Physics 5456 - Problem set 6

1. Consider scattering in the potential

$$
V(r)=\left\{\begin{array}{cc}
0 & r>R \\
V_{0} & r<R
\end{array}\right.
$$

for some constant V_{0}. Use the Born approximation to compute the scattering amplitude $f_{k}(\theta, \phi)$.
2. Hard sphere scattering Consider scattering off a rigid sphere defined by the potential

$$
V(r)=\left\{\begin{array}{cc}
0 & r>R \\
\infty & r<R .
\end{array}\right.
$$

(a) By considering the boundary condition on the wavefunction, derive an exact expression for $\tan \delta_{\ell}$.
(b) Derive a simple expression for the phase shift δ_{ℓ} for $\ell=0$. (HInt: refer to Schwabl section 17.2 for information on spherical Bessel functions.) (For credit, do not merely refer to your answer to the prevous part and say, set $\ell=0$.)
(c) Estimate δ_{ℓ} for small $k R$, and show that in this regime, the largest phase is δ_{0}.
(d) Compute the s-wave contribution to the total scattering cross section, and compare to the geometric cross-section of the rigid sphere in the limit of small $k R$.

