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This talk will concern mirror symmetry,
an old example of a duality in string theory,
which has taken a variety of forms over the years.

Originally, mirror symmetry was a relation between Calabi-Yau manifolds, interpreted as a
duality of 2d supersymmetric sigma model.

Two Calabi-Yau manifolds are said to be mirror if the two SCFT’s are isomorphic,
related ultimately by flipping a left U(1)r sign convention.

Implications:

e Hodge diamonds rotated:
If X, Y are mirror CYs, then dim X =dim Y (=n) and hr.9(X) = hn-r.a(Y).

* TFT’s interchanged:

A modelon X=B modelon Y

e Quantum physics of one = classical physics of other



Example of a mirror: T2

T2 is self-mirror;
mirror symmetry ~ T-duality.

Hodge diamond: 1 1

— symmetric under rotation
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Example of a mirror: K3 manifnld

K3 is also self-mirror;
complex, Kahler structures interchanged
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Example of a mirror: quintic 3-fold

The quintic (degree 5 hypersurface in P4 is a nontrivial CY
which is not self-mirror.

Hodge diamonds:

Quintic Mirror
1 1
0 0 0 ()
0 1 0 0 101 ()
1 101 101 1 i 1 1
§ 1 0 () 101 §
0 0 0 0



Mirror symmetry for non-CY spaces

Mirror symmetry has also been defined for non-Calabi-Yau spaces.

Here, the mirror is a Landau-Ginzburg theory
(meaning, typically, free fields + superpotential).

A model on space = B-twisted LG theory

If the space is not CY (up to 2-torsion),
then no B-twist exists,
so the statement above is the best possible rel’n between TFTs.

Example: Mirror of P" is LG model with n chiral superfields

and superpotential

W = exp(—Y;) + - + exp(—=Y,) + QHCXP(+Yi)
i=1

This will be the prototype for the mirrors we will construct in this paper,
SO let’s take a little time to analyze in detail....



Example: Mirror of P" is LG model with n chiral superfields

and superpotential

W = exp(=Y)) + - + exp(=Y,) + q] | exp(+ )
i=1

In the B model, correlation functions are classical,
determined by the critical locus, meaning, solutions of dW = 0.
(Reason: bosonic potential = |dW|*)
Here, critical locus is given as follows:

ow L
O_Yj = —exp (—YJ) + qgexp (+Yl-)

0= eXp (_Yj) = CIHeXP(‘i'Yi) independent of J
i=1

Define o0 = exp (-YJ-) then on the critical locus,

exp (—Yj> = quXp(+Yi) > 0 = 9— or more simply, c
i=1

n+l1

This matches the quantum cohomology relation of the A model on P”.

Critical locus of B model mirror ~ quantum cohomology of A model



Example: Mirror of P" is LG model with n chiral superfields
and superpotential

W = exp(=Y)) + - + exp(=Y,) + q] | exp(+ )
i=1

Now, let’s compare correlation functions. On S2, in the B model,

(f) = 2% where  H = det *W

vacua

Here, can show H = (n+ 1)0¢" on the critical locus

k

(6") = 2 4 ~ sum over (n+1)th roots of unity (well, q)
, (n+ 1)o" ’

6n+1=

so = 0 if k-n not divisible by n+1.

Nonzero B model correlation functions: (o"Tdntly = gd



Example: Mirror of P" is LG model with n chiral superfields

and superpotential

W = exp(=Y)) + - + exp(=Y,) + q] | exp(+ )
i=1

Nonzero B model correlation functions: (o™ Tty = gd
Compare results for A model on P":

o~ generator of H*(P")

(c*) ~ qu[ o~ My = P" M, = POHDE@D-1 = prdo+D)
d M 4

The integral is nonzero only if ¢* is a top-form,
hence,
the nonzero A model correlation functions are

<6n+d(n+1)> — qd

Matches B model result, as expected.



Mirrors of this form can be efficiently computed using
Hori-Vafa’s construction of abelian duality.  (Hori, Vafa hepth/0002222)

They have a general prescription for mapping
2d susy abelian gauge theories to LG models.

(Today'’s talk will describe a generalization to nonabelian 2d theories.)

