Physics 5456 - Problem set 3

H_{2}^{+}ion: overlap, Coulomb, exchange integrals

In this problem, you will compute the overlap, Coulomb, and exchange integrals appearing in the analysis of the hydrogen molecular ion.

Let

$$
r_{1,2}=\left|\vec{r}-\vec{R}_{1,2}\right|=\sqrt{\rho^{2}+(z \mp R / 2)^{2}}
$$

denote the distance between the electron and the two nuclei, in cylindrical coordinates oriented so that both nuclei lie along the z axis, equidistant from the origin. Define the elliptical coordinates

$$
\xi=\left(r_{1}+r_{2}\right) / R, \quad \eta=\left(r_{2}-r_{1}\right) / R
$$

1. Show that $1 \leq \xi<\infty,-1 \leq \eta \leq 1$.
2. Show that the Jacobian for converting $d \rho d z$ to $d \xi d \eta$ is given by

$$
\frac{R^{3}}{8 \rho}\left(\xi^{2}-\eta^{2}\right)
$$

For the next parts, use the hydrogen ground state wavefunction

$$
\varphi(\vec{r})=\left(\pi a^{3}\right)^{-1 / 2} e^{-r / a}
$$

where a is the Bohr radius.
3. Compute the overlap integral $S(R)=\left\langle\varphi_{1} \mid \varphi_{2}\right\rangle$.
4. Compute the direct Coulomb integral $D(R)=e^{2}\left\langle\varphi_{1}\right| r_{2}^{-1}\left|\varphi_{1}\right\rangle$.
5. Compute the exchange Coulomb integral $X(R)=e^{2}\left\langle\varphi_{1}\right| r_{2}^{-1}\left|\varphi_{2}\right\rangle$.

