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My talk today concerns the application of decomposition,
a new notion in quantum field theory (QFT),
to resolution of anomalies as proposed in Wang-Wen-Witten.

Briefly, decomposition is the observation that some QFTs
are secretly equivalent to
sums of other QFTs, known as ‘universes.

When this happens, we say the QF T "decomposes.
Decomposition of the QFT can be applied to give insight
INto 1tS properties.



What does it mean for one QFT to be a sum of other QFTS?

(Hellerman et al '06)

1) Existence of projection operators

The theory contains topological operators 11; such that
Correlation functions: |

<@1@m> — Z<Hz@1@m> — Z<(Hz@1>(nl@m)> — Z<51@m>l

l

2) Partition functions decompose

7 = Z exp(—pH) = ZZZ- = Z ZGXP(—ﬂHi)

states

(on a connected spacetime)

This reflects a (higher-form) symmetry....



Decomposition # spontaneous symmetry breaking

SSB: Decomposition:

Superselection sectors: Universes:
» separated by dynamical domain walls » separated by nondynamical domain walls
. only genuinely disjoint in IR . disjoint at all energy scales
. only one overall QFT . multiple different QFTs present
Prototype: Prototype:
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(see e.g. Tanizaki-Unsal 1912.01033)




There are lots of examples of decomposition !

Orbifolds: we’ll see many examples later today. (T Pantev, ES "05; D Robbins, ES, T Vandermeulen "21)
(In these examples, a subgroup of the orbifold group acts trivially.)

Gauge theories:
* 2d G gauge theory w/ center-invt matter = union of G/Z(G) theories w/ discrete theta (ES '14)
* 2d pure G Yang-Mills = sum of invertibles indexed by irreps of G (Nguyen, Tanizaki, Unsal 21)
» 4d gauge theory with restriction on instantons  (Tanizaki, Unsal '19)

Sigma models on gerbes = disjoint union of sigma models on spaces w/ B fields

Solves tech issue w/ cluster decomposition. (T Pantev, ES "05)

TFTs: 2d unitary TFTs w/ semisimple local operator algebras decompose to invertibles
Examplesz (Implicit in Durhuus, Jonsson '93; Moore, Segal '06)

 2d abelian BF theory at level k = disjoint union of k invertibles (sigma models on pts)
* 2d Dijkgraaf-Witten = sum of invertible theories, as many as irreps
(In fact, is a special case of orbifolds discussed later in this talk.)



Fun features of decomposition:

Multiverse interference effects

Ex: 2d SU(2) gauge theory w/ center-invariant matter = SO(3), + SO(3)_

Summing over the two universes (SO(3) gauge theories)
cancels out SO(3) bundles which don’t arise from SU(2).

Wilson lines = defects between universes

WP
Ex: 2d abelian BF theory at level k
1 k—1 . m m-+p
Projectors: 11, = —Z c"o, & = exp(2zi/k)
k n=0
Clock-shift commutation relations: O, W, = ¢™W 0, & 1,W, = WL, 10

Wormholes between universes
Ex: U(1) susy gauge theory in 2d: 2 chirals p charge 2, 4 chirals ¢ charge -1, W = 2 ¢i¢jA’7(p)

-
Describes double cover of P! (sheets are universes), linked over locus where ¢ massless — Euclidean wormhole



What do the examples have in common?
When is one QFT a sum of other QFTs ?

Answer: in d spacetime dimensions,
a theory decomposes when it has a (d — 1)-form symmetry.

(2d: Hellerman et al "06;
d>2: Tanizaki-Unsal ‘19, Cherman-Jacobson 20)

Decomposition & higher-form symmetries go hand-in-hand.

Today I'm interested in the case d = 2,
so get a decompositionifa (d — 1) = 1-form symmetry is present.

What is a 1-form symmetry?



What is a (linearly realized) one-form symmetry in 2d ?

For this talk, intuitively, this will be a "group’ that exchanges nonperturbative sectors.

Example: G gauge theory or orbifold in which matter/fields invariant under K C G

(Technically, to talk about a 1-form symmetry, we assume K abelian,
but decompositions exist more generally.)

Then, at least for K central, nonperturbative sectors are invariant under
(G — bundle) — (G — bundle) ® (K — bundle)
A— A+ A

(Technically,
IS a 2-group,
only weakly
associative.)