For P, for example,
we describe it as a U(1) gauge theory with n+1 chiral superfields of charge +1.

n+1 n+1
Hori-Vafa prescription gives W = (;<Z Y, — ;) n Zexp <_Yi>
i=1 i=1
n+1
Integrate out o to get the constraint Z Y, =1
i=1
Eliminate ¥,,,: Y1 =t — )Y
i=1

S

n

Plug backin: W = Zexp (-Y;) + quxp (+Y;)  as used previously.
i=1 i=1

General case next....



Hori-Vafa abelian duality (Hori, Vafa hepth/0002222)

U(1)" gauge theory with matter multiplets of charges pi'

Mirror:

Fields % aef{l,,r} o0,=D/D_V,

Y: mirror to matter fields

Superpotential:
W = 2%(20in - ta> + Zexp (=Y

Periodicities:
Y ~ Y4 27i 0 ~ 0+ 2np

After all, in 2d, the theta angle acts like an electric field, and periodicity on a noncompact
space is determined by screening by matter fields.

Proposed nonabelian generalization....



Our nonabelian proposal

For a G gauge theory, pick a Cartan torus U(1)r c G.
Matter multiplets in representation p .

Mirror. Weyl-group orbifold of the following LG model:

Fields a€{l,,r} ¢6,=D,D]V,
Y! mirror to matter fields
X corresponding to nonzero roots of g

Superpotential:

W = 26a<2pi‘lYi— Y atlnx; - ta> + Yew(-r) + Yx,
a i 1 i

l

p; = weight vector

a; = root vector

Idea: “Abelian duality in Cartan torus, at generic pt on Coulomb branch”
Periodicities:
Y' ~ Y+ 27i 0 ~ 6+2zM for M the lattice gen’ by
weights of matter fields.

After all, in 2d, the theta angle acts like an electric field, and periodicity on a noncompact
space is determined by screening by matter fields.



Our nonabelian proposal

Fields % aef{l,,r} o6,=D,D_V,
Y! mirror to matter fields
X corresponding to nonzero roots of g

Superpotential:

W = 26a<2pi‘lYi— Y atlnx; - ta> + Yew(-r) + Yx,
a i 1 i

l

p; = weight vector

a; = root vector

Weyl-group orbifold:

The Weyl orbifold maps weights to weights
Yie ¥ Yot = ) oupf

and roots to roots
a a
a a

and so manifestly preserves the superpotential.



Weyl-group orbifold:

The Weyl orbifold maps weights to weights Y/ — ¥/ Z Capi Z Cabj

a
and roots to roots Xﬂ = X Z o,; Z o, a~

Existence of B twist:

Mirror symmetry should map the original A-twisted gauge theory
to a B-twist of the Landau-Ginzburg orbifold.

For the closed string B model to exist,

the orbifold must preserve the hol’ top form up to a sign.
(ES, hepth/0605005)

The Weyl group orbifold satisfies this property:

Each Weyl reflection interchanges Ys with Ys and Xs with Xs,
SO as a result, for example,

dX{ A -+ ANdX, = ETdX; A ANdX,

and so the holomorphic top-form changes by at most a sign.

— S0, the proposal is compatible with existence of B twist.



Twisted masses:

If the original gauge theory has twisted masses,
they can be incorporated into the mirror by adding a term to the mirror superpotential:

W = Z%(Zﬂfyi— ZOCEIHX,;— ta> — ZmiYi+ Zexp (—Yi) + ZXﬂ
a I 7 i i 7

R charges:

Note:
e only integral R charges are A-twistable

e positivity of bosonic potentials constrains values
Result: R charge € {0,1,2}

Mirror to a field with nonzero R charge: fundamental field is exp(- (r/2) Y)

Example: X fields above are (morally) mirror to fields of R charge 2



Operator mirror map:

To make this useful, we need to relate correlators in the original gauge theory
to correlators in the mirror Landau-Ginzburg orbifold.

We can derive such a map from the critical locus of the mirror superpotential:

W = fo(ZPaYl ZaglnXﬂ— ta> — Zn”ziYi+ Zexp(—Yi) + ZXﬂ
2 i i 2

a_W= 26a~+1=0 =>Xﬂ=20aag

0 :
O = Yot = —exp(=¥) =0 > exp(=¥) + i = Y o

In this fashion, we can match correlation functions in the original (A-twisted) gauge theories
with correlation functions in the mirror (B-twisted) Landau-Ginzburg orbifolds.



