Physics 4674/5674 - Problem set 5

4674 \& 5674:

1. C 2.8
2. On an n-dimensional manifold, what can you say about any $(n+1)$-form?
3. Let f, g be smooth functions on \mathbf{R}^{2}. Show that

$$
d f \wedge d g=\operatorname{det}\left[\begin{array}{cc}
\partial_{1} f & \partial_{2} f \\
\partial_{1} g & \partial_{2} g
\end{array}\right] d x^{1} \wedge d x^{2}
$$

4. Determine $\omega \wedge \cdots \wedge \omega$ (n factors), where ω is given by

$$
\omega=d x^{1} \wedge d x^{2}+d x^{3} \wedge d x^{4}+\cdots+d x^{2 n-1} \wedge d x^{2 n}
$$

5. Show that the two-form $\omega_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$ is closed if and only if

$$
\partial_{\rho} \omega_{\mu \nu}-\partial_{\nu} \omega_{\mu \rho}+\partial_{\mu} \omega_{\nu \rho}=0
$$

for all μ, ν, ρ.
6. Show that the form

$$
\omega=\frac{1}{r^{n}} \sum_{\mu=1}^{n}(-)^{\mu-1} x^{\mu} d x^{1} \wedge \cdots \wedge d x^{\mu-1} \wedge d x^{\mu+1} \wedge \cdots \wedge d x^{n}
$$

is closed, where

$$
r^{2}=\sum_{\mu}\left(x^{\mu}\right)^{2}
$$

7. Show that

$$
\nabla_{\mu} V_{\nu}-\nabla_{\nu} V_{\mu}=\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}
$$

for ∇ torsion-free.
8. C 3.3
9. C 3.5

5674 only: (Lie derivatives problems, see appendix B)
10. Show that, for a tensor field T and vector fields X, Y,
(a)

$$
\mathcal{L}_{a X+b Y} T=a \mathcal{L}_{X} T+b \mathcal{L}_{Y} T
$$

(a, b constants)
(b)

$$
\mathcal{L}_{X}\left(\mathcal{L}_{Y} T\right)-\mathcal{L}_{Y}\left(\mathcal{L}_{X} T\right)=\mathcal{L}_{[X, Y]} T
$$

11. Show that for vector fields X, Y, Z,

$$
\mathcal{L}_{X} \mathcal{L}_{Y} Z+\mathcal{L}_{Y} \mathcal{L}_{Z} X+\mathcal{L}_{Z} \mathcal{L}_{X} Y=0
$$

12. Show that for vector fields X, Y and f a function,

$$
\mathcal{L}_{f X} Y=f \mathcal{L}_{X} Y-(Y f) X
$$

13. Show that if ω is a p-form,

$$
\mathcal{L}_{X}(d \omega)=d\left(\mathcal{L}_{X} \omega\right)
$$

