Physics 5456 - Problem set 10

Klein-Gordon Foldy-Wouthuysen

In a previous homework assignment, you showed that the Klein-Gordon equation in an electromagnetic field could be written in the form

$$
i \hbar \frac{\partial \Phi}{\partial t}=H \Phi
$$

where

$$
\begin{aligned}
\Phi & =\left[\begin{array}{c}
\theta \\
\chi
\end{array}\right] \\
\theta & =\frac{1}{2} \varphi+\frac{1}{2 m c^{2}}\left(i \hbar \frac{\partial}{\partial t}-e V\right) \varphi \\
\chi & =\frac{1}{2} \varphi-\frac{1}{2 m c^{2}}\left(i \hbar \frac{\partial}{\partial t}-e V\right) \varphi
\end{aligned}
$$

φ the Klein-Gordon field, with

$$
\begin{aligned}
H & =\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right] \frac{\vec{\pi}^{2}}{2 m}+\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] m c^{2}+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] e V, \\
& =\sigma^{3} m c^{2}+\left(e V+\sigma^{3} \frac{\vec{\pi}^{2}}{2 m}\right)+\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \frac{\vec{\pi}^{2}}{2 m}
\end{aligned}
$$

and $\vec{\pi}=\vec{p}-(e / c) \vec{A}$.
In this problem you will apply that result.
Apply a Foldy-Wouthuysen transformation of the form

$$
\Phi=e^{-i S} \Phi^{\prime}
$$

to derive

$$
i \hbar \frac{\partial \Phi^{\prime}}{\partial t}=H^{\prime} \Phi^{\prime}
$$

and find an S (motivated by our work on the Dirac equation) such that, for static external fields, and for a single transformation,

$$
\begin{aligned}
H^{\prime}= & \sigma^{3}\left(m c^{2}+\frac{\vec{\pi}^{2}}{2 m}-\frac{\vec{\pi}^{4}}{8 m^{3} c^{2}}\right)+e V+\frac{1}{32 m^{4} c^{4}}\left[\vec{\pi}^{2},\left[\vec{\pi}^{2}, e V\right]\right] \\
& +\frac{1}{m c^{2}} \sigma^{3}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left(\frac{1}{2}\left[\frac{\vec{\pi}^{2}}{2 m}, e V\right]-\left(\frac{\vec{\pi}^{2}}{2 m}\right)^{2}\right)+\cdots
\end{aligned}
$$

where we have omitted higher-order terms in $1 / m$.