Correlation functions:

Here’s a formal argument comparing correlation functions in the proposed mirror
to those in the original A model.

J
Briefly, ) = 2 Hi-g on a genus g worldsheet

critical loci

where H is determinant of matrix of second derivatives on the critical locus:
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H = (detA)det(D — CA~'B) = (det A)det(—CA~'B)



Correlation functions:

Here’s a formal argument comparing correlation functions in the proposed mirror
to those in the original A model.

J
Briefly, ) = 2 Hi-g on a genus g worldsheet

critical loci

where H is determinant of matrix of second derivatives on the critical locus:

XY o©
A B | XY
H = det [ C D ] -

H = (detA)det(D — CA~'B) = (det A)det(—CA~'B)

- 1 -1

_ 0*W.
detA = l;[ < ; acag) H ( ; o.p; — r’hi> (-CA™'B), = ()aad;f,i
where
Wer == ), ) 0,0 1In < D ol - m) + ) Y ot = ) o,
a i b a i a
_ . a - e — formally matches known
%}, ITA ;04 + Zl: 7i; In ( ; Gbl)ib ml) exact 1-loop results

(Doesn’t mention orb’ twisted sectors — we’ll see later there aren’t any contributions.)



We have checked this proposal extensively in examples.
In the rest of this talk, we will outline a few particular ones.

e Grassmannians G(k,n)

U(k) gauge theory with n fundamentals

e SO(2k) gauge theory with n vectors + twisted masses

* Pure 2d susy gauge theories & IR behavior



Example: Grassmannian G(k,n)

The Grassmannian G(k,n) is described by a 2d U(k) theory with n fundamentals
— generalizes the CPn-1 model.

A-twisted gauge theory results:

Coulomb branch: Sk orbifold of 015", O
Vacua: o,70, if a#b
(0,)" = (—)F1q = quantum cohomology ring

So, choose k distinct & unordered (Sk orb’) values amongst n roots of equation above.

Total number of vacua = ( Z )



Example: Grassmannian G(k,n)

A-twisted gauge theory results:

o, 7 O if a#b

Question: How can the condition above be realized in the mirror?

This condition describes an open set.

We’re all familiar with how one describes a closed set
— as the critical locus of a superpotential,
which is how e.g. GLSMs describe hypersurfaces —
but how do you realize an open set?

In susy localization, expressions for correlation functions have factors
multiplying integration measures which are of the form

[1(c.-a)°

a<b

so that there is no contribution from points where os collide.

We'll see that the mirror superpotential has poles at the corresponding points,
dynamically excluding them.



Example: Grassmannian G(k,n)

Now, let’s study the proposed mirror.

Let’s modify the notation to be more convenient:

Y — Y X; = X, (WFv)

| = flavor index a, ¢ = color index

Proposed mirror: Sk orbifold of

W = Zaa Zp“Ylb Za InX,, Zexp Y’“ + Z

a=1 \ ib UFEV ) ia HFV

where Pip = 05, Ay =—0,+0,
The orbifold acts by permuting ¢, and similarly on Ys, Xs.

Simplify:

)—\ + Y exp(-Y) + Y X,

J ia UFV

we ol zln<

a=1 \ i V#a




Example: Grassmannian G(k,n)

weSal3vs zln(

a=1 \ I V#a

) e

) ia

A
)

Integrate out os:

Constraint Z yie + ) 111<

v#a

Eliminate Y"“: Y = — 2 Yy — Z ln<
i=1

V#£a

Define T, = exp(-Y")

( \
— q(HeXp Yza> H))iav

Then the superpotential becomes

n—1

k
W= Yexp(-Y4) + Y X, +ZH

i=1 a=1 UFV a=1

—Yi) + )X,

UFV



Example: Grassmannian G(k,n)

n—1 k
W= ) Yexp(-¥) + Y X, +ZH
i=1 a=1 UFU a=1
. ()
where II, = q<HeXp(+Yia)> HXW
i=1 \v;«éa ya)

In passing, for ordinary projective spaces P!,
following the same procedure,
Hori-Vafa obtained

W = Zexp (-Y") + qﬁexp<+Yi)

i=1 i=1

— clearly, this is a special case of the result above.



