Rethinking Gauge Theory through Connes' Noncommutative Geometry

Chen Sun
Virginia Tech

October 24, 2015

Work with Ufuk Aydemir, Djordje Minic, Tatsu Takeuchi:

```
Phys. Rev. D 91, 045020 (2015) [arXiv:1409.7574],
Pati-Salam Unification from Non-commutative Geometry and the
TeV-scale \(W_{R}\) boson [arXiv:1509.01606],
Review of NCG in preparation.
```

For background of NCG, c.f. Chamseddine, Connes, et. al.:
Nucl. Phys. Proc. Suppl. 18B, 29 (1991)
Commun. Math. Phys. 182, 155 (1996) [hep-th/9603053],
Adv. Theor. Math. Phys. 11, 991 (2007) [hep-th/0610241],
and for superconnection, c.f. Neeman, Fairlie, et. al.:
Phys. Lett. B 81, 190 (1979),
J. Phys. G 5, L55 (1979),

Phys. Lett. B 82, 97 (1979).

The quickest review of gauge theory
Given
$\psi \quad$ element in rep' space \mathcal{H}, e.g. Dirac spinors, $\hat{O} \quad$ operator on \mathcal{H}, e.g. \nRightarrow,
we say the operator is 'covariant' if under the transformation

$$
\psi \mapsto u \psi,
$$

the operator trasforms as

$$
\hat{O} \mapsto u \hat{O} u^{-1},
$$

since that gives us

$$
\hat{O} \psi \mapsto u \hat{O} \psi
$$

At the end, a theory built with

$$
\mathcal{L} \sim\langle\psi \mid \hat{O} \psi\rangle
$$

is invariant under the transformation.

When we localize the transformation u, things sometimes change

$$
\hat{O} \mapsto u \hat{O} u^{-1}+\text { local terms. }
$$

Therefore, we need to come up with another operator that transforms as

$$
\hat{A} \mapsto u \hat{A} u^{-1}-\text { local terms, }
$$

so that the combination of the two gives

$$
\hat{O}+\hat{A} \mapsto u(\hat{O}+\hat{A}) u^{-1} .
$$

Then we have made the combo operator $\hat{O}+\hat{A}$ a 'covariant' operator, denoted \hat{O}_{A}.

Example: U(1) from global to local

We have

$$
\mathcal{L}=\bar{\psi} i \not \partial \psi .
$$

Invariant under global $U(1)$:

$$
\begin{aligned}
& \psi \mapsto e^{i \theta} \psi, \\
& \mathcal{L} \mapsto \mathcal{L}^{\prime}=\mathcal{L} .
\end{aligned}
$$

When we localize the $U(1)$ symmetry, i.e. $\theta=\theta(x)$,

$$
\begin{aligned}
& \psi \mapsto e^{i \theta(x)} \psi, \\
& \mathcal{L} \mapsto \mathcal{L}^{\prime}=\mathcal{L}-\partial \theta \bar{\psi} \psi .
\end{aligned}
$$

Example: U(1) from global to local -Cont'd

Therefore we come up with a $U(1)$ gauge field A, which transforms as

$$
A \mapsto u A u^{-1}+\partial \theta .
$$

and modify the Lagrangian as

$$
\mathcal{L}=\bar{\psi}(i \not \partial+\not A) \psi .
$$

All together, we acquire an invariant theory.

Description in spectral triple

Suppose we have

$$
\begin{aligned}
\mathcal{A} & =C^{\infty}(M), \\
\mathcal{H} & =\Gamma(M, S), \\
D & =i \not \partial .
\end{aligned}
$$

The unitary transformations are

$$
\left\{u \in \mathcal{A} \mid u^{\dagger} u=u u^{\dagger}=1\right\} .
$$

Under transformations u, we have

$$
\begin{aligned}
\psi & \mapsto u \psi, \\
D \psi & \mapsto D u \psi=u D \psi+[D, u] \psi .
\end{aligned}
$$

Under transformations u, we have

$$
\begin{aligned}
\psi & \mapsto u \psi, \\
D \psi & \mapsto D u \psi=u D \psi+[D, u] \psi, \\
\bar{\psi} D \psi & \mapsto \bar{\psi} u^{\dagger} D u \psi=\bar{\psi} D \psi+\bar{\psi} u^{\dagger}[D, u] \psi .
\end{aligned}
$$

The theory built with $\bar{\psi} D \psi$ is invariant

$$
\begin{aligned}
& \Leftrightarrow[D, u]=0, \\
& \Leftrightarrow \partial(u)=0,
\end{aligned}
$$

$\Leftrightarrow u$ is a global symmetry.

