Physics 4674/5674 - Problem set 3

Both 4674 83574:

1. C 1.12
2. A particle moving in one dimension has the classical action

$$
S=\int d t\left(\frac{1}{2} m \dot{x}^{2}+\lambda x(\ddot{x})^{2}\right)
$$

Use functional derivatives and Hamilton's least-action principle to derive the classical equations of motion of this particle.
3. A real Klein-Gordon field with interactions is defined by the following action:

$$
S=\int d^{4} x\left(\partial_{\mu} \phi \partial^{\mu} \phi+\lambda \phi^{4}+\mu \phi^{6}\right)
$$

Use functional derivatives and Hamilton's least-action principle to derive the classsical equations of motion of this field.
4. C 2.1
5. C 2.3

Only 5674:
6. Fermat's principle of optics states that a light ray will follow the path for which

$$
\int n(x, y) d s
$$

is a minimum, where n is the index of refraction, and the infinitesimal arc length

$$
d s=\left(\dot{x}^{2}+\dot{y}^{2}\right)^{1 / 2} d t=\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)^{1 / 2} d t
$$

For simplicity let us restrict to motion in two dimensions. Suppose that $n(r, \theta)=r^{k}$. Show that when $k=-1$, a light ray can travel in a circle about the origin.

