String Geometry Beyond the Torus

Falk Haßler

based on arXiv:1410.6374 with

Ralph Blumenhagen and Dieter Lüst

Arnold Sommerfeld Center LMU Munich

October 25, 2014

The big picture

The big picture

The big picture

Outline

1. SUGRA & DFT in a nutshell

2. String geometry by violating the strong constraint

3. Deriving DFT_{WZW} from CSFT

4. Applications

5. Summary and outlook

SUGRA

- closed strings in D-dim. flat space
- truncate all massive excitations
- match scattering amplitudes of strings with EFT

$$\mathcal{S}_{\mathrm{NS}} = \int \mathrm{d}^D x \, \sqrt{g} e^{-2\phi} \left(\mathcal{R} + 4 \partial_i \phi \partial^i \phi - rac{1}{12} \mathcal{H}_{ijk} \mathcal{H}^{ijk}
ight)$$

SUGRA & DFT •0000 String geometry

DFT_{WZW} from CSFT

Applications

SUGRA

- closed strings in D-dim. flat space
- truncate all massive excitations
- match scattering amplitudes of strings with EFT

$$\mathcal{S}_{\mathrm{NS}} = \int \mathrm{d}^D x \, \sqrt{g} e^{-2\phi} \left(\mathcal{R} + 4 \partial_i \phi \partial^i \phi - \frac{1}{12} H_{ijk} H^{ijk}
ight)$$

SUGRA & DFT •0000 String geometry

DFT_{WZW} from CSFT

Applications

SUGRA

- closed strings in D-dim. flat space
- truncate all massive excitations
- match scattering amplitudes of strings with EFT

$$\mathcal{S}_{\mathrm{NS}} = \int \mathrm{d}^{\mathcal{D}} x \, \sqrt{g} e^{-2\phi} \left(\mathcal{R} + 4 \partial_i \phi \partial^i \phi - rac{1}{12} \mathcal{H}_{ijk} \mathcal{H}^{ijk}
ight)$$

Applications

Summary

SUGRA & DFT •0000

String geometry

DFT_{WZW} from CSFT

Manifest & hidden symmetries

- ► S_{NS} = action for NS/NS sector of Type IIA and Type IIB
- manifest invariant under

 $\begin{array}{ll} \text{diffeomorphisms} & g_{ij} = \mathcal{L}_{\xi} g_{ij} \\ \text{gauge transformations} & B_{ij} = \mathcal{L}_{\xi} B_{ij} + \partial_i \alpha_j - \partial_j \alpha_i \end{array}$

- compactification on circle \rightarrow U(1) isometry
- Buscher rules implement T-duality [Buscher, 1987]

$$\tilde{g}_{\theta\theta} = \frac{1}{g_{\theta\theta}}, \quad \tilde{g}_{\theta i} = \frac{1}{g_{\theta\theta}} B_{\theta i}, \quad \tilde{g}_{ij} = g_{ij} + \frac{1}{g_{\theta\theta}} (g_{\theta i}g_{\theta j} - B_{\theta i}B_{\theta j}), \dots$$

from *NS/NS* sector of IIA to IIB

T-duality is a hidden symmetry

SUGRA & DFT

DFT_{WZW} from CSFT

Applications

- closed strings on a flat torus
- combine conjugated variables x_i and \tilde{x}^i into $X^M = (\tilde{x}_i \ x^i)$
- repeat steps from SUGRA derivation

$$S_{
m DFT} = \int {
m d}^{2D} X \, e^{-2d} \mathcal{R}(\mathcal{H}_{MN}, d)$$

fields are constrained by strong constraint

$$\partial_M \partial^M \cdot = 0$$

SUGRA & DFT 00000 String geometry

DFT_{WZW} from CSFT

Applications

$$X^{M} = (ilde{x}_{i} \quad x^{i})$$
 , $S_{
m DFT} = \int {
m d}^{2D} X \ e^{-2d} \mathcal{R}(\mathcal{H}_{MN}, d)$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

$$X^{M} = \begin{pmatrix} \tilde{x}_{i} & x^{i} \end{pmatrix} \checkmark d = \phi - \frac{1}{2} \log \sqrt{g}$$
$$S_{\text{DFT}} = \int d^{2D} X e^{-2d} \mathcal{R}(\mathcal{H}_{MN}, d)$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

$$\begin{split} X^{M} &= \begin{pmatrix} \tilde{x}_{i} & x^{i} \end{pmatrix} & \downarrow & \downarrow & d = \phi - \frac{1}{2} \log \sqrt{g} \\ S_{\text{DFT}} &= \int d^{2D} X e^{-2d} \mathcal{R}(\mathcal{H}_{MN}, d) \\ \mathcal{R} &= 4\mathcal{H}^{MN} \partial_{M} \partial_{N} d - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_{M} d\partial_{N} d + 4\partial_{M} \mathcal{H}^{MN} \partial_{N} d \\ &+ \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK} \end{split}$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

$$X^{M} = (\tilde{x}_{i} \quad x^{i}) \checkmark d = \phi - \frac{1}{2} \log \sqrt{g}$$