Example: Grassmannian G(k,n)

n—1 k k
W= Yexp(-Y“) + Y X, + Y II,
i=1 a=1 pFv a=1
1 ( ¥ )
where <Hexp Y’“> H e
i=1 \ v#a X”a)

We'll compute vacua & correlation functions,
but first,
some general observations.

* The superpotential above has poles at X, = 0.
This will be a generic feature of these nonabelian mirrors.
Operator mirror map: X, = Z o, =—0,+0,

So we see that the poles above are mirror to places where os collide

* Nonabelian enhancement in original gauge theory
* Excluded in A model

* Excluded here b/c bosonic potential diverges



Example: Grassmannian G(k,n)

n—1 k
W= Yexp(-Y“) + Y X, + Y II,
i=1 a=1 pFv a=1
1 ( ¥ )
where II, = q<HeXp(+Yia)> H aad
i=1 \ v#a X”a)

* Strange behavior at nongeneric points where multiple X,, =0:

We excluded generic loci where any one X vanishes,
but something more subtle happens when multiple X’s vanish.

X
The ratio X—+ Is not continuous at X, =X =0

* Presumably reflects missing physics at these nongeneric loci.

* Might be possible to regularize.

For example, a blowup will separate the divisors of zeroes & poles,
but unfortunately not compatible with B twist.

e (Generic paths to these points break susy in limit.
* |n any event, will see later that do not contribute to correlation functions.

More detailed understanding left for future work.



Example: Grassmannian G(k,n)

n—1

W = iex

=1 a=1

) + ) X, +ZH
FU
1

u a=1

Yla
) ()
where II, = q<HeXp(+Yia)> HXC”’

i=1 \ v#a va)

Compute critical loci:

ow ~ - independent
= — -Y) + 11, =0 = exp(—-Y“9) =11 .
gYia CAP ( ) a p ( ) “ of |
oW I1,-11,
= 1 + = 0 — lej - — H/,t + Hl/
aXW X




Example: Grassmannian G(k,n)

n—1 k
W = Zex Y’“ + , + ZH

i=1 a=1 UFU a=1
, ( \
L . X

where 11, = q< exp (+Yla)> H av
i=1 | v#a X”“)

Critical loci:
exp (_Yia> — Ha X,m/ - — H,u + Hz/ (Ha)n = (— )k—lq

Excluded locus: X, #0 = [,#I0, for u#v

This is starting to look like the equations satisfied by A model vacua....

Recall operator mirror map:

— O

exp Y’“ Zabpm = o,
} = I, Z

= Z%%D =—0,%to0,
a

which is the good reason why the equations for IIs match those for o s.



Example: Grassmannian G(k,n)

n—1

W = iex

=1 a=1

Yla Z
UFV
n—1
where 11, = ¢ <Hexp (+
i=1

_|_

+ZH

a=1

( \
: X
Yla) > H Xau

vt

Critical loci:

exp (_Yia> — 11 X,m/ =_H,M+Hl/ (Ha)n — (_)k—lq

Excluded locus: X, #0 = [,#I0, for u#v
Operator mirror map: 1, = ¢,

Compare A model: o, * 0, if a#b (aa)n = (—)"q

Same equations, same solutions

— Same number of vacua, plus,
quantum cohomology derived as critical locus equations in B model



Example: Grassmannian G(k,n)

n—1 k
W = Zex Y’“ + , + ZH

i=1 a=1 UFU a=1
, ( \
L . X

where 11, = q< exp (+Yla)> H av
i=1 | v#a X”“)

Critical loci:
exp (_Yia> — Ha X,m/ - — H,u + Hz/ (Ha)n = (— )k—lq

Excluded locus: X, #0 = [,#I0, for u#v
* Orbifold fixed points
What about that Weyl group orbifold and its twisted sectors?
The Weyl group S, actsas I, < I, Y“ & Y* X < X,

Fixed-point locus of the orbifold ate.g. II, =11, Y“=Yy* X =X,

Fixed-point locus intersects critical locus along excluded locus.

