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My talk today concerns the application of decomposition,
a new notion in quantum field theory (QFT),
to resolution of anomalies as proposed in Wang-Wen-Witten.

Briefly, decomposition is the observation that some QFTs
are secretly equivalent to
sums of other QFTs, known as ‘universes.

When this happens, we say the QF T "decomposes.
Decomposition of the QFT can be applied to give insight
INto 1tS properties.



What does it mean for one QFT to be a sum of other QFTS?

(Hellerman et al '06)

1) Existence of projection operators

The theory contains topological operators 11; such that
Correlation functions: |

<@1@m> — Z<Hz@1@m> — Z<(Hz@1>(nl@m)> — Z<51@m>l

l

2) Partition functions decompose

7 = Z exp(—pH) = ZZZ- = Z ZGXP(—ﬂHi)

states

(on a connected spacetime)

This reflects a (higher-form) symmetry....



When is one QFT a sum of other QFTs ?

Answer: in d spacetime dimensions, when it has a (d — 1)-form symmetry.

(2d: Hellerman et al '06;
d>2: Tanizaki-Unsal '19, Cherman-Jacobson "20)

Decomposition & higher-form symmetries go hand-in-hand.

Today I'm interested in the case d = 2,
so get a decompositionifa (d — 1) = 1-form symmetry is present.

1-form symmetries arise in
e.g. gauge theories, orbifolds in which a subgroup of the gauge group acts trivially
(<-> incomplete charge lattice).

So, expect 2d theories of that form to decompose.

What is a 1-form symmetry?



What is a one-form symmetry?

For this talk, intuitively, this will be a "group’ that exchanges nonperturbative sectors.

Example: G gauge theory or orbifold in which matter/fields invariant under K C G

(Technically, to talk about a 1-form symmetry, we assume K abelian,
but decompositions exist more generally.)

Then, at least for K central, nonperturbative sectors are invariant under
(G — bundle) — (G — bundle) ® (K — bundle)
A— A+ A

(Technically,
IS a 2-group,

At least when K central, this is the action of the group’ of K-bundles.  oniy weaky
associative.)
That group is denoted BK or K1

One-form symmetries can also be seen in algebra of topological local operators.

What sort of QFTs will I look at today ? ....



The QFTs I'm interested in, which have a decomposition,
are (1+1)-dimensional theories with global 1-form symmetries,

and can be described in several ways, such as (Pantev, ES '05;

, o . Hellerman et al '06)
* Gauge theory or orbifold w/ trivially-acting subgroup

(<-> non-complete charge spectrum)
* Theory w/ restriction on instantons

* Sigma models on gerbes
- fiber bundles with fibers = “groups’ of 1-form symmetries G = BG

* Algebra of topological local operators
Decomposition (into ‘universes’) relates these pictures.

Examples:

restriction on instantons = “multiverse interference effect”

1-form symmetry of QFT = translation symmetry along fibers of gerbe

trivial group action b/c BG = [point/ G}



Decomposition in (1+1)-d gauge theories

Since 2005, decomposition has been checked in many examples in many ways. Examples:

* GLSM'’s: mirrors, quantum cohomology rings (Coulomb branch)
(T Panteyv, ES "05; Gu et al '18-20)

* Orbifolds: partition f’'ns, massless spectra, elliptic genera (T Pantev, ES "o5; Robbins et al "21)

* Open strings, K theory (Hellerman et al hep-th/0606034)

* Susy gauge theories w/ localization (ES 1404.3986)

* Nonsusy pure Yang-Mills ala Migdal  (ES’14; Nguyen, Tanizaki, Unsal "21)

o AdjOint QCD, (Komargodski et al 20) * Numerical checks (Honda et al "21)

* Plus version for (3+1)d theories w/ 3-form symmetries (Tanizaki, Unsal, '19; Cherman, Jacobson "20)

Applications include:

* Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, etc starting '08)
* Nonperturbative constructions of geometries in GLSMs  (Caldararu et al 0709.3855, Hori 11, ...)

 Elliptic genera (Eager et al 20) * Anomalies (Robbins et al '21)
Today, I'll look at application to anomalies....



Decomposition in (1+1)-d gauge theories

My goal today is to apply decomposition to an anomaly resolution procedure
in finite gauge theories (Wang-Wen-Witten 17),
of which my go-to examples are orbifolds.

Briefly, the idea of www is that if a given orbifold [ X/G] is ill-defined because
of an anomaly (which obstructs the gauging),

then replace G with a larger group I whose action is anomaly-free.