$$\partial_{M} = (\tilde{\partial}^{i} \quad \partial_{i}) \qquad S_{DFT} = \int d^{2D} X e^{-2d} \mathcal{R}(\mathcal{H}_{MN}, d)$$

$$\mathcal{R} = 4\mathcal{H}^{MN} \partial_{M} \partial_{N} d - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_{M} d\partial_{N} d + 4\partial_{M} \mathcal{H}^{MN} \partial_{N} d + \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK}$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

$$X^{M} = (\tilde{x}_{i} \quad x^{i}) \quad d = \phi - \frac{1}{2} \log \sqrt{g}$$

$$\partial_{M} = (\tilde{\partial}^{i} \quad \partial_{i}) \quad S_{DFT} = \int d^{2D} X e^{-2d} \mathcal{R}(\mathcal{H}_{MN}, d)$$

$$\mathcal{R} = 4\mathcal{H}^{MN} \partial_{M} \partial_{N} d - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_{M} d\partial_{N} d + 4\partial_{M} \mathcal{H}^{MN} \partial_{N} d$$

$$+ \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK}$$

$$\mathcal{H}^{MN} = \begin{pmatrix} g_{ij} - B_{ik} g^{kl} B_{ij} & -B_{ik} g^{kj} \\ g^{ik} B_{kj} & g^{ij} \end{pmatrix} \in O(D, D) \rightarrow \text{T-duality}$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

► lower/raise indices with $\eta_{MN} = \begin{pmatrix} 0 & \delta_j^i \\ \delta_i^j & 0 \end{pmatrix}$ and $\eta^{MN} = \begin{pmatrix} 0 & \delta_i^j \\ \delta_i^j & 0 \end{pmatrix}$

$$X^{M} = \begin{pmatrix} \tilde{x}_{i} & x^{i} \end{pmatrix} \qquad \qquad d = \phi - \frac{1}{2} \log \sqrt{g}$$

$$\partial_{M} = \begin{pmatrix} \tilde{\partial}^{i} & \partial_{i} \end{pmatrix} \qquad S_{DFT} = \int d^{2D} X e^{-2d} \mathcal{R}(\mathcal{H}_{MN}, d)$$

$$\mathcal{R} = 4\mathcal{H}^{MN} \partial_{M} \partial_{N} d - \partial_{M} \partial_{N} \mathcal{H}^{MN} - 4\mathcal{H}^{MN} \partial_{M} d\partial_{N} d + 4\partial_{M} \mathcal{H}^{MN} \partial_{N} d$$

$$+ \frac{1}{8} \mathcal{H}^{MN} \partial_{M} \mathcal{H}^{KL} \partial_{N} \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_{N} \mathcal{H}^{KL} \partial_{L} \mathcal{H}_{MK}$$

$$\mathcal{H}^{MN} = \begin{pmatrix} g_{ij} - B_{ik} g^{kl} B_{ij} & -B_{ik} g^{kj} \\ g^{ik} B_{kj} & g^{ij} \end{pmatrix} \in O(D, D) \rightarrow \text{T-duality}$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Gauge transformations [Hull and Zwiebach, 2009]

- generalized Lie derivative combines
 - 1. diffeomorphisms
 - 2. *B*-field gauge transformations

 $\left. \right\}$ available in SUGRA

3. β -field gauge transformations

$$\begin{split} \mathcal{L}_{\lambda}\mathcal{H}^{MN} &= \lambda^{P}\partial_{P}\mathcal{H}^{MN} + (\partial^{M}\lambda_{P} - \partial_{P}\lambda^{M})\mathcal{H}^{PN} + (\partial^{N}\lambda_{P} - \partial_{P}\lambda^{N})\mathcal{H}^{MP} \\ \mathcal{L}_{\lambda}\boldsymbol{d} &= \lambda^{M}\partial_{M}\boldsymbol{d} + \frac{1}{2}\partial_{M}\lambda^{M} \end{split}$$

closure of algebra

 $\mathcal{L}_{\lambda_1}\mathcal{L}_{\lambda_2} - \mathcal{L}_{\lambda_2}\mathcal{L}_{\lambda_1} = \mathcal{L}_{\lambda_{12}} \quad \text{with} \quad \lambda_{12} = [\lambda_1, \lambda_2]_C$

only if strong constraint holds

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

[Dabholkar and Hull, 2003,Condeescu, Florakis, Kounnas, and Lüst, 2013,Haßler and Lüst, 2014]

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

[Dabholkar and Hull, 2003,Condeescu, Florakis, Kounnas, and Lüst, 2013,Haßler and Lüst, 2014]

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

[Dabholkar and Hull, 2003,Condeescu, Florakis, Kounnas, and Lüst, 2013,Haßler and Lüst, 2014]

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

[Dabholkar and Hull, 2003,Condeescu, Florakis, Kounnas, and Lüst, 2013,Haßler and Lüst, 2014]

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

[Aldazabal, Baron, Marques, and Nunez, 2011, Geissbuhler, 2011]

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

[Aldazabal, Baron, Margues, and Nunez, 2011, Geissbuhler, 2011]