— S0, expect no contribution from twisted sectors



Example: Grassmannian G(k,n)

n—1 k
W = Zex Y’“ + , + ZH

i=1 a=1 UFU a=1
, ( \
L . X

where 11, = q< exp (+Yla)> H av
i=1 | v#a X”“)

Critical loci:
exp (_Yia> — Ha X,m/ - — H,u + Hz/ (Ha)n = (— )k—lq

Excluded locus: X, #0 = [,#I0, for u#v

Now, let’s compute correlation functions.

In B model, for isolated vacua = critical loci, and worldsheet S2,

f) =

Z 7 Where H = det 9*°W

vacua

|Sk|

The first factor is a remnant of the Weyl-group orbifold.



Example: Grassmannian G(k,n)

Critical loci:

exp (—Yi“) = 11 X, =—11,+11, (Ha)n = (—-)"q

a

Excluded locus: X, #0 = I, #1l, for u#v

|
| Skl

. . /
Correlation functions: (/) = Z o Where H = deto*W

vacua

2 (H1>n—1 (H2>n—1

(I, - 11,)°

For G(2,n),canshow H =-n

& from summing over vacua, the nonzero correlation functions of deg 2n-4 are

1 2
(GG == = (G (G2 =+

Compare A model results....



Example: Grassmannian G(k,n)

Correlation functions: In the LG orbifold mirror to G(2,n), we computed
2
<f>= |S| ZE =_2'n22 n—1 n—lf
k vacua ) vacua (Hl ) (Hz)
Nonzero 1 0
correlators %) = - o7 = (=3 (I21102) = +§
of deg 2n-4: ' -
Compare original A-twisted gauge theory results for G(2,n): (Guo, Lu, ES, 1512.08586)
_ , _
(fl0)) =——JK—Res /(o)
2! ool
Nonzero | ) ,
correlators (o7 oh ) =— o7 = (o" 30071y (o1~ 26)72) = —
of deg 2n-4: ' -

(for the cases we’ve checked: n=3, 4, 5)

Recall operator mirror map relates 11, < o,

Perfect match!



Aside:

If one integrates out the X fields, the effect is to add factors of

[1(c.-4)°

a<b

to the integration measure, and generate a superpotential of the form

Weff=20 ZY — 1 +Zexp(—

Furthermore, working in the untwisted sector of the orbifold, we restrict to
Sk-invariant field combinations.

— matches Hori-Vafa (hep-th/0002222) appendix A,
Gomis-Lee (1210.6022)

proposals for Grassmannian mirrors



Next, let’s consider the mirror of an SO(2k) gauge theory with n vectors.

This 2d gauge theory was previously studied by Hori in 2011,
SO we canh compare our proposed mirror’s results to what he obtained.

Hori computed: (Hori, 1104.2853)

A model excluded locus o, # 1, o, # £ o,

& Coulomb branch relation H (% - mi) = QH (—% - ""li)

(an analogue of quantum cohomology, except that g is not a continuous parameter,
and there’s no geometric limit)

from which he derived various properties of these theories.

We'll recover the same excluded locus and Coulomb branch relation from the proposed mirror.



Example: SO(2k) gauge theory with n chirals in the vector representation

Proposed mirror:  Weyl-group orbifold of

Fields: e o0, ae€{l, - Kk}
e Y% jflavorindex, i€ {l,,n}  avectorindex, «e€ {1,---2k}
mirror to matter fields
 X,=X. uve({l, 2k} excluding X,, 1,5, (corresponding to Cartan)

— Lie algebra is imaginary antisymm matrices, & we’re dropping i’s.