] — K — 1 — G — 1

The larger group I has a subgroup K C I that acts trivially on X,
and G =1/K.

However, orbifolds with trivially-acting subgroups are standard examples in which
decomposition arises (in 1+1 dimensions), so one expects decomposition is relevant here.

(Hellerman et al '06)



Plan for the remainder of the talk:

* Describe decomposition in orbifolds with trivially-acting subgroups,

o Add a new modular invariant phase: “quantum symmetry,” in H'(G, H'(K, U(1))),

» Review the anomaly-resolution procedure of (Wang-Wen-Witten '17),

* and apply decomposition to that procedure.

What we’ll find is that, in (1+1)-dimensions,

QFT(“[X/G])"=1X/T']3) = QFT(copies and covers of [ X/(nonanomalous subgp of G] )

as a consequence of decomposition.
This gives a simple understanding of why the www procedure works,
as well as of the result.



Decomposition in orbifolds in (1+1) dimensions

Let’s begin by discussing ordinary orbifolds w/o extra phases.
(We’ll need a more complicated version for anomaly resolution,
but let’s start here, and build up.)

Consider an orbifold [ X/I'], where K C I acts trivially.

]l — K —1 — G —1 (Kneednotbecentral) (K, I, G finite)
Decomposition implies

[Xxk
QFT ([X/T]) = QFT

G

] (Hellerman et al '06)
a)

A\

K = set of iso classes of irreps of K
G acts on K: p(k) — p(hkh™") forh eTaliftofg € G

@ = phases called “discrete torsion” — see refs for details.



Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I '], where K C I acts trivially.

l — K — T — G — 1 (K neednot be central)
Decomposition implies

QFT ([X/T]) = QFT [

Xx K (Hellerman et al '06)
G A
Q)

A\

K = set of iso classes of irreps of K

Universes (summands of decomposition)
correspond to orbits of G action on K.

Projectors: ForR=&@; R, R. € K related by the action of G, we have

dim R, ,
1, = Z : Z ){Ri(k—l)fk (Wedderburn’s theorem for

i | K| ex center of group algebra)




Decomposition in orbifolds in (1+1) dimensions

Consider an orbifold [ X/I '], where K C I acts trivially.

l — K — T — G — 1 (K neednot be central)
Decomposition implies

QFT ([X/T]) = QFT [

Xx K (Hellerman et al '06)
G
Q)

A\

K = set of iso classes of irreps of K

If Kisin the center of I, then the G action on Kis trivial,

and decomposition specializes to
) — a disjoint union,

as many elements
as K

A

K

QFT ([X/T]) = QFT(H X/G] .

More gen’ly, get both copies and covers of [ X/(G], as we shall see.



To make this more concrete, let’s walk through an example,
where everything can be made completely explicit.

Example: Orbifold [X/D4| in which the Z, center acts trivially.

T Pantev, ES’
— has BZ, (1-form) symmetry (T Pantev, £ o5)

Dy/Zy = Zy X Zo so this is closely related to a Z, x Z, orbifold

Decomposition predicts

QFT ([X/D,]) = QFT XxK — QFT Xx 2,
o G | | Zyx7Z, |

= QFT ([X/Zy X Z,lyy a1) H QFT ([X/Z, X Z,]y,)
(bc K = Z, centralinl" = D,)

Let’s check this explicitly....



Example, contd
QFT (IX/D,]) = QFT ([X/ZyX Zylyo40) | | QFT (1X/Z, % Z,14,.)

At the level of operators, one reason for this is that the theory admits projection operators:

Let Z denote the (dim 0) twist field associated to the trivially-acting Z,:
Z obeys 2% = 1.

Using that relation, we form projection operators:

[I, = —(1x7%) ( = specialization of formula
N 2 given earlier)

13 =11, [ILII. =0

-+

Next: compare partition functions....



Example, contd

o o o X D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Take the (1+1)-dim’l spacetime to be 72,

The partition function of any orbifold [X/T"] on T7 is

1
o ([X/T]) = T Z Lo where Z,, = (g . —> X)
h

gh=hg

(“twisted sectors”)

(Think of Z, ; as sigma model to X with branch cuts g, .)