[Aldazabal, Baron, Margues, and Nunez, 2011, Geissbuhler, 2011]

[Aldazabal, Baron, Margues, and Nunez, 2011, Geissbuhler, 2011]

[Aldazabal, Baron, Marques, and Nunez, 2011, Geissbuhler, 2011]

[Aldazabal, Baron, Margues, and Nunez, 2011, Geissbuhler, 2011]

simplification (truncation)

DFT on group manifolds = DFT_{WZW}

- Use group manifold instead of a torus to derive DFT!
 - + non-abelian gauge groups
 - + cosmological constant
 - + flux backgrounds with const. fluxes

DFT on group manifolds = DFT_{WZW}

- Use group manifold instead of a torus to derive DFT!
 - + non-abelian gauge groups
 - + cosmological constant
 - + flux backgrounds with const. fluxes

<u>Double</u> Field Theory =

- treat left and right mover independently
 - 2D independent coordinates

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

DFT on group manifolds = DFT_{WZW}

- Use group manifold instead of a torus to derive DFT!
 - + non-abelian gauge groups
 - + cosmological constant
 - + flux backgrounds with const. fluxes

Double Field Theory =

- treat left and right mover independently
 - 2D independent coordinates

Questions about DFT_{WZW}

- What are the covariant objects?
- Does it make non-abelian duality manifest?
- How is it connected to DFT?

not trivial

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

WZW model & Kač-Moody algebra [Witten, 1983,Walton, 1999]

▶ $g \in G$, a compact simply connected Lie group

$$S_{\mathrm{WZW}} = rac{1}{2\pilpha'}\int_M d^2 z \mathcal{K}(g^{-1}\partial g,g^{-1}ar{\partial}g) + S_{\mathrm{WZ}}(g)$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

WZW model & Kač-Moody algebra [Witten, 1983, Walton, 1999]

▶ $g \in G$, a compact simply connected Lie group

$$\mathcal{S}_{\mathrm{WZW}} = rac{1}{2\pilpha'}\int_{M}d^{2}z\mathcal{K}(g^{-1}\partial g,g^{-1}ar{\partial}g) + \mathcal{S}_{\mathrm{WZ}}(g)$$

metric and 3-form flux in flat indices

$$\eta_{ab} := \mathcal{K}(t_a, t_b)$$
 and $F_{abc} := \mathcal{K}([t_a, t_b], t_c)$

D chiral and D anti-chiral Noether currents (=2D indep. currents)

$$j_a(z) = rac{2}{lpha'} \mathcal{K}(\partial g g^{-1}, t_a)$$
 and $j_{ar{a}}(ar{z}) = -rac{2}{lpha'} \mathcal{K}(g^{-1} ar{\partial} g, t_{ar{a}})$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications
WZW model & Kač-Moody algebra [Witten, 1983, Walton, 1999]

▶ $g \in G$, a compact simply connected Lie group

$$\mathcal{S}_{\mathrm{WZW}} = rac{1}{2\pilpha'}\int_{M}d^{2}z\mathcal{K}(g^{-1}\partial g,g^{-1}ar{\partial}g) + \mathcal{S}_{\mathrm{WZ}}(g)$$

metric and 3-form flux in flat indices

$$\eta_{ab} := \mathcal{K}(t_a, t_b) \text{ and } F_{abc} := \mathcal{K}([t_a, t_b], t_c)$$

D chiral and D anti-chiral Noether currents (=2D indep. currents)

$$j_a(z) = rac{2}{lpha'} \mathcal{K}(\partial g g^{-1}, t_a)$$
 and $j_{ar{a}}(ar{z}) = -rac{2}{lpha'} \mathcal{K}(g^{-1} ar{\partial} g, t_{ar{a}})$

radial quantization

$$j_{a}(z)j_{b}(w) = -\frac{\alpha'}{2}\frac{1}{(z-w)^{2}}\eta_{ab} + \frac{1}{z-w}F_{ab}{}^{c}j_{c}(z) + \dots$$

Summarv

Action

► tree level action in CSFT [Zwiebach, 1993]

$$(2\kappa^2)S = rac{2}{lpha'}\left(\langle\Psi|c_0^-Q|\Psi
angle + rac{1}{3}\{\Psi,\Psi,\Psi\}_0 + \dots
ight)$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Action

tree level action in CSFT [Zwiebach, 1993]

$$(2\kappa^2)S = rac{2}{lpha'}\left(\langle\Psi|c_0^-Q|\Psi
angle + rac{1}{3}\{\Psi,\Psi,\Psi\}_0 + \dots
ight)$$

string field for massless excitations [Hull and Zwiebach, 2009]

$$ert \Psi
angle = \sum_{R} \Bigl[rac{lpha'}{4} \epsilon^{aar{b}}(R) j_{a-1} j_{ar{b}-1} c_1 ar{c}_1 + e(R) c_1 c_{-1} + ar{e}(R) ar{c}_1 ar{c}_{-1} + rac{lpha'}{2} \Bigl(f^a(R) c_0^+ c_1 j_{a-1} + f^{ar{b}}(R) c_0^+ ar{c}_1 j_{ar{b}-1} \Bigr) \Bigr] ert \phi_w
angle$$