Superpotential:

(
k
W = Zaa Zpi‘wa’ﬂ — Z a, X, —1
a=1

\ iof U<vip' v )

\

+ Zexp(—Yi“) + ZXW — Zn”ziYi“
o la

U<v

— Following Georgi, represented Cartan by block-diagonals with Paul o, on diagonal
— hence p, a above represent commutators

— S2a-1g2 2a—152
ply = 27l — 5252

a _ 2a—1c2a _ g2as52a-1 2a—1¢2a _ g2a52a-1
@ = 8, (8207162 = 8205271 ) + 5, (5271520 — 252 )



Example: SO(2k) gauge theory with n chirals in the vector representation

Proposed mirror:  Weyl-group orbifold of

Fields: e o0, a€{l, Kk}
e Y% jflavorindex, i€ {l,,n}  avectorindex, «e€ {1,---2k}
 X,=X. wve({l,2k} excluding X,,_i,, (corresponding to Cartan)

Superpotential: \

(
k
W= o) pl¥? - at X, —t| + Yexp(=Y?) + Y X, - Y mye
a=1 ia a

\ iaf u<viu' V' ) U<v

2a—1g2 2a—1g2
ply = 827152 — gha-lsla

a — 2a—1g2a 2a s2a—1 2a—1<g2a 2a s2a—1
Wy = 8 (5071820 = GR62Y) + 5, (82071820 — 562 )

(AR %
t = discrete theta angle
This is not an ordinary theta angle.
Only takes values in Weyl-invariant constants: 0, zi

Distinguishes two different 2d SO(2k) theories.



Example: SO(2k) gauge theory with n chirals in the vector representation

Proposed mirror:  Weyl-group orbifold of

Fields: e o0, a€{l, Kk}
e Y% jflavorindex, i€ {l,,n}  avectorindex, «e€ {1,---2k}
 X,=X. wve({l,2k} excluding X,,_i,, (corresponding to Cartan)

Superpotential:

( \
k
W = Zaa Zpi‘;ﬂY’ﬁ — a,, X, =1+ Zexp(—Y’“) + ZXW — Zn“ftiY’“
a=1 \ iaf u<viu' V' ) o U<v i
pl%ﬂ — 5361—1 5ﬂ2a . 5ﬂ2a—1 5361
— 2a—1g2 2a 52a-1 2a—1g2 2a s2a—1
Wy = B, (071820 — 6298207 ) + 5, (82162 — a2e5k)

Let’s simplify before discussing Weyl group action.

£ (n : - X2a X2a \
W = Zda Z(Y”za—Y”za‘l) — Z ln<X”’ > — Zln( s ) —

X
a=1 | i=l p<2a—1 p.2a=1 u>2a 2a—1L.p )

+ Zexp(—Yi“) + ZXW —~ ZmiYi“

U<v




Example: SO(2k) gauge theory with n chirals in the vector representation

Superpotential:

(g i2a _ yi2a—1 Xy 2a Koy |
W:;% Z(Y b & )— Zln ¥ —Zln X, — 1

\ =1 u<2a-—1 p.2a—1 u>2a —Lyu )
+ Zexp(—Yi“) + ZXW — ZmiYi“
o u<v 10
Weyl group W: ]l = K —W-—§ — 1

S, acts by interchanging os and blocks of Ys, Xs

K C (Zz)" Is the subgroup with an even number of nontriv’ factors

Each Z, factor acts (for one index a) as
o, & — o0,
Yi,2a PEN Yi,2a—l

X,u,2a < X,u,2a—1 XZa,y < XZa—l,z/

Straightforward to see that superpotential is invariant.



Example: SO(2k) gauge theory with n chirals in the vector representation

Superpotential:

( \
W = gaﬂ Z(Yi,2a_Yi,2a 1 Z hl< u,2a > B Zln(ija"u > .,

\l:l ,u<2a 1 /’tza 1 ,M>2Cl

+ Zexp Y’“ + ZXW _ Zmyz‘a

Integrate out os:

i(yi@a_yila 1 2 ln< u,2a ) _ Zln(XZ(ja”u ) _

i=1 u<a—1 ,u2a 1

Eliminate Y"»%¢:

2a . ,2 2a—1 U,2a XZa,/,t
yn.2a f :E:)ﬂ a 4 ;E:)n a=1 4 :E: ]r1<: :) N :E:]I1<:Xéa :)

u<2a—1 M2a 1

Define II, = exp (—Y™*)

n—1 n ( X \ ( ¥ \
H@Xp 4 yi2a ) <Hexp (_Yi,Za—1)> H H.2a H - 2a,u

i=1 i=1 \,u<2a—1 u,2a—1




Example: SO(2k) gauge theory with n chirals in the vector representation

n—1 k n k k
W = 1Zexp(—Yi’Z“) + ZZeXp (—Yi’za_l) + ZXW + ZHa
i=1 a=1 i=1 a=1 U<v a=1
n—1 n

