For concreteness, we focus on the
case where emission is described by a CNOT gate between the
photon and its emitter (with the emitter as the control), as in
Ref. 24, although our algorithm can be adapted to any Clifford gate
describing photon emission. Mathematically, the task of absorbing
photon j requires finding a stabilizer ga that can be transformed to
σzj by applying CNOTij, where i is an emitter site. It is possible to
find such a stabilizer when h(j) ≥ h(j− 1). From Eq. (1), we see that
this condition implies there must be at least one stabilizer, ga, such
that l(ga)= j. This stabilizer has the form

ga ¼ σαj σ
β1
i1 � � � σβs

is ; (2)

where α, βk∈ {x, y, z} label the nontrivial Pauli operators, and 1 ≤
j ≤ np < i1 <⋯ < is ≤ n. Note that we can assume ga acts trivially on
all photons with index larger than j since these have already been
decoupled at this point in the algorithm. We also assume that ga
acts nontrivially on at least one emitter site; if this is not the case,
then photon absorption is unnecessary since the j-th photon is
then already disconnected. To transform ga into σz

j , we can first
apply a local Clifford operation on the j-th site and general Clifford

operations on the emitters to transform ga ! σz
j σ

z
i , where i > np is

an emitter site. This can be done for example by applying local
Clifford operations to transform ga to σzj σ

z
i1 � � � σz

is , and then
applying CNOT gates on pairs of emitters to transform this to σz

j σ
z
i .

Applying CNOTij brings this to σz
j , completing the absorption of

the j-th photon. Note that we can choose any emitter to absorb
the photon; typically, the emitter that requires the shortest circuit
to transform ga into σz

j is preferred. The resulting circuit is included
in the time-reversed generation sequence.
Time-reversed measurements are applied whenever h(j) < h(j− 1),

in which case photon absorption is not possible. Indeed, in this
case, Eq. (1) implies #{gm∣l(gm)= j}= 0, or in other words, a
suitable ga does not exist. In order to absorb the next photon, we
must therefore first find a way to increase h(j) relative to h(j− 1).
This can be accomplished with a time-reversed measurement on
an emitter. To perform this operation, we first rotate the state to
Φj i � 0j ii , where Φj i is a stabilizer state involving photons 1,…, j
and emitters other than i. This can always be done using OðneÞ
Clifford gates on emitters when h(j) < h(j− 1) (see Methods). Now
notice that this state is obtained from the pre-measurement state
CNOTij Φj i � þj ii when emitter i is measured to be in the state 0j ii .
Therefore, starting from Φj i � 0j ii , if we perform a Hadamard
gate on emitter i followed by the gate CNOTij, we effectively
reverse the measurement on the emitter. These operations
transform the stabilizers gm in such a way that h(j) now satisfies
h(j) ≥ h(j− 1) (see Methods), and we can proceed with the next
photon absorption. The emitter gates, Hadamard on i, and CNOTij
are all included in the time-reversed generation sequence.

Examples
We demonstrate our algorithm with several examples. The first
is the important case of repeater graph states10, where we use
our algorithm to obtain generation protocols that are more
efficient than previously known ones. As a second example,
we consider random graphs containing up to hundreds of
photons and demonstrate the polynomial scaling of the
resulting generation circuits. Additional examples, including
modified repeater graph states, error correcting codes, and a
simple example that illustrates the algorithm in detail can be
found in Supplementary Notes 1–4.
Next, we apply our algorithm to find operation sequences that