• *R* is highest weight of $\mathfrak{g} \times \mathfrak{g}$ representation

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Action

tree level action in CSFT [Zwiebach, 1993]

$$(2\kappa^2)S = rac{2}{lpha'}\left(\langle\Psi|c_0^-Q|\Psi
angle + rac{1}{3}\{\Psi,\Psi,\Psi\}_0 + \dots
ight)$$

string field for massless excitations [Hull and Zwiebach, 2009]

$$ert \Psi
angle = \sum_{R} \Big[rac{lpha'}{4} \epsilon^{aar{b}}(R) j_{a-1} j_{ar{b}-1} c_1 ar{c}_1 + e(R) c_1 c_{-1} + ar{e}(R) ar{c}_1 ar{c}_{-1} + rac{lpha'}{2} \Big(f^a(R) c_0^+ c_1 j_{a-1} + f^{ar{b}}(R) c_0^+ ar{c}_1 j_{ar{b}-1} \Big) \Big] ert \phi_{w}
angle$$

- *R* is highest weight of $\mathfrak{g} \times \mathfrak{g}$ representation
- BRST operator (*L_m* from Sugawara construction)

$$Q = \sum_{m} (: c_{-m}L_m : +\frac{1}{2} : c_{-m}L_m^{gh} :) + \text{anti-chiral}$$
RA & DFT String geometry DFT_{WZW} from CSFT

Applications

Geometric representation of primary fields ($k \rightarrow \infty$)

flat derivative	$D_a = e_a{}^i \partial$	_i with	$e_a{}^i = \mathcal{K}(g^{-1}\partial^i g, t_a)$
operator algeb	ra	geome	try
$\overline{L_0 \phi_R\rangle} = h_R \phi_R\rangle$	$_{R}\rangle$	D _a D ^a Y	$Y_R(x^i) = h_R Y_R(x^i)$
$j_{a0} \phi_{R} angle$		D _a Y _R (2	x ⁱ)
$[j_{a0}, j_{b0}] = F_{ab}$	Ĵco	$[D_a, D_b]$	$]=F_{ab}{}^{c}D_{c}$
$\sum_{m{R}}m{e}(m{R}) \phi_{m{R}} angle$		$\sum_{R} e(R)$	$R(x^i) := e(x^i)$

Applications

Geometric representation of primary fields ($k \rightarrow \infty$)

0000000000

Weak constraint (level matching)

• level matched string field $(L_0 - \bar{L}_0) |\Psi\rangle = 0$ requires

$$(D_a D^a - D_{\bar{a}} D^{\bar{a}}) \cdot = 0$$
 with $\cdot \in \{\epsilon^{a\bar{b}}, e, \bar{e}, f^a, f^{\bar{b}}\}$

▶ rewritten in terms of η^{AB} and $D_A = \begin{pmatrix} D_a & D_{\bar{a}} \end{pmatrix}$

 $\eta^{AB} D_A D_{B} = D_A D^A = 0$ compare with $\partial_M \partial^M = 0$

SUGRA & DFT

DFT_{WZW} from CSFT

Applications

Weak constraint (level matching)

- level matched string field $(L_0 - \overline{L}_0) |\Psi\rangle = 0$ requires

$$(D_a D^a - D_{\bar{a}} D^{\bar{a}}) \cdot = 0$$
 with $\cdot \in \{\epsilon^{a\bar{b}}, e, \bar{e}, f^a, f^{\bar{b}}\}$

▶ rewritten in terms of η^{AB} and $D_A = \begin{pmatrix} D_a & D_{\bar{a}} \end{pmatrix}$

 $\eta^{AB} D_A D_B = D_A D^A = 0$ compare with $\partial_M \partial^M = 0$

• change to curved indices using E_A^M

$$(\partial_M \partial^M - 2 \partial_M d \partial^M) \cdot = 0$$
 with $d = \phi - \frac{1}{2} \log \sqrt{g}$

- additional term which is absent in DFT \rightarrow adsorb in cov. derivative

$$\nabla_M \partial^M \cdot = 0$$
 with $\nabla_M V^N = \partial_M V^N + \Gamma_{MK}{}^N V^K$, $\Gamma_{MK}{}^M = -2\partial_K d$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Results (leading order k^{-1} **)**

- calculate quadratic and cubic string functions
- integrate out auxiliary fields f^a and $f^{\bar{b}}$
- perform field redefinition

$$(2\kappa^{2})S = \int d^{2D}X\sqrt{H} \left[\frac{1}{4}\epsilon_{a\bar{b}}\Box\epsilon^{a\bar{b}} + \dots -\frac{1}{4}\epsilon_{a\bar{b}}(F^{ac}{}_{d}\bar{D}^{\bar{e}}\epsilon^{d\bar{b}}\epsilon_{c\bar{e}} + F^{\bar{b}\bar{c}}{}_{\bar{d}}D^{e}\epsilon^{a\bar{d}}\epsilon_{e\bar{c}}) -\frac{1}{12}F^{ace}F^{\bar{b}\bar{d}\bar{f}}\epsilon_{a\bar{b}}\epsilon_{c\bar{d}}\epsilon_{e\bar{f}} + \dots\right]$$