We're going to see that

Zr (IXID)]) = Zp (X1 Zy X Z,]) + Zpa2 ([X/Zy X Z,]4, )



Example, contd

" - X/D
Compute the partition function of [X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
ZT2 ([X/D4]) — ‘D ‘ Z Zg,h Where Zg,h — g . — X
4 gheD,,gh=hg ,

Since z acts trivially,

Z 4.1 is symmetric under multiplication by z

2=/l ~ -l - M -~
Z h

‘1 hz ‘I hz

<

This is the BZ5 1-form symmetry.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
Zp2 (IXID4]) = Dy 2 Z where Z,, = (¢ . — X
4 gheD,,gh=hg ,

Each D, twisted sector (£, ;) that appears is the same asa D,/ Z, = Z, X Z, twisted sector,

appearing with multiplicity | Z, |* = 4,
except for the sectors @ . a . 2 . which do not appear.
b ab Py

Restriction on nonperturbative sectors



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp ([X/1Z,x Z,]) — (some twisted sectors))

Different theory than Z, X Z, orbifold

Physics knows when we gauge even a trivially-acting group!



Example, contd

o - X/D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Zr ([X/ID,]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp (X/Z, % Z,]) — (some twisted sectors))

1
Fact: given any one partition function  Zp ([X/G]) = Yl Z 29
gh=hg

we can multiply in SL(2,Z)-invariant phases €(g, h)

to get another consistent partition function (for a different theory)

|
7 = Yl D e(g.h)Z,,

gh=hg

There is a universal choice of such phases, determined by elements of H*(G, U(1))

This is called “discrete torsion.”



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

= 2(Zp ([X/1Z,x Z,]) — (some twisted sectors))

Ina Z, X Z, orbifold, discrete torsion € H*(Z, X Z,, U(1)) =

and the nontrivial element acts as a sign on the twisted sectors

. . . the same sectors which

were omitted above.

Zr: ([XIDy]) = Zp ([X/sz 2o wioar) + Zr ([X1Zy X Z5)4, )

Adding the universes projects out some sectors — interference effect.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr2 ([XIDy]) = 1 Z,1° (Z2 ([X/1Z, % Z,]) — (some twisted sectors) )

2 (Z2 ([X/1Z, % Z,]) — (some twisted sectors))

Discrete torsion is H=(Zo x Zo,U(1)) = Zs,

and acts as a sign on the twisted sectors

- . = . A . which were omitted above.
b ab ab

Zr (IXIDy)) = Zp ([XIZy X Zy)wpoar) + Zp2 ([X1Zy X Z5]4, )

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/Z,x Z,)\s0a.) | | QFT (IX/2,% Z,1,,)



Example, contd
Zr ([XIDg]) = Zpo ([X1Zy X Zylgjoar) + Zi2 ([X1Zy X Z5)4, )

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/Z;X Z)lysoa) | | QFT (IX/Z,x 2,14,

The computation above demonstrated that the partition function on 72
has the form predicted by decomposition.
The same is also true of partition functions at higher genus
— just more combinatorics.
(see hep-th/0606034, section 5.2 for details)

Only slightly novel aspect: in gen’l, one finds dilaton shifts,
which mostly I'll suppress in this talk.



This computation was not a one-off, but in fact verifies a prediction in Hellerman et al '06
regarding QFTs in (1+1)-dims with 1-form symmetry.

Another example: Triv’ly acting subgroup not in center

Consider [X/H], H = eight-element gp of unit quaternions,
where (i) = Z, C H acts trivially.

Decomposition predicts ) (Hellerman et al "06)
Xx K )
QFT ([X/T']) = QFT [ G ] where K = irreps of K
0, @ = discrete torsion

on universes

Here, G = H/(i) = Z, acts nontriv’ly on K = Z,, interchanging 2 elements,

so  QFT([X/H]) = QFT (XH[X/ZZ] H[X/Zz])

(Hellerman et al,
hep-th/0606034,
— different universes; X # [X/Z,] sect. 5.4)

— easily checked



So far I've outlined how decomposition works in orbifolds [ X/1 ],
with trivially-acting K C I,
and no discrete torsion or other phase modifications (in the I orbifold).

However, in order to apply this to anomaly resolution,
we're going to need to understand decomposition in orbifolds
modified by (modular-invariant) phases.

Next: decomposition in orbifolds [ X/I'] S with discrete torsion w € H (T, U(1))....