produce repeater graph states10. In addition to its importance in
quantum network applications, this example also illustrates how
different photon emission orderings impact the required number
of emitters. Reference29 presented a generation protocol for a
particular ordering that was devised essentially through guess-
work. Our algorithm can be used to systematically find protocols
for any ordering. An example of a 12-photon repeater graph state
is shown in Fig. 2a. The graph contains a fully connected core of 6
photons, each of which is connected to a single external photon.
Bell measurements are performed on pairs of these external
photons, where the two photons in each pair come from different
graph states. If a Bell measurement succeeds, then the two
corresponding core photons are linked by an edge, and
entanglement extends across two nodes of the repeater network.
Having multiple external photons provides built-in redundancy
that increases the likelihood that at least one Bell measurement
between two repeater graph states is successful. Upon success,
core photons are then measured in the z or x basis to remove
photons connected to failed measurements or to create
entanglement links between successful measurements, respec-
tively. Because the external photons are measured first, it may be
advantageous to emit these first when generating the graph state
to reduce photon storage requirements. This corresponds to
the photon ordering shown in Fig. 2a. The height function for this
graph and photon ordering is shown in Fig. 2d, where it is evident
that 6 emitters are needed to produce the state. However, if
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efficient photon storage is available, then the ordering shown in
Fig. 2b may be preferable, where now external and core photons
are emitted in an alternating sequence. This ordering reduces the
number of emitters down to only 2, as shown in Fig. 2e. As we
discuss further below, this illustrates our general finding that
“natural” orderings in which neighboring vertices are emitted
around the same time reduce the requisite number of emitters.
This reduction in quantum resources becomes still more dramatic
as the size of the graph increases; for orderings as shown in
Fig. 2a, the number of emitters scales linearly with photon
number, while for the natural ordering of Fig. 2b, the number of
emitters remains at 2 regardless of the number of photons. This is
shown explicitly in the Supplemental Information.
As discussed in ref. 36, some of the edges in the repeater graph

can be removed without affecting the functionality of the
repeater. Figure 2c shows an example of this in which 4 of the
core edges are deleted. As shown in Fig. 2f, the number of
emitters is still 2. However, removing the redundant edges
reduces the depth of the resulting generation circuit, which is
shown in Fig. 2g. This circuit contains four CNOTs between
emitters and 1 intermediate measurement on an emitter, whereas
the original protocol presented in ref. 29 requires five two-qubit
gates and five intermediate measurements.
To demonstrate how our algorithm scales with the number of

photons in the target state, we run it for random graphs ranging
in size from np= 16 to np= 256 photons. These graphs are
produced randomly using the Erdös–Rényi model48. In this
approach, each random graph is constructed by connecting np
vertices randomly with fixed probability p. We discard any graphs
that contain disconnected vertices when sampling these realiza-
tions. The likelihood that such graphs arise becomes very small if
p is chosen sufficiently close to 1. In Fig. 3, we show the maximum
value, hmax, of the height function averaged over 1024 realizations
for each value of np. Averaged measurement and gate counts are
also shown. It is evident that hmax, and hence the number of
emitters, scales linearly with np as np becomes large. The same is
also true of the number of measurements. On the other hand, the
number of CNOTs and the total number of gates in the resulting
generation circuits scale quadratically with the number of photons
in the target state. These results confirm both the polynomial
scaling of our algorithm, which allows us to easily find generation
protocols for graph states containing hundreds of photons, and
the polynomial scaling of the resulting protocols, which makes
them practical for near-term experiments.

Photon emission ordering
A powerful feature of our algorithm is that it readily incorporates a
desired photon emission ordering. This is encoded when
we arrange the photons and emitters in a 1D lattice to define
the height function. If no specific ordering is preferred, then
ideally we would want to choose the ordering that minimizes the
number of emitters ne. However, the task of finding this optimal
ordering is NP-hard, as we show in Methods. Nevertheless, one
can still look for heuristic solutions to the problem. In fact, the
expression for the height function in Eq. (1) makes it clear that this
function is suppressed for orderings in which the stabilizers, when
expressed in the echelon gauge, are supported predominantly on
high-index sites on the right side of the 1D lattice. This tends to
occur for “natural" orderings in which neighboring photons in the
graph are emitted around the same time, because in this case the
stabilizers are localized on the 1D lattice. This was illustrated with
our repeater graph state example in the previous section. The
extent to which the stabilizers can be localized in this way
depends on the graph of course. For an N ×M square lattice, it is
inevitable that some neighboring vertices will be separated by
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Fig. 2 Results for repeater graph states. a 12-photon repeater graph state in which external photons are emitted first. b Same graph state as
in (a), but with “natural" emission ordering. c Same graph state as in (b) but with some unnecessary edges deleted. (d), (e) and (f) show the
height functions of the states in (a), (b), and (c), respectively. g Emission circuit for state shown in (c), where H is the Hadamard gate, P= diag
(1, i) is the phase gate, and X≡ σx.
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0.95. Dashed curves are included to show the scaling with np and n2p.
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M steps in the emission sequence (assuming M < N), and so the
number of emitters is of order M. On the other hand, for other
graph structures like those of the repeater graph states, far fewer
emitters may be needed, provided a natural photon ordering is
used. Note that in this example, as for many graphs, edges
between remote vertices cannot be avoided (see Fig. 2b). Despite
this, we showed that optimal orderings for which the height
function remains small can still be found. Thus, emitting
neighboring vertices around the same time is sufficient but not
always necessary to keep the number of emitters small.
In summary, we presented an efficient algorithm to construct