- additional terms e.g. potential
- $\blacktriangleright\,$ vanish in abelian limit $F_{abc} \rightarrow 0$ and $F_{\bar{a}\bar{b}\bar{c}} \rightarrow 0$

String geometry

DFT_{WZW} from CSFT

Applications

Gauge transformations

tree level gauge transformation in CSFT [Zwiebach, 1993]

 $\delta_{\Lambda} |\Psi\rangle = Q |\Lambda\rangle + [\Lambda, \Psi]_0 + \cdots$

string field for gauge parameter [Hull and Zwiebach, 2009]

$$|\Lambda
angle = \sum_{R} \Big[rac{1}{2} \lambda^a(R) j_{a-1} c_1 - rac{1}{2} \lambda^{ar{b}}(R) j_{ar{b}-1} ar{c}_1 + \mu(R) c_0^+ \Big] |\phi_R
angle$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Gauge transformations

tree level gauge transformation in CSFT [Zwiebach, 1993]

 $\delta_{\Lambda}|\Psi\rangle = Q|\Lambda\rangle + [\Lambda,\Psi]_0 + \cdots$

string field for gauge parameter [Hull and Zwiebach, 2009]

$$|\Lambda\rangle = \sum_{R} \left[\frac{1}{2}\lambda^{a}(R)j_{a-1}c_{1} - \frac{1}{2}\lambda^{\bar{b}}(R)j_{\bar{b}-1}\bar{c}_{1} + \mu(R)c_{0}^{+}\right]|\phi_{R}\rangle$$

• after field redefinition and μ gauge fixing

$$\delta_{\lambda}\epsilon_{a\bar{b}} = D_{\bar{b}}\lambda_{a} + \frac{1}{2} \left[D_{a}\lambda^{c}\epsilon_{c\bar{b}} - D^{c}\lambda_{a}\epsilon_{c\bar{b}} + \lambda_{c}D^{c}\epsilon_{a\bar{b}} + F_{ac}{}^{d}\lambda^{c}\epsilon_{d\bar{b}} \right]$$
$$D_{a}\lambda_{\bar{b}} + \frac{1}{2} \left[D_{\bar{b}}\lambda^{\bar{c}}\epsilon_{a\bar{c}} - D^{\bar{c}}\lambda_{\bar{b}}\epsilon_{a\bar{c}} + \lambda_{\bar{c}}D^{\bar{c}}\epsilon_{a\bar{b}} + F_{\bar{b}\bar{c}}{}^{\bar{d}}\lambda^{\bar{c}}\epsilon_{a\bar{d}} \right]$$
$$\delta_{\lambda}d = -\frac{1}{4}D_{a}\lambda^{a} + \frac{1}{2}\lambda_{a}D^{a}d - \frac{1}{4}D_{\bar{a}}\lambda^{\bar{a}} + \frac{1}{2}\lambda_{\bar{a}}D^{\bar{a}}d$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Generalized Lie derivative

• "doubled" version of fluctuations $\epsilon^{a\bar{b}}$

$$\epsilon^{AB} = \begin{pmatrix} 0 & -\epsilon^{a\bar{b}} \\ -\epsilon^{\bar{a}b} & 0 \end{pmatrix} \quad \text{with} \quad \epsilon^{a\bar{b}} = (\epsilon^T)^{\bar{b}a}$$

generate generalized metric

$$\mathcal{H}^{AB} = S^{AB} + \epsilon^{AB} + \frac{1}{2} \epsilon^{AC} S_{CD} \epsilon^{DB} + \dots = \exp(\epsilon^{AB})$$

with the defining property $\mathcal{H}^{\textit{AC}}\eta_{\textit{CD}}\mathcal{H}^{\textit{DB}}=\eta^{\textit{AB}}$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Generalized Lie derivative

• "doubled" version of fluctuations $e^{a\bar{b}}$

$$\epsilon^{AB} = \begin{pmatrix} 0 & -\epsilon^{a\bar{b}} \\ -\epsilon^{\bar{a}b} & 0 \end{pmatrix}$$
 with $\epsilon^{a\bar{b}} = (\epsilon^T)^{\bar{b}a}$

generate generalized metric

$$\mathcal{H}^{AB} = S^{AB} + \epsilon^{AB} + \frac{1}{2} \epsilon^{AC} S_{CD} \epsilon^{DB} + \dots = \exp(\epsilon^{AB})$$

with the defining property $\mathcal{H}^{AC}\eta_{CD}\mathcal{H}^{DB}=\eta^{AB}$

generalized Lie derivative

$$\begin{aligned} \mathcal{L}_{\lambda}\mathcal{H}^{AB} &= \lambda^{C} D_{C} \mathcal{H}^{AB} + (D^{A} \lambda_{C} - D_{C} \lambda^{A}) \epsilon^{CB} + \\ & (D^{B} \lambda_{C} - D_{C} \lambda^{B}) \mathcal{H}^{AC} + F^{A}{}_{CD} \lambda^{C} \mathcal{H}^{DB} + F^{B}{}_{CD} \lambda^{C} \mathcal{H}^{AD} \end{aligned}$$