At least when K central, this is the action of the group’ of K-bundles.
That group is denoted BK or K1)

One-form symmetries can also be seen in algebra of topological local operators,
where they are often realized nonlinearly (eg 2d TFTs).

What sort of QFTs will I look at today ? ....



The particular QFTs I'm interested in today, which have a decomposition,
are (1+1)-dimensional theories with global 1-form symmetries

of the following form: (Pantev, ES "05;

, o . Hellerman et al '06)
* Gauge theory or orbifold w/ trivially-acting subgroup

(<-> non-complete charge spectrum)
* Theory w/ restriction on instantons

* Sigma models on gerbes
- fiber bundles with fibers = “groups’ of 1-form symmetries G = BG

* Algebra of topological local operators
Decomposition (into ‘universes’) often relates these pictures.

Examples:

restriction on instantons = “multiverse interference effect”

1-form symmetry of QFT = translation symmetry along fibers of gerbe

trivial group action b/c BG = [point/ G}



Since 2005, decomposition has been checked in many examples in many ways. Examples:

* GLSM’s: mirrors, quantum cohomology rings (Coulomb branch)
(T Pantev, ES '05; Gu et al '18-'20)

* Orbifolds: partition f’'ns, massless spectra, elliptic genera (T Pantev, ES 'os; Robbins et al 21)
* Open strings, K theory (Hellerman et al hep-th/0606034)
* Susy gauge theories w/ localization (ES 1404.3980)

* Nonsusy pure Yang-Mills ala Migdal  (ES14; Nguyen, Tanizaki, Unsal "21)
o AdjOint QCD, (Komargodski et al 20) * Numerical checks (Honda et al "21)
* Versions in d-dim’l theories w/ (d-1)-form symmetries (Tanizaki, Unsal, '19; Cherman, Jacobson "20)

Applications include:

» Sigma models with target stacks & gerbes (T Pantev, ES "05)
 Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, etc starting "08)
* Nonperturbative constructions of geometries in GLSMs  (Caldararu et al 0709.3855, Hori 1, ...

 Elliptic genera (Eager et al 20) * Anomalies (Robbins et al 21) .,Romo et al ‘1)
Today, I'll look at application to anomalies....



My goal today is to apply decomposition to an anomaly resolution procedure
in orbifolds (Wang-Wen-Witten '17).

Briefly, the idea of www is that if a given orbifold [ X/G] is ill-defined because
of an anomaly (which obstructs the gauging),

then replace G with a larger group I whose action is anomaly-free.

] — K — 1 — G — 1

The larger group I has a subgroup K C I that acts trivially on X,
and G =1/K.

However, orbifolds with trivially-acting subgroups are standard examples in which
decomposition arises (in 1+1 dimensions), so one expects decomposition is relevant here.

(Hellerman et al '06)



Plan for the remainder of the talk:

* Describe decomposition in orbifolds with trivially-acting subgroups,

o Add a new modular invariant phase: “quantum symmetry,” in H'(G, H'(K, U(1))),

» Review the anomaly-resolution procedure of (Wang-Wen-Witten '17),

* and apply decomposition to that procedure.

What we’ll find is that, in (1+1)-dimensions,

QFT(“[X/G])"=1X/T']3) = QFT(copies and covers of [ X/(nonanomalous subgp of G] )

as a consequence of decomposition.
This gives a simple understanding of why the www procedure works,
as well as of the result.



Decomposition in orbifolds in (1+1) dimensions

Let’s begin by discussing ordinary orbifolds w/o extra phases.
(We’ll need a more complicated version for anomaly resolution,
but let’s start here, and build up.)

Consider an orbifold [ X/I'], where K C I acts trivially.

]l — K —1 — G —1 (Kneednotbecentral) (K, I, G finite)
Decomposition implies

[Xxk
QFT ([X/T]) = QFT

G

] (Hellerman et al '06)
a)

A\

K = set of iso classes of irreps of K
G acts on K: p(k) — p(hkh™") forh eTaliftofg € G

@ = phases called “discrete torsion” — see refs for details.



Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I '], where K C I acts trivially.

l — K — T — G — 1 (K neednot be central)
Decomposition implies

QFT ([X/T]) = QFT [

Xx K (Hellerman et al '06)
G A
Q)

A\

K = set of iso classes of irreps of K

Universes (summands of decomposition)
correspond to orbits of G action on K.

Projectors: ForR=&@; R, R. € K related by the action of G, we have

dim R, ,
1, = Z : Z ){Ri(k—l)fk (Wedderburn’s theorem for

i | K| ex center of group algebra)




Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I '], where K C I acts trivially.

l — K — T — G — 1 (K neednot be central)
Decomposition implies

QFT ([X/T]) = QFT [

Xx K (Hellerman et al '06)
G
Q)

A\

K = set of iso classes of irreps of K

If Kisin the center of I, then the G action on Kis trivial,

and decomposition specializes to
) — a disjoint union,

as many elements
as K

A

K

QFT ([X/T]) = QFT(H X/G] .

More gen’ly, get both copies and covers of [ X/(G], as we shall see.



To make this more concrete, let’s walk through an example,
where everything can be made completely explicit.

Example: Orbifold [X/D4| in which the Z, center acts trivially.

T Pantev, ES’
— has BZ, (1-form) symmetry (T Pantev, £ o5)

Dy/Zy = Zy X Zo so this is closely related to a Z, x Z, orbifold

Decomposition predicts

QFT ([X/D,]) = QFT XxK — QFT Xx 2,
o G | | Zyx7Z, |

= QFT ([X/Zy X Z,lyy a1) H QFT ([X/Z, X Z,]y,)
(bc K = Z, centralinl" = D,)

Let’s check this explicitly....



Example, contd
QFT (IX/D,]) = QFT ([X/ZyX Zylyo40) | | QFT (1X/Z, % Z,14,.)

At the level of operators, one reason for this is that the theory admits projection operators:

Let Z denote the (dim 0) twist field associated to the trivially-acting Z,:
Z obeys 2% = 1.

Using that relation, we form projection operators:

[I, = —(1x7%) ( = specialization of formula
N 2 given earlier)

13 =11, [,I_=0 M, +11_=1

-+ —_—

Next: compare partition functions....



Example, contd

o o o X D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Take the (1+1)-dim’l spacetime to be 72,

The partition function of any orbifold [X/T"] on T7 is

1
o ([X/T]) = T Z Lo where Z,, = (g . —> X)
h

gh=hg

(“twisted sectors”)

(Think of Z, ; as sigma model to X with branch cuts g, .)

We're going to see that

Zr (IXID)]) = Zp (X1 Zy X Z,]) + Zpa2 ([X/Zy X Z,]4, )



Example, contd

" - X/D
Compute the partition function of [X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

|
Zp: (IX/D,]) = 2 Zu  where Z,, = (9 N — X
| Dy | 5
g.heD,, gh=hg ,

Since z acts trivially,

Z 4.1 is symmetric under multiplication by z

2=/l ~ -l - M -~
Z h

‘1 hz ‘I hz

<

This is the BZ5 1-form symmetry.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
Zp2 (IXID4]) = Dy 2 Z where Z,, = (¢ . — X
4 gheD,,gh=hg ,

Each D, twisted sector (£, ;) that appears is the same asa D,/ Z, = Z, X Z, twisted sector,

appearing with multiplicity | Z, |* = 4,
except for the sectors @ . a . 2 . which do not appear.
b ab Py

Restriction on nonperturbative sectors



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp ([X/1Z,x Z,]) — (some twisted sectors))

Different theory than Z, X Z, orbifold

Physics knows when we gauge even a trivially-acting group!



Example, contd

o - X/D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Zr ([X/ID,]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp (X/Z, % Z,]) — (some twisted sectors))

1
Fact: given any one partition function  Zp ([X/G]) = Yl Z 29
gh=hg

we can multiply in SL(2,Z)-invariant phases €(g, h)

to get another consistent partition function (for a different theory)

|
7 = Yl D e(g.h)Z,,

gh=hg

There is a universal choice of such phases, determined by elements of H*(G, U(1))

This is called “discrete torsion.”



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp ([X/1Z,x Z,]) — (some twisted sectors))

Ina Z, X Z, orbifold, discrete torsion € H*(Z, X Z,, U(1)) =

and the nontrivial element acts as a sign on the twisted sectors

. . . the same sectors which

were omitted above.