polynomial-depth operation sequences that produce arbitrary
multi-photon graph states from a minimal number of quantum
emitters. By reducing both the number of photon sources and the
number of quantum operations that need to be performed on
them, our method brings the wide range of quantum information
applications that rely on entangled photon resource states closer
to experimental reality.

METHODS
Echelon gauge
The echelon gauge was first defined in ref. 47, where it was called row-
reduced echelon form. In this gauge, the stabilizer tableau has a recursive
row-reduced form based on the following three types of matrices:

where σ, σ1, and σ2 are nontrivial Pauli matrices, and σ1 ≠ σ2. In this work,
we always choose σ2= σz, and σ1 can be either σx or σy. The full tableau
cannot have the first form shown above (with only identities in the first
column), because this case does not apply to pure states. However, the
submatrix M can follow any of the above three patterns, and the
structure iterates recursively. The stabilizers can be transformed into this
gauge starting from any other by performing a series of row reductions,
as described in Ref. 47. In the echelon gauge, the independent stabilizers
acting on A ¼ fx þ 1; ¼ ; ng appear at the bottom right of the tableau.
Therefore, starting from the formula for the entanglement entropy for
subregion A of a stabilizer state49, SA ¼ nA � jGAj, where nA is the size of
A and jGAj is the number of independent stabilizers acting on A, and
using hðxÞ ¼ SA ¼ SA , we obtain Eq. (1).

Time-reversed measurements
Above, we saw that when the total state of the system has the form
Φj i � 0j ii , where i is an emitter site, we can perform a time-reversed
measurement to convert this to the pre-measurement state CNOT
CNOTij Φj i � þj ii . Here, we clarify two important questions regarding this
process: (i) When and how can we bring the system into the state
Φj i � 0j ii? (ii) How can we see that a time-reversed measurement on
this state increases h(j), as needed for a subsequent photon absorption
process?
Regarding question (i), when h(j) < h(j− 1), we can always find a set of

Clifford gates that act purely on the emitters that will transform the state of
the system into Φj i � 0j ii . To see this, first note that h(j)= h(np), as follows
from Eq. (1) when photons j+ 1 through np are in state 0j i. Using that the
height function is bounded from above by ne, we then have h(np)= h(j) < h
(j− 1)≤ne. On the other hand, from Eq. (1) we have h(np)= ne− #{gm∣l(gm)
> np}. Together, these results imply #{gm∣l(gm) > np} > 0, or in other words,
there is at least one stabilizer that is supported solely on the emitter sites.
We can therefore transform this stabilizer into σzi using at most OðneÞ
Clifford gates on the emitters, bringing the state to Φj i � 0j ii . We can then
convert this stabilizer to σxi by applying a Hadamard gate on site i. This
prepares the system for the second part of the time-reversed measure-
ment process, which is the gate CNOTij.
We answer question (ii) by proving the following theorem:

Theorem 1: If h(j) < h(j− 1) and the i-th qubit (i > j) is stabilized by σxi ,
then applying CNOTij will boost h(x)→ h(x)+ 1, ∀ x∈ {j, j+ 1,⋯ , i− 1}.
Proof: We are assuming that h(j) < h(j− 1), which from Eq. (1) implies

