Physics 4674/5674 – Problem set 1

On this homework I'll often use Roman indices i, j instead of Greek indices μ, ν . This doesn't mean anything, the indices can be written either way.

- 1. C 1.6 (C = Carroll)
- 2. Let a_{ij} , a_{ijk} be indexed numbers, which are symmetric in their indices, show that (a)

$$\frac{\partial}{\partial x^i} \left(a_{jk} x^j x^k \right) = 2a_{ij} x^j$$

(b)

$$\frac{\partial^3}{\partial x^i \partial x^j \partial x^k} \left(a_{pqr} x^p x^q x^r \right) = 6 a_{ijk}$$

Note the *a*'s are not quite tensors, since they are just indexed numbers, but they do give an excuse for doing tensor-type manipulations.

- 3. (a) If a_{jik} = -a_{kji}, show that a_{ijk} = 0.
 (b) If a_{ijk} = a_{jik} = -a_{ikj}, show that a_{ijk} = 0.
- 4. If $a_{ij} = -a_{ji}$, and $b^{ij} = +b^{ji}$, show that

$$\left(\delta_k^i \delta_\ell^j + \delta_\ell^i \delta_k^j\right) a_{ij} = 0$$

and that $a_{ij}b^{ij} = 0$.

- 5. Show that, although $T_{ij} = T_{(ij)} + T_{[ij]}$, it is not, in general, true that $T_{ijk} = T_{(ijk)} + T_{[ijk]}$.
- 6. Show that, if the skew symmetric covariant tensor T of type (0,2) is such that

$$T_{ij} = u_i v_j - u_j v_i$$

for some covector components u_i, v_j , then

$$T_{ij}T_{k\ell} + T_{ik}T_{\ell j} + T_{i\ell}T_{jk} = 0$$

(These relations are known as the Plücker relations.)

- 7. Show that a general (2,0) tensor with components $a^{ij} \operatorname{can} not$ always be written $a^{ij} = u^i v^j$ for any u^i, v^j . (Hint: compare the number of components.)
- 8. If V is a (0,1) tensor and S a (2,0) tensor, show that $V_{\mu}S^{\mu\nu}$ transform as the components of a (1,0) tensor.