Zr: ([XIDy]) = Zp ([X/sz 2o wioar) + Zr ([X1Zy X Z5)4, )

Adding the universes projects out some sectors — interference effect.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

2 (Z2 ([X/1Z, % Z,]) — (some twisted sectors))

Discrete torsion is H=(Zo x Zo,U(1)) = Zs,

and acts as a sign on the twisted sectors

- . = . A . which were omitted above.
b ab ab

Zr (IXIDy)) = Zp ([XIZy X Zy)wpoar) + Zp2 ([X1Zy X Z5]4, )

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/Z,x Z,)\s0a.) | | QFT (IX/2,% Z,1,,)



Example, contd
Zr ([XIDg]) = Zpo ([X1Zy X Zylgjoar) + Zi2 ([X1Zy X Z5)4, )

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/Z;X Z)lysoa) | | QFT (IX/Z,x 2,14,

The computation above demonstrated that the partition function on 72
has the form predicted by decomposition.
The same is also true of partition functions at higher genus
— just more combinatorics.
(see hep-th/0606034, section 5.2 for details)

Only slightly novel aspect: in gen’l, one finds dilaton shifts,
which mostly I'll suppress in this talk.



Example, contd

Massless spectra for X = T° (T Pantev, ES "05)

Massless spectrum of D4 orbifold
2 1 1

O O O O O O
O 54 O O 5§51 O O 3 O
2 54 54 2 = 1 3 3 1 + 1 5§51 51 1
O 54 O O 51 O O 3 O
O O O O O O
2 1 1
/ spectrum of Zy x Zy orb’ spectrum of Zy x Zy orb’
Signals mult’ components / w/o d.t w/ d.t

cluster decomp’ violation
matching the prediction of decomposition

CFT ([X/D4]) = CFT ([X/Z3 X Za)wjoas.) || CFT ((X/Z2 x Zs)as.)



This computation was not a one-off, but in fact verifies a prediction in Hellerman et al '06
regarding QFTs in (1+1)-dims with 1-form symmetry.

Another example: Triv’ly acting subgroup not in center

Consider [X/H], H = eight-element gp of unit quaternions,
where (i) = Z, C H acts trivially.

Decomposition predicts ) (Hellerman et al "06)
Xx K )
QFT ([X/T']) = QFT [ G ] where K = irreps of K
0, @ = discrete torsion

on universes

Here, G = H/(i) = Z, acts nontriv’ly on K = Z,, interchanging 2 elements,

so  QFT([X/H]) = QFT (XH[X/ZZ] H[X/Zz])

(Hellerman et al,
hep-th/0606034,
— different universes; X # [X/Z,] sect. 5.4)

— easily checked



So far I've outlined how decomposition works in orbifolds [ X/1 ],
with trivially-acting K C I,
and no discrete torsion or other phase modifications (in the I orbifold).

However, in order to apply this to anomaly resolution,
we're going to need to understand decomposition in orbifolds
modified by (modular-invariant) phases.

Next: decomposition in orbifolds [ X/I'] S with discrete torsion w € H (T, U(1))....



Decomposition in orbifolds in (1+1)-dims with discrete torsion
(Robbins et al '21)

Consider [ X/I'] , where K C I" acts trivially, ® € H*(T, U(1)), and define G = T'/K.
l — K—T - G — 1 (assume central)

H*(G, U(1)) =5 (Ker* ¢ HXT, U(1))) £ H'(G,H'(K, U(1)))

Cases: — Hom(G. K)
1) If 1*w # 0, Y R
QFT ([X/T,) = QFT [ > w]
) It 1* 0 and f(w) # 0 ’ Checked in
2 — , -
h B QG;T (IX/T],) = QFT[ [chomﬁ (w)} r;i?rﬁ;?gss
v Ker f(w)

3 It *w = 0and f(w) = 0, then w = 7*w forw € H*(G, U(1)) and

QFT ([X/T1,) = QFT[[XZK] ]




Let’s get back on track.

My goal today is to talk about anomaly resolution in 1+1 dimensions.

Decomposition will play a vital role in understanding how the anomalies are resolved.

Recall the idea of www is that given an anomalous (ill-defined) [ X/ G],
replace G by a larger finite group I obeying certain properties,

] — K — 1 — G — 1,

and add phases.