Decomposition in orbifolds in (1+1)-dims with discrete torsion
(Robbins et al '21)

Consider [ X/I'] , where K C I" acts trivially, ® € H*(T, U(1)), and define G = T'/K.
l — K—T - G — 1 (assume central)

H*(G, U(1)) =5 (Ker* ¢ HXT, U(1))) £ H'(G,H'(K, U(1)))

Cases: — Hom(G. K)
1) If 1*w # 0, Y R
QFT ([X/T,) = QFT [ > w]
) It 1* 0 and f(w) # 0 ’ Checked in
2 — , -
h B QG;T (IX/T],) = QFT[ [chomﬁ (w)} r;i?rﬁ;?gss
v Ker f(w)

3 It *w = 0and f(w) = 0, then w = 7*w forw € H*(G, U(1)) and

QFT ([X/T1,) = QFT[[XZK] ]




Let’s get back on track.

My goal today is to talk about anomaly resolution in 1+1 dimensions.

Decomposition will play a vital role in understanding how the anomalies are resolved.

Recall the idea of www is that given an anomalous (ill-defined) [ X/ G],
replace G by a larger finite group I obeying certain properties,

] — K — 1 — G — 1,

and add phases.

Because I has a subgroup K that acts trivially,
orbifolds [ X/I'] will decompose,
into copies & covers of [ X/G].

However, just getting copies of [ X/G] won't help.
We also need to add certain new phases, which I will describe next....



New modular invariant phases: quantum symmetries (Tachikawa "17;
Robbins et al "21)

A quantum symmetry is a modular-invariant phase in orbifolds
in which a subgroup K acts trivially.

Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

[t acts on twisted sector states by phases. Schematically:
where

<[ - s (<D

n ’ B € H(G,H\(K, U(1)))

These generalize the old notion of "quantum symmetries’ in the orbifolds literature;
those old quantum symmetries were determined by discrete torsion,
but the ones we need for anomaly resolution, aren't....



New modular invariant phases: quantum symmetries

These are modular invariant — analogous to (but different from) discrete torsion.

Work on T?. Geometrically, this admits ‘Dehn twists’

Under such a twist,

S
chd - -
Discrete torsion: e(g°h®, g°h?) = e(g, h)

Quantum symmetry: ) e(g°k{h’ky, gkihks) = ) e(gky. hky)
klakQEK kl,kZEK



New modular invariant phases: quantum symmetries (Tachikawa 17

Robbins et al '21)
A quantum symmetry is a modular-invariant phase in orbifolds

in which a subgroup K acts trivially.
Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

Those quantum symmetries in the image of f are equivalent to discrete torsion:

d
(Kerl* c HA(T, U(l))) ﬁ> HYG,H (K, U(1))) ER H3(G, U(l)) (Hochschild '77)

Specifically, f(w) € H'(G,H'(K,U(1))) forw € H*I,U(1))st.w|, =0.
Example: old-fashioned quantum symmetry in orbifolds

Start with [ X/Z]. Old story: This admits a Z, symmetry that acts on twist fields,
with the property that QFT([[X/Z,/Z,]) = QFTI([X/Z,X Z, 15) = QFT(X)

However, the phases are determined by discrete torsion; B = f(w)
(and rel'n to X is a special case of decomposition)



New modular invariant phases: quantum symmetries (Tachikawa 17

. Robbins et al '21)
A quantum symmetry is a modular-invariant phase in orbifolds

in which a subgroup K acts trivially.
Classified by elements of H'(G, H'(K, U(1))) = Hom(G, K ).

Those quantum symmetries in the image of f are equivalent to discrete torsion:

d
(Kerl* c HA(T, U(l))) ﬁ> HYG,H (K, U(1))) ER H3(G, U(l)) (Hochschild '77)

For purposes of resolving anomalies,
we need B € H'(G, H'(K, U(1))) such that d,B # 0.

These cases are not in im f3, so not determined by discrete torsion @ € H*(, U(1)).

They’re also of independent interest, beyond anomaly resolution.

How does decomposition work with such phases?....



Decomposition in the presence of a quantum symmetry

Decomposition:

QFT ([X/T'lz) = QFT [

X x Coker B
Ker B

where B € HY(G, HY(K, U(1))) = Hom(G, K)

This is more or less uniquely determined by consistency with previous results.
Recall for discrete torsion @ € Ker 1* ¢ H*([I, U(1)), with B(w) # 0,

QFT(IX/T],) = QFT [Xx Cokerﬁ(a))]

Ker f(w)

The result at top needs to include this as a special case, and it does.



Decomposition in the presence of a quantum symmetry

Decomposition:

X x Coker B
Ker B

QFT ([X/T) = QFT[[

Example: I'=2,, | — 4, — 24, — Z, — 1
Pick nontrivial B € H(G,H\(K, U(1))) = H\(Z,,Z2,) = Z,
Ker B=0, CokerB =0

Predict: QFT ([X/T']z) = QFT (X)

Check in partition function....