SUGRA & DFT

String geometry

 $\begin{array}{c} \mathsf{DFT}_{WZW} \text{ from CSFT} \\ \texttt{oooooooooo} \end{array}$

Applications

$$\delta_{\lambda} \epsilon^{AB} = \frac{1}{2} \left(\mathcal{L}_{\lambda} S^{AB} + \mathcal{L}_{\lambda} \epsilon^{AB} + \mathcal{L}_{\lambda} S^{(A}{}_{C} S^{B)}{}_{D} \epsilon^{CD} \right).$$

results in

$$\delta_{\lambda}\mathcal{H}^{AB}=rac{1}{2}\mathcal{L}_{\lambda}\mathcal{H}^{AB}+\mathcal{O}(\epsilon^{2})$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

$$\delta_{\lambda} \epsilon^{AB} = \frac{1}{2} \left(\mathcal{L}_{\lambda} S^{AB} + \mathcal{L}_{\lambda} \epsilon^{AB} + \mathcal{L}_{\lambda} S^{(A}{}_{C} S^{B)}{}_{D} \epsilon^{CD} \right).$$

results in
$$\delta_{\lambda}\mathcal{H}^{AB}=rac{1}{2}\mathcal{L}_{\lambda}\mathcal{H}^{AB}+\mathcal{O}(\epsilon^{2})$$

introduce covariant derivative

$$\nabla_A V^B = D_A V^B + \frac{1}{3} F^B_{AC} V^C$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

$$\delta_{\lambda} \epsilon^{AB} = \frac{1}{2} \left(\mathcal{L}_{\lambda} S^{AB} + \mathcal{L}_{\lambda} \epsilon^{AB} + \mathcal{L}_{\lambda} S^{(A}{}_{C} S^{B)}{}_{D} \epsilon^{CD} \right).$$

results in
$$\delta_{\lambda}\mathcal{H}^{AB}=rac{1}{2}\mathcal{L}_{\lambda}\mathcal{H}^{AB}+\mathcal{O}(\epsilon^{2})$$

introduce covariant derivative

$$\nabla_{A}V^{B} = D_{A}V^{B} + \frac{1}{3}F^{B}_{AC}V^{C}$$

$$F_{AB}{}^{C} = \begin{cases} F_{ab}{}^{c} \\ F_{\bar{a}\bar{b}}{}^{\bar{c}} \\ 0 & \text{otherwise} \end{cases}$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

$$\delta_{\lambda}\epsilon^{AB} = \frac{1}{2} \left(\mathcal{L}_{\lambda} S^{AB} + \mathcal{L}_{\lambda}\epsilon^{AB} + \mathcal{L}_{\lambda} S^{(A}{}_{C} S^{B)}{}_{D}\epsilon^{CD} \right).$$

results in
$$\delta_{\lambda}\mathcal{H}^{AB} = rac{1}{2}\mathcal{L}_{\lambda}\mathcal{H}^{AB} + \mathcal{O}(\epsilon^2)$$

introduce covariant derivative

$$\nabla_A V^B = D_A V^B + \frac{1}{3} F^B_{AC} V^C$$

generalized Lie derivative of a vector

Kăc-Moody structure coeff.

$$F_{AB}{}^{C} = \begin{cases} F_{ab}{}^{c} \\ F_{\bar{a}\bar{b}}{}^{\bar{c}} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{L}_{\lambda} \boldsymbol{V}^{\boldsymbol{A}} = \lambda^{\boldsymbol{C}} \nabla_{\boldsymbol{C}} \boldsymbol{V}^{\boldsymbol{A}} + (\nabla^{\boldsymbol{A}} \lambda_{\boldsymbol{C}} - \nabla_{\boldsymbol{C}} \lambda^{\boldsymbol{A}}) \boldsymbol{V}^{\boldsymbol{C}}$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Gauge algebra

CSFT to cubic order fulfills

 $\delta_{\Lambda_1}\delta_{\Lambda_2} - \delta_{\Lambda_2}\delta_{\Lambda_1} = \delta_{\Lambda_{12}} \quad \text{with} \quad \Lambda_{12} = [\Lambda_2, \Lambda_1]_0$

• after field redefinition and μ fixing $\lambda_{12}^{A} = \frac{1}{2} [\lambda_2, \lambda_1]_{C}^{A}$ with

$$[\lambda_1, \lambda_2]_C^A = \lambda_1^B \nabla_B \lambda_2^A - \frac{1}{2} \lambda_1^B \nabla^A \lambda_{2B} - (1 \leftrightarrow 2)$$

DFT_{WZW} from CSFT

Applications

Gauge algebra

CSFT to cubic order fulfills

 $\delta_{\Lambda_1}\delta_{\Lambda_2}-\delta_{\Lambda_2}\delta_{\Lambda_1}=\delta_{\Lambda_{12}}\quad\text{with}\quad\Lambda_{12}=[\Lambda_2,\Lambda_1]_0$

