Physics 4674/5674 - Problem set 1

On this homework I'll often use Roman indices i, j instead of Greek indices μ, ν. This doesn't mean anything, the indices can be written either way.

1. $\mathrm{C} 1.6(\mathrm{C}=$ Carroll $)$
2. Let $a_{i j}, a_{i j k}$ be indexed numbers, which are symmetric in their indices, show that
(a)

$$
\frac{\partial}{\partial x^{i}}\left(a_{j k} x^{j} x^{k}\right)=2 a_{i j} x^{j}
$$

(b)

$$
\frac{\partial^{3}}{\partial x^{i} \partial x^{j} \partial x^{k}}\left(a_{p q r} x^{p} x^{q} x^{r}\right)=6 a_{i j k}
$$

Note the a 's are not quite tensors, since they are just indexed numbers, but they do give an excuse for doing tensor-type manipulations.
3. (a) If $a_{j i k}=-a_{k j i}$, show that $a_{i j k}=0$.
(b) If $a_{i j k}=a_{j i k}=-a_{i k j}$, show that $a_{i j k}=0$.
4. If $a_{i j}=-a_{j i}$, and $b^{i j}=+b^{j i}$, show that

$$
\left(\delta_{k}^{i} \delta_{\ell}^{j}+\delta_{\ell}^{i} \delta_{k}^{j}\right) a_{i j}=0
$$

and that $a_{i j} b^{i j}=0$.
5. Show that, although $T_{i j}=T_{(i j)}+T_{[i j]}$, it is not, in general, true that $T_{i j k}=T_{(i j k)}+T_{[i j k]}$.
6. Show that, if the skew symmetric covariant tensor T of type $(0,2)$ is such that

$$
T_{i j}=u_{i} v_{j}-u_{j} v_{i}
$$

for some covector components u_{i}, v_{j}, then

$$
T_{i j} T_{k \ell}+T_{i k} T_{\ell j}+T_{i \ell} T_{j k}=0
$$

(These relations are known as the Plücker relations.)
7. Show that a general $(2,0)$ tensor with components $a^{i j}$ cannot always be written $a^{i j}=$ $u^{i} v^{j}$ for any u^{i}, v^{j}. (Hint: compare the number of components.)
8. If V is a $(0,1)$ tensor and S a $(2,0)$ tensor, show that $V_{\mu} S^{\mu \nu}$ transform as the components of a $(1,0)$ tensor.