Under transformations u, we have

$$
\begin{aligned}
\psi & \mapsto u \psi \\
D \psi & \mapsto D u \psi=u D \psi+[D, u] \psi, \\
\bar{\psi} D \psi & \mapsto \bar{\psi} u^{\dagger} D u \psi=\bar{\psi} D \psi+\bar{\psi} u^{\dagger}[D, u] \psi .
\end{aligned}
$$

The theory built with $\bar{\psi} D \psi$ is invariant

$$
\begin{aligned}
& \Leftrightarrow[D, u]=0 \\
& \Leftrightarrow \partial(u)=0 \\
& \Leftrightarrow u \text { is a global symmetry. }
\end{aligned}
$$

What if $[D, u] \neq 0$?

Under transformations u, we have

$$
\begin{aligned}
\psi & \mapsto u \psi, \\
D \psi & \mapsto D u \psi=u D \psi+[D, u] \psi, \\
\bar{\psi} D \psi & \mapsto \bar{\psi} u^{\dagger} D u \psi=\bar{\psi} D \psi+\bar{\psi} u^{\dagger}[D, u] \psi .
\end{aligned}
$$

The theory built with $\bar{\psi} D \psi$ is invariant

$$
\begin{aligned}
& \Leftrightarrow[D, u]=0, \\
& \Leftrightarrow \partial(u)=0, \\
& \Leftrightarrow u \text { is a global symmetry. }
\end{aligned}
$$

What if $[D, u] \neq 0$?

- Old trick: use a gauge field to absorb the extra term.
- What should the gauge look like?

$[D, u] \neq 0$

In this case, D transforms as

$$
D \mapsto u\left(D+u^{\dagger}[D, u]\right) u^{\dagger}
$$

Apparently it is not covariant. It is 'perturbed' during the transformation, with the extra term is of the form

$$
u^{\dagger}[D, u] .
$$

We want to 'absorb' the extra term into D, with the hope the overall operator is recovered covariant. Therefore we define another operator as

$$
A=\sum a_{i}\left[D, b_{i}\right],
$$

where $a_{i}, b_{i} \in \mathcal{A}$. We can immediately tell the extra term is nothing but of the form of A, thus can be absorbed.

$$
D \mapsto u\left(D+u^{\dagger}[D, u]\right) u^{\dagger}=u\left(D+A_{0}\right) u^{\dagger} .
$$

With transformation u :

$$
D \mapsto D+A_{0} .
$$

Need

$$
A \mapsto A-A_{0} .
$$

Using the language we are familiar with, we have (up to order one condition)

$$
\begin{aligned}
\psi & \mapsto u \psi \\
D & \mapsto u\left(D+u^{\dagger}[D, u]\right) u^{\dagger}, \\
A & \mapsto u\left(A-u^{\dagger}[D, u]\right) u^{\dagger}, \\
D+A & \mapsto u(D+A) u^{\dagger}
\end{aligned}
$$

Formally, D works similarly to a differential operator as in $W=W_{\mu} \mathrm{d} x^{\mu}$, and A works like the gauge field. In this way, we can define the new differential one forms as elements in

$$
\Omega^{1}=\left\{\sum a_{i}\left[D, b_{i}\right] \mid a_{i}, b_{i} \in \mathcal{A}\right\} .
$$

Using the language we are familiar with, we have (up to order one condition)

$$
\begin{aligned}
\psi & \mapsto u \psi, \\
D & \mapsto u\left(D+u^{\dagger}[D, u]\right) u^{\dagger}, \\
A & \mapsto u\left(A-u^{\dagger}[D, u]\right) u^{\dagger}, \\
D+A & \mapsto u(D+A) u^{\dagger} .
\end{aligned}
$$

Formally, D works similarly to a differential operator as in $W=W_{\mu} \mathrm{d} x^{\mu}$, and A works like the gauge field. In this way, we can define the new differential one forms as elements in

$$
\Omega^{1}=\left\{\sum a_{i}\left[D, b_{i}\right] \mid a_{i}, b_{i} \in \mathcal{A}\right\} .
$$

Define the 'perturbed' D_{A} to be the combination of the two

$$
D_{A}=D+A .
$$

Generalization

As it is shown above, $(\mathcal{A}, \mathcal{H}, D)=\left(C^{\infty}(M), \Gamma(M, S), i \not \partial\right)$ gives us a $U(1)$ gauge theory.

But, what for?
With a few modifications, we can build a generalized gauge theory.

According to Gelfand-Naimark, if we study all the algebra in $C^{\infty}(M)$, we can get all the information of the geometry M.

$$
\begin{aligned}
f: M & \rightarrow \mathbb{C}, \\
p & \mapsto f(p),
\end{aligned}
$$

where $f \in C^{\infty}(M)$.