I
M~
E
~
Y
I
M~
E
<
i

where ( \ [ \
I = T ex <_|_Yl 2a> - ex ( Y 2a 1) H Xﬂ,za H X2aﬂ
¢ 1 P P X 2a—1 X2a—1
i=1 i=1 | #<2a—1 K ) \ w>2a H
Critical loci:
ow ow -
. exp (=YY" = 11, —m, +1m, . oexp (=Y =11, —m, —m,
aYi,Qa p ( ) aYi,Za—l p ( )
a_W : Xouop = U, + 11, + 2m, Xogop—1 = 1, =11,
X for a<b
" Xoa—1p—1 =— M, =11, = 2m, Xoa120 =~ Ha+ 11,

or more simply, X, = Y (I, +1,) (55“ =5+ 5 - 53“‘1) for u<v

a



Example: SO(2k) gauge theory with n chirals in the vector representation

Critical loci: Excluded locus:

exp (— Yi’za)

I
—
|
N
+
N

> #0 = I, +m, # £m,

exp (—Y"* 1) =11, — i, — m

X2a—1,2b—1 — I, — 11, — 2m,

£0 => I, +m, # =+ (I, + m,)

a

X2a,2b—1 = I, - 11,
Xog—10p =— 1, +11,

Coulomb branch relation:

n—1 n ( X ) \ /[ X2 )
11, Q< exp (+ Yi’za)> <Hexp (_Yi,2a1>> H - H.2a H > a.u
. ] 2a—-1,

On critical locus,

|l
D
N
e
—
Q
I
NSz —_—
_|_
3
S
N~
VR
E S
I
—
Q
I
=
I
N
N
N~
o
T

hence (Ha _ n~1i + ﬁln) — QH (_Ha o mi _ mn)



Example: SO(2k) gauge theory with n chirals in the vector representation

Excluded locus: I, +m, #xtm, I, + m, # =+ (I, + m,,)

Coulomb branch relation: H (T, — 1, + 171, = QH (=11, — ;= 17,

Operator mirror map:

k
exp (—Y™) =—m; + ZZpi‘/@a

a=1 ip
— 7, + Z o, (824 — 82+ Compare:

o, a=12a
m; + .
-0, a=2a-1 exp (—Y”za‘l) =—1I1,—m;,—m,

a’

k
Z o, %,, Y for u<v
a=1 u'<v’
£ 2 2a—1 2 2a—1
Z (5 a 5261 1 53& _ 5361—1) o, X/W = Z <5ﬂa — 5Ma— + 5ya — 51/61_ ) (Ha + I7~”ln)
a=1 a

=> o, =11,+m,




Example: SO(2k) gauge theory with n chirals in the vector representation

Excluded locus: I, +m, # xm, I, + m, # + (I, + 7,

Coulomb branch relation: H (T, — 1, + 171, = QH (=11, — ;= 17,
i=1 i=1

Operator mirror map: o, = 1l,+m,

Predicts A model excluded locus o, F+xm;  o0,# %o

& Coulomb branch relation H (% - mi) = QH (—% - ""li)

i=1 i=1

which match known results for this theory.  (Hori, 1104.2853)



Pure 2d (2,2) susy gauge theories

It has been argued (Aharony et al 1611.02763) that 2d (2,2) susy pure SU(k) gauge theories
flow in the IR to a theory of k-1 free twisted chiral multiplets.

We can see this in the mirror, at least at the level of TFT computations.
Example: pure SU(2) theory

Mirror LG model:

X12

XZI
Critical loci:
2
ow oW
00'1 X21 0X12 aXZl
Solved by Xj» =— X 6, unconstrained

& W=0 along this locus.