Decomposition in the presence of a quantum symmetry

Decomposition:

X x Coker B
QFT ([X/T'lz) = QFT [ ]

Ker B

Example: I'=2,, | — 4, — 24, — Z, — 1
Predict: QFT ([X/T']z) = QFT (X)

Check T? partition function:
Zij = (= )iZi,j—Z = (- )jZi—Z,j

1
Z([X/Z,)p) = Z Y 7, = y) (Zoo + Zop + Zog + Z2s) = Zyg = Z(X)  Works!
i,j=0



Decomposition in the presence of a quantum symmetry

If there is also discrete torsion @ € H*([, U(1)):

] — K-5S5T X5 G — 1

Assume for simplicity 1*w = 0.

(Kere* ¢ HX(T', U(1))) LA HY(G,H'(K, U(1))) &, H(G, U(1))

QFT ((X/T,.) = QFT [Xx @k@ﬁ(m))]
Bw)

Ker (B/f())

2) Suppose w = ¥, @ € H*(G, U(1)):

X X Cﬁié\rB All checked in examples;
QFT ([X/F]B,a)) = QFT I'll spare you....
0+®

Ker B



Now, finally, we have the tools to start applying to anomalies.

For the purposes of this talk, anomalies in a finite G gauge theory
in (n + 1) dimensions will be classified by H" (G, U(1)).

This arises from considerations of “topological defect lines.
On the next slide I'll outline how that works in the case n = 0.

Then, I'll outline how anomaly resolution in (1+1) dimensions
can be understood via decomposition.



Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions
- why are anomalies are associated to group cohomology?

Suppose a (finite) group G acts on the states of a QM system: For any |y), get p(2)|w).
For an honest group action, require p(g)p(h) = p(gh)

However, b/c we only care about states up to phases, we might instead have
p(@ph) = w(g,h)p(gh) forsome w(g,h) € U(1)

Associativity = @(g,, g3) ©(g1, £,23) = ©(g,2>, &3) w(g;, &) (coclosed)

. e(gh) .
Multiply p by phase e(2) > w(g,h) — w(g,h) (coboundaries)
ply p by p (8) g &) o
l
Thus, the obstructions w are classified by H*(G, U(1)) i: gfllz?nzs

States are all in w-projective representations of G.



Application to anomalies

Suppose we have an orbifold [ X/G] in 1+1d which is anomalous,
anomaly ae H 3(G, U (1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K— I — G —5 1 (I'll assume central)

where [ is chosen so that 7*a € H>(T, U(1)) is trivial.

The idea is then to replace [ X/G] with [ X/17],
but, need to describe how I acts on X.

If K acts triv’ly on X, and we do nothing else,
then we have accomplished nothing:

decomposition = QFT ([X/I']) = HQFT ([ X/G)) — still anomalous
K

Fix by adding quantum symmetry....



Application to anomalies

Suppose we have an orbifold [ X/G] in 1+1d which is anomalous,
anomaly ae H 3(G, U (1)) (Wang-Wen-Witten '17)

Algorithm to resolve:

1) Make G bigger: replace GbyI', 1 — K — I’ — G —— 1 (assumed central)

2) Turn on quantum symmetry B € H'(G, H'(K, U(1)))
chosen so that d,B = a. This implies 7*a € H (T, U(1)) is trivial.

K acts trivially on X, but nontrivially on twisted sector states via B

These two together — extension I plus B — resolve anomaly.

Decomposition explains how....



Application to anomaly resolution

Procedure: replace anomalous [ X/G]| with non-anomalous [ X/1],
whered,B = a € H (G, U(1)), the anomaly of the G orbifold.

Decomposition: _ — using earlier results for
X X Coker B ' s ,
QFT ([X/T'lz) = QFT = decomp’ in orb
ers | w/ quantum symmetry

Note that since d,B = «, =0

a ‘KerB

So, Ker B C G is automatically anomaly-free!

Summary: [X/I'|; = copies of orbifold by anomaly-free subgroup.