Because I has a subgroup K that acts trivially,
orbifolds [ X/I'] will decompose,
into copies & covers of [ X/G].

However, just getting copies of [ X/G] won't help.
We also need to add certain new phases, which I will describe next....



New modular invariant phases: quantum symmetries (Tachikawa "17;
Robbins et al "21)

A quantum symmetry is a modular-invariant phase in orbifolds
in which a subgroup K acts trivially.

Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

[t acts on twisted sector states by phases. Schematically:
where

<[ - s (<D

n ’ B € H(G,H\(K, U(1)))

These generalize the old notion of "quantum symmetries’ in the orbifolds literature;
those old quantum symmetries were determined by discrete torsion,
but the ones we need for anomaly resolution, aren't....



New modular invariant phases: quantum symmetries

These are modular invariant — analogous to (but different from) discrete torsion.

Work on T?. Geometrically, this admits ‘Dehn twists’

Under such a twist,

S
chd - -
Discrete torsion: e(g°h®, g°h?) = e(g, h)

Quantum symmetry: ) e(g°k{h’ky, gkihks) = ) e(gky. hky)
klakQEK kl,kZEK



New modular invariant phases: quantum symmetries (Tachikawa 17

Robbins et al '21)
A quantum symmetry is a modular-invariant phase in orbifolds

in which a subgroup K acts trivially.
Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

Those quantum symmetries in the image of f are equivalent to discrete torsion:

d
(Kerl* c HA(T, U(l))) ﬁ> HYG,H (K, U(1))) ER H3(G, U(l)) (Hochschild '77)

Specifically, f(w) € H'(G,H'(K,U(1))) forw € H*I,U(1))st.w|, =0.
Example: old-fashioned quantum symmetry in orbifolds

Start with [ X/Z]. Old story: This admits a Z, symmetry that acts on twist fields,
with the property that QFT([[X/Z,/Z,]) = QFTI([X/Z,X Z, 15) = QFT(X)

However, the phases are determined by discrete torsion; B = f(w)
(and rel'n to X is a special case of decomposition)



New modular invariant phases: quantum symmetries (Tachikawa 17

. Robbins et al '21)
A quantum symmetry is a modular-invariant phase in orbifolds

in which a subgroup K acts trivially.
Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

Those quantum symmetries in the image of f are equivalent to discrete torsion:

d
(Kerl* c HA(T, U(l))) ﬁ> HYG,H (K, U(1))) ER H3(G, U(l)) (Hochschild '77)

For purposes of resolving anomalies,
we need B € H'(G, H'(K, U(1))) such that d,B # 0.

These cases are not in im f3, so not determined by discrete torsion @ € H*(, U(1)).

They’re also of independent interest, beyond anomaly resolution.

How does decomposition work with such phases?....



Decomposition in the presence of a quantum symmetry

Decomposition:

QFT ([X/T'lz) = QFT [

X x Coker B
Ker B

where B € HY(G, HY(K, U(1))) = Hom(G, K)

This is more or less uniquely determined by consistency with previous results.
Recall for discrete torsion @ € Ker 1* ¢ H*([I, U(1)), with B(w) # 0,

QFT(IX/T],) = QFT [Xx Cokerﬁ(a))]

Ker f(w)

The result at top needs to include this as a special case, and it does.



Decomposition in the presence of a quantum symmetry

Decomposition:

X x Coker B
Ker B

QFT ([X/T) = QFT[[

Example: I'=2,, | — 4, — 24, — Z, — 1
Pick nontrivial B € H(G,H\(K, U(1))) = H\(Z,,Z2,) = Z,
Ker B=0, CokerB =0

Predict: QFT ([X/T']z) = QFT (X)

Check in partition function....



Decomposition in the presence of a quantum symmetry

Decomposition:

X x Coker B
QFT ([X/T'lz) = QFT [ ]

Ker B

Example: I'=2,, | — 4, — 24, — Z, — 1
Predict: QFT ([X/T']z) = QFT (X)

Check T? partition function:
Zij = (= )iZi,j—Z = (- )jZi—Z,j

1
Z([X/Z,)p) = Z Y 7, = y) (Zoo + Zop + Zog + Z2s) = Zyg = Z(X)  Works!
i,j=0



Decomposition in the presence of a quantum symmetry

If there is also discrete torsion @ € H*([, U(1)):

] — K-5S5T X5 G — 1

Assume for simplicity 1*w = 0.