Pure 2d (2,2) susy gauge theories

X
Example: pure SU(2) theory W = 20/1n (X_12> + Xpp + Xy
21

X
Example: pure SO(3) theory W = o,In (X_lz> + X, + X, + toy
21

t € {0,mi1} encodes discrete theta angle

(distinguishes SO(3)+, SO(3)- theories)

Critical loci:
ow X ow ow
— . i = eXp(—t) . X12 =_O-1 . X21 =+01
061 le 0X12 8X21
Cases:
X
SO@B)y: t=0: X_12 =+1 & X, =—-X,, — inconsistent, no sol’ns, no vacua
21
susy broken
. Xpp _ . .
SO@): t=mi: = =- 1 & X;,=—X,;,  — consistent, 6, unconstrained
21

one free twisted chiral superfield in IR



Pure 2d (2,2) susy gauge theories

X
Example: pure SU(2) theory W = 20/1n (X_12> + Xpp + Xy
21

X
Example: pure SO(3) theory W = o,In (X_lz> + X, + X, + toy
21

Summary:
SU(2), SO(3)- consistent w/ flow in IR to one free twisted chiral superfield

SO(3)+ breaks susy

There’s a relationship between these three....



Pure 2d (2,2) susy gauge theories

SU(2), SO(3)- consistent w/ flow in IR to one free twisted chiral superfield

SO(3): breaks susy

Decomposition:

If a 2d G-gauge theory has massless matter invariant under a finite subgp H of G,
or if there is no massless matter,
then in IR,

G-gauge theory = disjoint union of G/H gauge theories

w/ various discrete theta angles
(Hellerman et al, hepth/0606034)

(Equivalent to theories w/ restriction on topological sectors;
also, to theories coupled to TFTs’)

Here, schematically:  SU(2) = SO(3)+ + SO(3)-

So if SU(2) flows in IR to free theory w/ one superfield,
exactly one of SO(3)., SO(3)- will flow in IR to free theory,

& other cannot have susy vacua.
— consistent!



Pure 2d (2,2) susy gauge theories

SU(2), SO(3)- consistent w/ flow in IR to one free twisted chiral superfield

SO(3)+ breaks susy
SUR2) = SO@B): + SO(3)-

More generally, we find (TFT-level) evidence for:

SU(K) flows in IR to k-1 free twisted chiral superfields
SO(2k): flows in IR to k free twisted chiral superfields
SO(2k)- breaks susy
SO(2k+1). breaks susy

SO(2k+1)- flows in IR to k free twisted chiral superfields
Sp(2k) flows in IR to k free twisted chiral superfields

Another decomposition example: SU@4) = SO(6): + SO(6)-
/”

3 free tw’ chirals breaks susy



Pure 2d (2,2) susy gauge theories

SO(2k): flows in IR to k free twisted chiral superfields
SO(2Kk)- breaks susy

SO(2k+1). breaks susy

SO(2k+1)- flows in IR to k free twisted chiral superfields

Another application of decomposition:

For pure gauge theories, Spin = SO; + SO.

(In fact, since the center of Spin is either Z4 or Z>xZ>, a finer decomposition exists,
but is not relevant here.)

Given the results for SO theories,
we conjecture that
a pure Spin theory flows in the IR to free twisted chiral multiplets
(as many as the rank)



Pure 2d (2,2) susy gauge theories
SU(K) flows in IR to k-1 free twisted chiral superfields
Spin(2k) flows in IR to k free twisted chiral superfields
Spin(2k+1) flows in IR to k free twisted chiral superfields

Sp(2k) flows in IR to k free twisted chiral superfields

In other work, (Chen, Parsian, ES, to appear),
we’ll check — at same level of TFTs —
that pure G, F4, Ee, E7, Es theories flow to free twisted chiral superfields.

Conjecture: a pure 2d (2,2) susy G-gauge theory
(G connected, simply-connected, semisimple)
flows in the IR to a theory of free twisted chiral superfields,
as many as the rank.

Conjecture: a pure 2d (2,2) susy G/H -gauge theory,
for H a subgp of center of G,
for one discrete theta angle flows to free theory,
and for other discrete theta angles, has no susy vacua.



Summary

I’ve outlined a proposal for a generalization of Hori-Vafa mirrors
to 2d (2,2) susy nonabelian gauge theories,
yielding a Landau-Ginzburg orbifold whose classical physics
encodes the quantum physics of the 2d gauge theory.

e Checked for Grassmannians G(k,n)

e Checked for SO(2k) gauge theory with n vectors

* Discussed mirrors to pure 2d gauge theories

Thank you for your time!



