Physics 5456 – Problem set 4

- 1. Sudden approximation: α decay When an atomic nucleus undergoes α decay, its nuclear charge changes suddenly from Z to Z 2. Assume the electronic state of the atom can be described by the Coulomb potential eigenstates for a single electron, and use the sudden approximation to compute
 - (a) the probability for the atom to remain in the ground state,
 - (b) the transition probability from the 1s into the 2s and 2p final states.
- 2. Harmonic oscillator transition rates A particle with mass m and charge q is confined by a one-dimensional harmonic oscillator potential $V(x) = (1/2)m\omega^2 x^2$, and exposed to a weak electric field $E_x(t)$.
 - (a) Determine the time-dependent perturbation Hamiltonian H'(t), if

$$E_x(t) = E_0 \exp(-t^2/\tau^2).$$

- (b) Compute the transition probability induced by this electric field from the ground state (at $t = -\infty$) to any excited state ($t = +\infty$). Discuss the limits $\omega \tau \to 0$, $\omega \tau \to \infty$.
- (c) Consider a weak oscillating field $E_x(t) = 2E_0 \cos(\Omega t)\theta(t)$ (where $\theta(t)$ is the unit step function, nonzero for t > 0). Find the transition probability from the ground state to any excited state at short times, and determine the corresponding transition rates as $t \to \infty$.