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

Extension 1: Define I' = D,, | — 2, — D, — Z, X2, —> 1

Quantum symmetry B determined by image on {a, b}

Results: B(a) | B(b) d-z(B)I \ w/o d.t. in D4 w/ d.t.in D4 Get only
{anomaly anomaly-free
| 1 - | xG1] |G, [X/(b)) subgroups,
1 i _ [X/(b)] x/G1] | x/G1,, varying
A ) X/{a) X/{ab) WB.
d d (b) [X/{ab)] [X/{a)]

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Extension 2: Define I' = H,

Results:

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

| — 24, — H—> 2, X2Z,— 1

Quantum symmetry B determined by image on {a, b}

B(a) B(b) ( d_2(B)I Result
anomaly)
| | gl pdar
1 1 (a), {ab) [ X/{D)]
1A (Baby| [XKa)]
1 ] (a), {b) [ X/{ab)]

Get only
anomaly-free
subgroups,
varying
w/ B.

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}

Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

Extension 3: Define I' = Z, X Z,, | — 2, — 2, X2y — 2y X Z, —> 1

Quantum symmetry B determined by image on {a, b}

Results: B(a) | B(b) d-z(B)I w/o d.t.in Z2 x Z4 w/ d.t.inZ2 x Z4 Get only
{anomaly) anomaly-free
| 1 - G| x/G1 | xiGl [ [ X/Gly | subgroups,
1 1 {ab) [X/{D)] [X/{D)] varying
U )| XK X/{a) W B,
1 1 (b) [ X/{ab)] [ X/{ab)]

Works!



Example: Resolve an anomalous orbifold [ X/G]|, G =2, X Z, = {1,a,b,ab}
Anomaly a € H(Z, X Z,, U(1)) = (Z,)’ = {(a) X {(b) X {ab)

In the examples so far, we picked a "'minimal’ resolutionI".

If we pick larger K, we get copies.

Extension 4: Definel =2, xH, 1 — 24, X2, — Z, XH — Z, X2, — 1

B(a) | B(b) ( a:ﬁf]z)ly) Result Get copies of
orb’s w/
Results: 1 1 — ]EI <[X/G]H [X/G]dt> anomaly-free
} 1 (a), (ab) NC subgroups.
2
1 1| (b),{ab) [ tx/¢an
: Works!

1 1 (a), (b) ]J[X/«zbﬂ




Summary
Decomposition: one’ QFT is secretly several

Decomposition appears in (n + 1)—dimensional theories
with n—form symmetries.

(I've focused on examples in 1+1d,
but examples exist in other dim’s too.)

Can be used to understand anomaly-resolution procedure of www:

replace anomalous [ X/G] with non-anomalous [ X/I],
but decomposition implies

QFT ([X/T'lg) = copies of QFT ([X/Ker B C GJ),
which is explicitly non-anomalous.

Thank you for your time !






Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions

So far, have obstruction to honest action of G encoded in anomaly @ € H*(G, U(1))

Fix: extend G to larger group I for which states are in an honest representation.

1) Pick extensionI’, 1 — K — I % G — 1
such that 7*w = 0 € H*(T, U(1))

2) Describe action of T, by picking A € HY(G, H'(K, U(1)))

such that A(Slszsl_zl) = w(g,8) fors,=s(g), s: G — 1 asection.

Then, define  p(s(g)k) = Ak)p(g)

) | Anomal
and one can show that p defines an honest representation of I . tved 4



Application to anomalies

Warmup: quantum-mechanical analogue, o+1 dimensions
Fix: extend G to larger group I for which states are in an honest representation.

1) Pick extensionI’, 1 — K — I % G — 1
such that 7*w = 0 € H*(T, U(1))

2) Describe action of T, by picking A € HY(G, H'(K, U(1)))

such that A(Slszsl_zl) = w(g,8) fors;,=s(g), s: G — 1 asection.

That was just QM, but the same pattern applies in higher dimensions.
In 1+1 dimensions, we’ll see how decomposition gives a very
explicit understanding of how anomaly resolution works.



The Future |
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Future directions



Boundaries in orbifolds with quantum symmetries

We saw earlier that in orbifolds [ X/I'] with triv’ly acting K C I,
the boundaries are naturally associated to universes of decomposition:

the boundary carries a (possibly projective) action of I,

SO restrict to K,
that action descends to a (possibly projective) representation of K,
which tells us which universe(s) the boundary is associated to.

That works fine in cases in which [ X/I '] has discrete torsion,
just projectivize. But what about quantum symmetries?

Specifically, quantum symmetries B with d,B # 0 ?



Boundaries in orbifolds with quantum symmetries

Specifically, quantum symmetries B with d,B # 0 ?

In this case, the associativity of the I action is broken,
albeit weakly — the action is "homotopy associative.

In principle, this structure should be understood formally in terms
of a groupoid quotient.

WIP w/ Tony Pantev to give a careful description.