#{gm∣l(gm)= j}= 0. Now consider how the stabilizers transform under
CNOTij. If l(gm) < j before the gate, then l(gm) remains invariant, and the
contributions of these stabilizers to h(x) remain the same after the gate.
The only potential changes to h(x) come from stabilizers gm for which l
(gm) > j. These stabilizers necessarily have 1 on the j-th site. Stabilizers
among this set that have 1 or σzi on the i-th site will be unchanged by the
CNOTij gate. However, if one or more of these stabilizers have σxi or σyi
before the gate, then afterward, these stabilizers will contain σxj .
Consequently, h(j) increases, while h(j− 1) remains the same. In the
echelon gauge, there can only be one stabilizer with σxj as the left-most
nontrivial Pauli. Therefore, h(j)→ h(j)+ 1 when CNOTij is applied. Moreover,
if the ith qubit is stabilized by σxi , then this becomes σxj σ

x
i after the gate,

and so the height function for all sites between j− 1 and i increases:
h(x)→ h(x)+ 1 ∀ x∈ {j, j+ 1,⋯ , i− 1}. □

Scaling analyses
Here, we determine the complexity of both the protocol solver
algorithm itself and the resulting graph state generation circuit.
Regarding the algorithm, the main factor that determines the complex-
ity is the need to restore the stabilizers to the echelon gauge after each
operation is applied. Transforming a n-qubit stabilizer state into the
echelon gauge generally requires Oðn3Þ steps, which is the complexity
of Gaussian elimination. Another important factor is the process of
determining which gates need to be applied in preparation for photon
absorption or time-reversed measurement. Solving for each set of gates
takes no more than OðnenÞ steps, which is the number of entries in the
emitter part of the stabilizer tableau. Thus, the Gaussian eliminations
needed to restore echelon gauge dominate the scaling. In the worst
case where ne ∝ n, our algorithm will then take Oðn4Þ steps, where the
additional factor of n comes from the fact that the algorithm requires
OðnpÞ � OðnÞ iterations.
As for the complexity of the output generation circuit, there are at most

OðneÞ operations between any two photon emissions. For example, OðneÞ
gates are needed to transform ga into the appropriate form for photon
absorption. Thus, the depth of the circuit acting on the emitter qubits is at
most OðnpneÞ. In the worst case where ne ~ np, the scaling is then Oðn2pÞ,
which is consistent with Fig. 3. Nevertheless, due to the fact that some
long-range two-qubit gates may arise, and given that these are usually
decomposed as OðneÞ short-ranged two-qubit gates in real devices, the
overall circuit depth may become Oðnpn2eÞ.

Complexity of finding optimal photon emission orderings
We can show that the task of finding optimal emission orderings is
NP-hard by mapping this to a known graph theory problem. Define Γij to
be the adjacency matrix of the graph representing the target state Ψj i.
References. 45 showed that we can obtain the height function from Γij
using the formula hðxÞ ¼ rank2ðΓAAÞ, where ΓAA is the submatrix of Γij with
row indices i ∈ A= {1, 2,⋯ , x} and column indices j 2 A. Note that this
expression does not simplify the computation of h(x); it can take more
steps to find the maximum compared to using Eq. (1) since the former
performs Gaussian eliminations for OðnpÞ rounds, while the latter only
takes one round. However, the maximum value of this alternative
expression for h(x) is precisely equal to a graph theoretic property known
as linear rank-width (LRW)50. The task of finding an optimal photon
emission ordering is therefore equivalent to finding the graph
isomorphism that minimizes the LRW, which has long been studied in
coding theory in the context of optimizing block code trellises51.
Unfortunately, determining whether a simple connected graph has an
LRW bounded from above by a positive integer k (i.e., maxxhðxÞ � k) has
been shown to be NP-hard52,53. Therefore, it is unlikely this problem can
be solved efficiently for large, arbitrary photonic graph states unless P=
NP. Nevertheless, if the parameter k is set to 1, this problem can be
answered in polynomial time54. If the parameter k is set to larger values,
a recent work55 showed that this problem can be reduced to a fixed
parameter tractable problem. Specifically, its answer, along with the
sequence solution (if it exists), can be determined in Oðf ðkÞn3pÞ steps,
where f(k) is an exponentially large function of k. However, the growth of
f(k) is so rapid that this result is not likely to be of practical use for
photonic graph state generation.
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