By analogy:
Consider changing $\mathcal{A}=\mathcal{C}^{\infty}(M)$ to $\mathcal{A}=\mathbb{C} \oplus \mathbb{C}, \forall a \in \mathcal{A}$, we denote $a=\left(\lambda, \lambda^{\prime}\right)$. This is the map,

$$
\begin{aligned}
a:\left\{p_{1}, p_{2}\right\} & \rightarrow \mathbb{C}, \\
p_{1} & \mapsto a\left(p_{1}\right)=\lambda, \\
p_{2} & \mapsto a\left(p_{2}\right)=\lambda^{\prime} .
\end{aligned}
$$

Similar to $C^{\infty}(M) \leftrightarrow M$, roughly, we have $\mathbb{C} \oplus \mathbb{C} \leftrightarrow\left\{p_{1}, p_{2}\right\}$, a two point space.

$\mathcal{A}=\mathbb{C} \oplus \mathbb{C}$

- At this point, there is no relation for the two points space.
- In $\mathcal{A}=C^{\infty}(M)$, the distance is

$$
\begin{aligned}
\mathrm{d}(x, y) & =\inf \int_{\gamma} \mathrm{d} s \\
\mathrm{~d}^{2} s & =g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu} .
\end{aligned}
$$

- How to extract this information from the algebra, if Gelfand-Naimark is correct?

$\mathcal{A}=\mathbb{C} \oplus \mathbb{C}$

- At this point, there is no relation for the two points space.
- In $\mathcal{A}=C^{\infty}(M)$, the distance is

$$
\begin{aligned}
\mathrm{d}(x, y) & =\inf \int_{\gamma} \mathrm{d} s \\
\mathrm{~d}^{2} s & =g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
\end{aligned}
$$

- How to extract this information from the algebra, if Gelfand-Naimark is correct?
- $\mathrm{d}(x, y)=\sup \left\{|f(x)-f(y)|: f \in C^{\infty}(M),|\partial f(x)| \leq 1\right\}$.

$$
\mathrm{d}(x, y)=\sup \left\{|f(x)-f(y)|: f \in C^{\infty}(M),|\partial f(x)| \leq 1\right\} .
$$

Distance formula:

$$
\mathrm{d}(x, y)=\sup \left\{|f(x)-f(y)|: f \in C^{\infty}(M),|\partial f(x)| \leq 1\right\} .
$$

Translate:

Distance formula:

$$
\mathrm{d}(x, y)=\sup \left\{|f(x)-f(y)|: f \in C^{\infty}(M),|\partial f(x)| \leq 1\right\} .
$$

Translate:

Distance formula:

$$
\mathrm{d}(x, y)=\sup \left\{|f(x)-f(y)|: f \in C^{\infty}(M),|\partial f(x)| \leq 1\right\} .
$$

Translate:

Distance formula:

$$
\mathrm{d}(x, y)=\sup \left\{|f(x)-f(y)|: f \in C^{\infty}(M),|\partial f(x)| \leq 1\right\} .
$$

Translate:

Distance formula:

$$
\mathrm{d}(x, y)=\sup \left\{|f(x)-f(y)|: f \in C^{\infty}(M),|\partial f(x)| \leq 1\right\} .
$$

Translate:

- By analogy, can calculate the 'distance' between the two points in $\mathcal{A}=\mathbb{C} \oplus \mathbb{C}$.
- Introduce the third element, the generalization of Dirac operator,

$$
D=\left[\begin{array}{cc}
0 & \bar{m} \\
m & 0
\end{array}\right] .
$$

- The distance formula is

$$
\mathrm{d}(x, y)=\sup \{|a(x)-a(y)|: a \in \mathcal{A},\|[D, a]\| \leq 1\} .
$$

- Distance between the two points

$$
\begin{aligned}
d\left(p_{1}, p_{2}\right) & =\sup _{a \in \mathcal{A},\|[D, a]\| \leq 1}\left\{\left|a\left(p_{1}\right)-a\left(p_{2}\right)\right|\right\} \\
& =\sup _{\left(\lambda, \lambda^{\prime}\right) \in \mathcal{A},\|[D, a]\| \leq 1}\left|\lambda-\lambda^{\prime}\right| \\
& =\frac{1}{|m|} .
\end{aligned}
$$

- By analogy, can calculate the 'distance' between the two points in $\mathcal{A}=\mathbb{C} \oplus \mathbb{C}$.
- Introduce the third element, the generalization of Dirac operator,