(Kere* ¢ HX(T', U(1))) LA HY(G,H'(K, U(1))) &, H(G, U(1))

QFT ((X/T,.) = QFT [Xx @k@ﬁ(m))]
Bw)

Ker (B/f())

2) Suppose w = ¥, @ € H*(G, U(1)):

X X Cﬁié\rB All checked in examples;
QFT ([X/F]B,a)) = QFT I'll spare you....
0+®

Ker B



Now, finally, we have the tools to start applying to anomalies.

For the purposes of this talk, anomalies in a finite G gauge theory
in (n + 1) dimensions will be classified by H" (G, U(1)).

This arises from considerations of “topological defect lines.
On the next slide I'll outline how that works in the case n = 0.

Then, I'll outline how anomaly resolution in (1+1) dimensions
can be understood via decomposition.



Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions
- why are anomalies are associated to group cohomology?

Suppose a (finite) group G acts on the states of a QM system: For any |y), get p(2)|w).
For an honest group action, require p(g)p(h) = p(gh)

However, b/c we only care about states up to phases, we might instead have
p(@ph) = w(g,h)p(gh) forsome w(g,h) € U(1)

Associativity = @(g,, g3) ©(g1, £,23) = ©(g,2>, &3) w(g;, &) (coclosed)

. e(gh) .
Multiply p by phase e(2) > w(g,h) — w(g,h) (coboundaries)
ply p by p (8) g &) o
l
Thus, the obstructions w are classified by H*(G, U(1)) i: gfllz?nzs

States are all in w-projective representations of G.



Application to anomalies

Suppose we have an orbifold [ X/G] in 1+1d which is anomalous,
anomaly ae H 3(G, U (1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K— I — G —5 1 (I'll assume central)

where [ is chosen so that 7*a € H>(T, U(1)) is trivial.

The idea is then to replace [ X/G] with [ X/17],
but, need to describe how I acts on X.

If K acts triv’ly on X, and we do nothing else,
then we have accomplished nothing:

decomposition = QFT ([X/I']) = HQFT ([ X/G)) — still anomalous
K

Fix by adding quantum symmetry....



Application to anomalies

Suppose we have an orbifold [ X/G] in 1+1d which is anomalous,
anomaly ae H 3(G, U (1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K — I’ — G —— 1 (assumed central)

2) Turn on quantum symmetry B € H'(G, H'(K, U(1)))
chosen so that d,B = a. This implies 7*a € H (T, U(1)) is trivial.

K acts trivially on X, but nontrivially on twisted sector states via B

These two together — extension I plus B — resolve anomaly.

Decomposition explains how....



Application to anomaly resolution

Procedure: replace anomalous [ X/G]| with non-anomalous [ X/1],
whered,B = a € H (G, U(1)), the anomaly of the G orbifold.

Decomposition: _ — using earlier results for
X X Coker B ' s ,
QFT ([X/T'lz) = QFT = decomp’ in orb
ers | w/ quantum symmetry

Note that since d,B = «, =0

a ‘KerB

So, Ker B C G is automatically anomaly-free!

Summary: [X/I'|; = copies of orbifold by anomaly-free subgroup.



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

Extension 1: Define I' = D,, | — 2, — D, — Z, X2, —> 1

Quantum symmetry B determined by image on {a, b}

Results: B(a) | B(b) d-z(B)I \ w/o d.t. in D4 w/ d.t.in D4 Get only
{anomaly anomaly-free
| 1 - | xG1] |G, [X/(b)) subgroups,
1 i _ [X/(b)] x/G1] | x/G1,, varying
A ) X/{a) X/{ab) WB.
d d (b) [X/{ab)] [X/{a)]

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Extension 2: Define I' = H,

Results:

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

| — 24, — H—> 2, X2Z,— 1

Quantum symmetry B determined by image on {a, b}

B(a) B(b) ( d_2(B)I Result
anomaly)
| | gl pdar
1 1 (a), {ab) [ X/{D)]
1A (Baby| [XKa)]
1 ] (a), {b) [ X/{ab)]

Get only
anomaly-free
subgroups,
varying
w/ B.

