Physics 4674/5674 - Problem set 6

4674 \& 5674:

1. Compute the Ricci scalar of the Poincaré plane in two dimensions, defined by the metric

$$
d s^{2}=\frac{a^{2}}{y^{2}}\left(d x^{2}+d y^{2}\right)
$$

over the region $\{y>0\}$.
2. Prove the Bianchi identity $\nabla_{[\alpha} R_{\rho \sigma] \mu \nu}=0$. (Hint: work in locally inertial coordinates.) This is in the text, and we did it in class, but because of its importance, I want you to work through it for yourselves.
3. C 3.7 (Warning: the basic idea is simple but there's a lot of algebra)
4. C 3.10

5674 only:
5. Let ∇ be a covariant derivative (not necessarily metric-compatible or torsion-free) on a manifold M. Let ω be a 1-form on M and let X, Y be vector fields on M. Show that $\tilde{\nabla}$, defined by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\omega(X) Y+\omega(Y) X
$$

is also a covariant derivative on M, in the sense of satisfying the identities
(a) $\tilde{\nabla}_{f X+g Y} Z=f \tilde{\nabla}_{X} Z+g \tilde{\nabla}_{Y} Z$ for functions f, g and vector fields X, Y, Z
(b) $\tilde{\nabla}_{X}(a Y+b Z)=a \tilde{\nabla}_{X} Y+b \tilde{\nabla}_{X} Z$ for constants a, b
(c) $\tilde{\nabla}_{X}(f Y)=f \tilde{\nabla}_{X} Y+(X f) Y$
and also show that $\tilde{\nabla}$ has the same torsion as ∇.
6. Let ∇ be a covariant derivative with nonzero torsion tensor T on some manifold M, and let X, Y be vector fields on M. Show that $\tilde{\nabla}$, defined by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y-T(X, Y)
$$

is a covariant derivative on M (in the sense of obeying the identities of the previous problem) with torsion $-T$. Show also that ∇^{\prime} defined by

$$
\nabla_{X}^{\prime} Y=\frac{1}{2}\left(\nabla_{X} Y+\tilde{\nabla}_{X} Y\right)
$$

is a covariant derivative (in the sense of obeying the identities of the previous problem) with vanishing torsion.