• after field redefinition and μ fixing $\lambda_{12}^{A} = \frac{1}{2} [\lambda_2, \lambda_1]_{C}^{A}$ with

$$[\lambda_1, \lambda_2]_C^A = \lambda_1^B \nabla_B \lambda_2^A - \frac{1}{2} \lambda_1^B \nabla^A \lambda_{2B} - (1 \leftrightarrow 2)$$

algebra closes up to a trivial gauge transformation if

- 1. fluctuations and parameter fulfill strong constraint $D_A D^A$.
- 2. background fulfills closure constraint (CC)

 $F_{E[AB}F^{E}{}_{C]D}=0$

no strong constraint required for background

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

non-vanishing torsion and Riemann curvature

$$[\nabla_A, \nabla_B] V_C = R_{ABC}{}^D V_D - T^D{}_{AB} \nabla_D V_C \quad \text{with}$$
$$T^A{}_{BC} = -\frac{1}{3} F^A{}_{BC} \quad \text{and} \quad R_{ABC}{}^D = \frac{2}{9} F_{AB}{}^E F_{EC}{}^D$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

non-vanishing torsion and Riemann curvature

$$[\nabla_A, \nabla_B] V_C = R_{ABC}{}^D V_D - T^D{}_{AB} \nabla_D V_C \quad \text{with}$$

$$T^{A}_{BC} = -\frac{1}{3}F^{A}_{BC}$$
 and $R_{ABC}^{D} = \frac{2}{9}F_{AB}^{E}F_{EC}^{D}$

• compatible with E_A^I , η_{AB} and S_{AB}

$$\nabla_C E_A{}' = \nabla_C \eta_{AB} = \nabla_C S_{AB} = 0$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

non-vanishing torsion and Riemann curvature

$$[\nabla_A, \nabla_B] V_C = R_{ABC}{}^D V_D - T^D{}_{AB} \nabla_D V_C \quad \text{with}$$

$$T^{A}_{BC} = -\frac{1}{3}F^{A}_{BC}$$
 and $R_{ABC}^{D} = \frac{2}{9}F_{AB}^{E}F_{EC}^{D}$

• compatible with E_A^{I} , η_{AB} and S_{AB}

$$abla_C E_A{}' =
abla_C \eta_{AB} =
abla_C S_{AB} = 0$$

compatible with partial integration

$$\int d^{2D} X e^{-2d} U \nabla_M V^M = - \int d^{2D} X e^{-2d} \nabla_M U V^M$$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

non-vanishing torsion and Riemann curvature

$$[\nabla_A, \nabla_B] V_C = R_{ABC}{}^D V_D - T^D{}_{AB} \nabla_D V_C \quad \text{with}$$

$$T^{A}_{BC} = -\frac{1}{3}F^{A}_{BC}$$
 and $R_{ABC}^{D} = \frac{2}{9}F_{AB}^{E}F_{EC}^{D}$

• compatible with E_A^I , η_{AB} and S_{AB}

$$abla_C E_A{}^I =
abla_C \eta_{AB} =
abla_C S_{AB} = 0$$

compatible with partial integration

$$\int d^{2D} X e^{-2d} U \nabla_M V^M = - \int d^{2D} X e^{-2d} \nabla_M U V^M$$

non-vanishing generalized torsion

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

	DFT	DFT _{WZW}
background	torus	group manifold

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

	DFT	DFT_{WZW}
background	torus	group manifold
WC / SC	$\partial_M \partial^M.$	$\nabla_M \partial^M$.

	DFT	DFT _{WZW}
background	torus	group manifold
WC / SC	$\partial_M \partial^M.$	$\nabla_M \partial^M$.
${\cal L}_\lambda V^I =$	$\lambda^J \partial_J V' + (\partial^I \lambda_J - \partial_J \lambda^I) V^J$	$\lambda^{J} \nabla_{J} V^{I} + (\nabla^{I} \lambda_{J} - \nabla_{J} \lambda^{I}) V^{J}$
$[\lambda_1,\lambda_2]_{ m C}^{\prime}=$	$\lambda_{[1}^J \partial_J \lambda_{2]}^I - \frac{1}{2} \lambda_{[1}^J \partial^I \lambda_{2]J}$	$\lambda_{[1}^{J}\nabla_{J}\lambda_{2]}^{I} - \frac{1}{2}\lambda_{[1}^{J}\nabla^{I}\lambda_{2]J}$

String geometry

DFT_{WZW} from CSFT

Applications

	DFT	DFT _{WZW}
background	torus	group manifold
WC / SC	$\partial_M \partial^M.$	$\nabla_M \partial^M$.
${\cal L}_\lambda V' =$	$\lambda^J \partial_J V^I + (\partial^I \lambda_J - \partial_J \lambda^I) V^J$	$\lambda^{J} \nabla_{J} V^{I} + (\nabla^{I} \lambda_{J} - \nabla_{J} \lambda^{I}) V^{J}$
$[\lambda_1,\lambda_2]_{ m C}^{\prime}=$	$\lambda_{[1}^J \partial_J \lambda_{2]}^J - \frac{1}{2} \lambda_{[1}^J \partial^J \lambda_{2]J}$	$\lambda_{[1}^{J}\nabla_{J}\lambda_{2]}^{\prime} - \frac{1}{2}\lambda_{[1}^{J}\nabla^{\prime}\lambda_{2]J}$
closure	SC	fluctuations SC background CC

