Analytic Continuation

See Arfken \& Weber pp 432-434 (in section 6.5 on Laurent expansions) for some of the material below. Our description here will closely follow [1].

1 Definition

The intersection of two domains (regions in the complex plane) D_{1}, D_{2}, denoted $D_{1} \cap D_{2}$, is the set of all points common to both D_{1} and D_{2}. The union of two domains D_{1}, D_{2}, denoted $D_{1} \cup D_{2}$, is the set of all points in either D_{1} or D_{2}.

Now, suppose you have two domains D_{1} and D_{2}, such that the intersection is nonempty and connected, and a function f_{1} that is analytic over the domain D_{1}. If there exists a function f_{2} that is analytic over the domain D_{2} and such that $f_{1}=f_{2}$ on the intersection $D_{1} \cap D_{2}$, then we say f_{2} is an analytic continuation of f_{1} into domain D_{2}.

Now, whenever an analytic continuation exists, it is unique. The reason for this is a basic mathematical result from the theory of complex variables:

A function that is analytic in a domain D is uniquely determined over D by its values over a domain, or along an arc, interior to D.

Define the function $F(z)$, analytic over the union $D_{1} \cup D_{2}$, as

$$
F(z)= \begin{cases}f_{1}(z) & \text { when } z \text { is in } D_{1} \\ f_{2}(z) & \text { when } z \text { is in } D_{2}\end{cases}
$$

In other words, F is given by f_{1} over D_{1} and by f_{2} over D_{2}, and since $f_{1}=f_{2}$ over the intersection of D_{1} and D_{2}, this is a well-defined, holomorphic function. By the mathematical result quoted above, since F is analytic in $D_{1} \cup D_{2}$, it is uniquely determined by f_{1} on D_{1}. (For that matter, it is also uniquely determined by f_{2} on D_{2}.) In other words, there is only one possible holomorphic function on $D_{1} \cup D_{2}$ that matches f_{1} on D_{1}.

In this case, the function $F(z)$ is said to be the analytic continuation over $D_{1} \cup D_{2}$ of either f_{1} or f_{2}.

Example: Consider first the function

$$
f_{1}(z)=\sum_{n=0}^{\infty} z^{n}
$$

This power series converges when $|z|<1$ to $1 /(1-z)$, and is not defined when $|z| \geq 1$. (In particular, this is just a geometric series, so we can sum it as a geometric series, so long as we're in the region of convergence.)

On the other hand, the function

$$
f_{2}(z)=\frac{1}{1-z}
$$

is defined and analytic everywhere except $z=1$.
Since $f_{1}=f_{2}$ on the disk $|z|<1$, we can view f_{2} as the analytic continuation of f_{1} to the rest of the complex plane (minus the point $z=1$).

Example: Consider the function

$$
f_{1}(z)=\int_{0}^{\infty} \exp (-z t) d t
$$

This integral exists only when $\operatorname{Re} z>0$, and for such z, this integral has value $1 / z$.
Since the function $1 / z$ matches f_{1} on the domain $\operatorname{Re} z>0$, the function $1 / z$ is the analytic continuation of f_{1} to nonzero complex numbers.

While we're at it, define

$$
f_{2}(z)=i \sum_{n=0}^{\infty}\left(\frac{z+i}{i}\right)^{n}
$$

This series converges for $|z+i|<1$, and so f_{2} is defined only within that disk centered on $-i$. Within that unit disk, one can show that $f_{2}(z)=1 / z$, using the fact that the series is a geometric series.

Since f_{2} matches $1 / z$ on a disk, we can view $1 / z$ as the analytic continuation of f_{2} to nonzero complex numbers.

Also, we can view f_{2} as the analytic continuation of f_{1} to the disk $|z+i|<1$.
Example: The Gamma function.
Recall the second definition of the Gamma function,

$$
\Gamma(z)=\int_{0}^{\infty} \exp (-t) t^{z-1} d t
$$

is valid for $\operatorname{Re} z>0$. Other definitions, such as the Weierstrass form

$$
\frac{1}{\Gamma(z)}=z \exp (\gamma z) \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) \exp (-z / n)
$$

are valid more generally. Thus, we can view the Weierstrass form as an analytic continuation of the Euler integral form.

2 Exercises (taken from [1])

1. Show that the holomorphic function

$$
f_{2}(z)=\frac{1}{z^{2}+1}
$$

($z \neq \pm i$) is the analytic continuation of the function

$$
f_{1}(z)=\sum_{n=0}^{\infty}(-)^{n} z^{2 n}
$$

$(|z|<1)$ into the domain consisting of all points in the z plane except $z= \pm i$.
2. Show that the function $f_{2}(z)=1 / z^{2}(z \neq 0)$ is the analytic continuation of the function

$$
f_{1}(z)=\sum_{n=0}^{\infty}(n+1)(z+1)^{n}
$$

$(|z+1|<1)$ into the domain consisting of all points in the z plane except $z=0$.
3. Find the analytic continuation of the function

$$
f(z)=\int_{0}^{\infty} t \exp (-z t) d t
$$

$(\operatorname{Re} z>0)$ into the domain consisting of all points in the z plane except the origin.
4. Show that the function $1 /\left(z^{2}+1\right)$ is the analytic continuation of the function

$$
f(z)=\int_{0}^{\infty} \exp (-z t)(\sin t) d t
$$

$(\operatorname{Re} z>0)$ into the domain consisting of all points in the z plane except $z= \pm i$.

References

[1] R. Churchill, J. Brown, Complex Variables and Applications, 5th edition, McGraw-Hill, 1990, section 102.