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

Extension 3: Define I' = Z, X Z,, | — 2, — 2, X2y — 2y X Z, —> 1

Quantum symmetry B determined by image on {a, b}

Results: B(a) | B(b) d-z(B)I w/o d.t.in Z2 x Z4 w/ d.t.inZ2 x Z4 Get only
{anomaly) anomaly-free
| 1 - G| x/G1 | xiGl [ [ X/Gly | subgroups,
1 1 {ab) [X/{D)] [X/{D)] varying
U )| XK X/{a) W B,
1 1 (b) [ X/{ab)] [ X/{ab)]

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}
Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

In the examples so far, we picked a "'minimal’ resolutionI".

If we pick larger K, we get copies.

Extension 4: Definel =2, xH, 1 — 24, X2, — Z, XH — Z, X2, — 1

B(a) | B(b) ( a:ﬁf]z)ly) Result Get copies of
orb’s w/
Results: 1 1 — ]EI <[X/G]H [X/G]dt> anomaly-free
} 1 (a), (ab) NC subgroups.
2
1 1| (b),{ab) [ tx/¢an
: Works!

1 1 (a), (b) ]J[X/«zbﬂ




Summary
Decomposition: one’ QFT is secretly several

Decomposition appears in (n + 1)—dimensional theories
with n—form symmetries.

(I've focused on examples in 1+1d,
but examples exist in other dim’s too.)

Can be used to understand anomaly-resolution procedure of www:

replace anomalous [ X/G] with non-anomalous [ X/I],
but decomposition implies

QFT ([X/T'lg) = copies of QFT ([X/Ker B C GJ),
which is explicitly non-anomalous.

Thank you for your time!






Decomposition # spontaneous symmetry breaking

Note that they both have an order parameter, so be careful when distinguishing.

Ex: sigma model on disjoint union of n spaces (‘universes’)

Have topological projectors I1;  TIIT, = 6,11, ZHZ. = 1

n—1
Have order parameter X X = Zf’l‘[i, c = exp(2xi/n)
i=0
Vev in ith universe: ILX) = (£TL) = &

l

So, could be described as spontaneously broken phase
— but that clearly does not capture the physics.

| mentioned higher-form symmetries. What'’s a one-form symmetry?....



Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions

So far, have obstruction to honest action of G encoded in anomaly @ € H*(G, U(1))

Fix: extend G to larger group I for which states are in an honest representation.

1) Pick extensionI’, 1 — K — I % G — 1
such that 7*w = 0 € H*(T, U(1))

2) Describe action of T, by picking A € HY(G, H'(K, U(1)))

such that A(Slszsl_zl) = w(g,8) fors,=s(g), s: G — 1 asection.

Then, define  p(s(g)k) = Ak)p(g)

) | Anomal
and one can show that p defines an honest representation of I . tved 4



Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions
Fix: extend G to larger group I for which states are in an honest representation.

1) Pick extensionI’, 1 — K — I % G — 1
such that 7*w = 0 € H*(T, U(1))

2) Describe action of T, by picking A € HY(G, H'(K, U(1)))

such that A(Slszsl_zl) = w(g,8) fors;,=s(g), s: G — 1 asection.

That was just QM, but the same pattern applies in higher dimensions.
In 1+1 dimensions, we’ll see how decomposition gives a very
explicit understanding of how anomaly resolution works.



The Future |
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Future directions



Boundaries in orbifolds with quantum symmetries

We saw earlier that in orbifolds [ X/I'] with triv’ly acting K C I,
the boundaries are naturally associated to universes of decomposition:

the boundary carries a (possibly projective) action of I,

SO restrict to K,
that action descends to a (possibly projective) representation of K,
which tells us which universe(s) the boundary is associated to.

That works fine in cases in which [ X/I '] has discrete torsion,
just projectivize. But what about quantum symmetries?

Specifically, quantum symmetries B with d,B # 0 ?



Boundaries in orbifolds with quantum symmetries

Specifically, quantum symmetries B with d,B # 0 ?

In this case, the associativity of the I action is broken,
albeit weakly — the action is "homotopy associative.

In principle, this structure should be understood formally in terms
of a groupoid quotient.

WIP w/ Tony Pantev to give a careful description.