DFT_{WZW} from CSFT

Applications

	DFT	DFT _{wzw}	
background	torus	group manifold	1
WC / SC	$\partial_M \partial^M$.	$\nabla_M \partial^M \cdot$	
${\cal L}_\lambda V' =$	$\lambda^J \partial_J V^I + (\partial^I \lambda_J - \partial_J \lambda^I)$	$\lambda^{J} \lambda^{J} \nabla_{J} V^{I} + (\nabla^{I} \lambda^{J})$	$\lambda_J - abla_J \lambda^I V^J$
$[\lambda_1,\lambda_2]_{\rm C}^{\prime} =$	$\lambda_{[1}^J \partial_J \lambda_{2]}^J - \frac{1}{2} \lambda_{[1}^J \partial^J \lambda_{2]J}$	$\lambda_{[1}^{J}\nabla_{J}\lambda_{2]}^{I} - \frac{1}{2}\lambda_{[1]}^{J}$	$\int_{1}^{J} \nabla' \lambda_{2]J}$
closure	SC	fluctuations SC background CC) C
abelian limit			
SUGRA & DFT	String geometry DFT _{WZW}	DIA CSFT Application:	s Summary

Reminder: Generalized Scherk-Schwarz compactification

Embedding tensor

fluxes for embedding one

$$F_{abc} = \sqrt{2}\epsilon_{abc}(\cos \alpha + \sin \alpha)$$
 and $F_{\bar{a}\bar{b}\bar{c}} = \sqrt{2}\epsilon_{abc}(\cos \alpha - \sin \alpha)$

String geometry

DFT_{WZW} from CSFT

Applications

Embedding tensor

fluxes for embedding one

$$F_{abc} = \sqrt{2}\epsilon_{abc}(\cos \alpha + \sin \alpha)$$
 and $F_{\bar{a}\bar{b}\bar{c}} = \sqrt{2}\epsilon_{abc}(\cos \alpha - \sin \alpha)$

DFT strong constraint holds only for

$$F_{ABC}F^{ABC} = 24\sin(2\alpha) = 0 \quad \rightarrow \alpha = \frac{\pi}{2}n \quad n \in \mathbb{Z}$$

closure constraint holds always

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

The landscape again

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

The landscape again

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

The landscape again

beyond the torus

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Summary

 $\begin{array}{cccc} \text{extended flat space} & \subset & \text{torus} & \subset & \text{group manifold} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Summary

 $\begin{array}{cccc} \text{extended flat space} & \subset & \text{torus} & \subset & \text{group manifold} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

- ▶ covariant instead of partial derivative \neq [Cederwall, 2014]
- only closure constraint for background \rightarrow string geometry

DFT_{WZW} from CSFT

Applications

- ▶ covariant instead of partial derivative \neq [Cederwall, 2014]
- \blacktriangleright only closure constraint for background \rightarrow string geometry

Todo

action in terms of generalized metric like gauge transformations

DFT_{WZW} from CSFT

Applications

- covariant instead of partial derivative \neq [Cederwall, 2014]
- \blacktriangleright only closure constraint for background \rightarrow string geometry

Todo

- action in terms of generalized metric like gauge transformations
- loop amplitudes like torus partition function

DFT_{WZW} from CSFT

Applications

- covariant instead of partial derivative \neq [Cederwall, 2014]
- \blacktriangleright only closure constraint for background \rightarrow string geometry

Todo

- action in terms of generalized metric like gauge transformations
- loop amplitudes like torus partition function
- non-abelian duality, coset and orbifold CFTs

DFT_{WZW} from CSFT

Applications

- covariant instead of partial derivative \neq [Cederwall, 2014]
- \blacktriangleright only closure constraint for background \rightarrow string geometry

Todo

- action in terms of generalized metric like gauge transformations
- loop amplitudes like torus partition function
- non-abelian duality, coset and orbifold CFTs
- lpha' corrections (here $k^{-2}, \, k^{-3}, \ldots$) [Hohm, Siegel, and Zwiebach, 2013]

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

- covariant instead of partial derivative \neq [Cederwall, 2014]
- \blacktriangleright only closure constraint for background \rightarrow string geometry

Todo

- action in terms of generalized metric like gauge transformations
- loop amplitudes like torus partition function
- non-abelian duality, coset and orbifold CFTs
- ▶ α' corrections (here k^{-2}, k^{-3}, \ldots) [Hohm, Siegel, and Zwiebach, 2013]
- phenomenology of non-geometric backgrounds [Hassler, Lust, and Massai, 2014]

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications

Thank you for your attention. Are there any questions?

SUGRA & DFT

String geometry

DFT_{WZW} from CSFT

Applications