- The distance formula is

$$
\mathrm{d}(x, y)=\sup \{|a(x)-a(y)|: a \in \mathcal{A},\|[D, a]\| \leq 1\}
$$

- Distance between the two points

$$
\begin{aligned}
d\left(p_{1}, p_{2}\right) & =\sup _{a \in \mathcal{A},\|[D, a]\| \leq 1}\left\{\left|a\left(p_{1}\right)-a\left(p_{2}\right)\right|\right\} \\
& =\sup _{\left(\lambda, \lambda^{\prime}\right) \in \mathcal{A},\|[D, a]\| \leq 1}\left|\lambda-\lambda^{\prime}\right| \\
& =\frac{1}{|m|} .
\end{aligned}
$$

The generalized Dirac operator encodes the distance information!

$\mathcal{A}=\mathbb{C} \oplus \mathbb{C}$

$$
\begin{aligned}
\mathcal{A} & =\mathbb{C} \oplus \mathbb{C} \\
\mathcal{H} & =\mathbb{C}^{N} \oplus \mathbb{C}^{N}, \\
D & =\left[\begin{array}{cc}
0 & M^{\dagger} \\
M & 0
\end{array}\right] .
\end{aligned}
$$

For $a \in \mathcal{A}=\left(\lambda, \lambda^{\prime}\right)$, the 'differential' is $\sim\left(\lambda-\lambda^{\prime}\right)$:

$$
[D, a]=\left(\lambda-\lambda^{\prime}\right)\left[\begin{array}{cc}
0 & -M^{\dagger} \\
M & 0
\end{array}\right],
$$

By analogy with

$$
d f=\partial_{\mu} f \mathrm{~d} x^{\mu}=\lim _{\epsilon \rightarrow 0}(f(x+\epsilon)-f(x)) \frac{\mathrm{d} x^{\mu}}{\epsilon} .
$$

$$
\begin{aligned}
\mathcal{A} & =\mathbb{C} \oplus \mathbb{C} \\
\mathcal{H} & =\mathbb{C}^{N} \oplus \mathbb{C}^{N}, \\
D & =\left[\begin{array}{cc}
0 & M^{\dagger} \\
M & 0
\end{array}\right] .
\end{aligned}
$$

For $a \in \mathcal{A}=\left(\lambda, \lambda^{\prime}\right)$, the 'differential' is $\sim\left(\lambda-\lambda^{\prime}\right)$:

$$
[D, a]=\left(\lambda-\lambda^{\prime}\right)\left[\begin{array}{cc}
0 & -M^{\dagger} \\
M & 0
\end{array}\right],
$$

By analogy with

$$
d f=\partial_{\mu} f \mathrm{~d} x^{\mu}=\lim _{\epsilon \rightarrow 0}(f(x+\epsilon)-f(x)) \frac{\mathrm{d} x^{\mu}}{\epsilon}
$$

The 'integral' is $\sim\left(\lambda+\lambda^{\prime}\right)$:

$$
\operatorname{Tr}(a)=\lambda+\lambda^{\prime}
$$

By analogy with

$$
\int f(x) \mathrm{d} x
$$

Grading

- Physically, we are specifically interested in the type of algebra $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$. e.g. the model with $U(1)_{Y} \times S U(2)_{L}$, or $S U(2)_{R} \times S U(2)_{L}$, etc.

Grading

- Physically, we are specifically interested in the type of algebra $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$. e.g. the model with $U(1)_{Y} \times S U(2)_{L}$, or $S U(2)_{R} \times S U(2)_{L}$, etc.
- They correspond to a representation space $\sim \mathcal{H}_{L} \oplus \mathcal{H}_{R}$, or $\mathcal{H}_{f} \oplus \mathcal{H}_{\bar{f}}$.

Grading

- Physically, we are specifically interested in the type of algebra $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$. e.g. the model with $U(1)_{Y} \times S U(2)_{L}$, or $S U(2)_{R} \times S U(2)_{L}$, etc.
- They correspond to a representation space $\sim \mathcal{H}_{L} \oplus \mathcal{H}_{R}$, or $\mathcal{H}_{f} \oplus \mathcal{H}_{\bar{f}}$.
- It is natural to equip the spectral triple $(\mathcal{A}, \mathcal{H}, D)$ with another object, γ, the grading operator.

Grading

- Physically, we are specifically interested in the type of algebra $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$. e.g. the model with $U(1)_{Y} \times S U(2)_{L}$, or $S U(2)_{R} \times S U(2)_{L}$, etc.
- They correspond to a representation space $\sim \mathcal{H}_{L} \oplus \mathcal{H}_{R}$, or $\mathcal{H}_{f} \oplus \mathcal{H}_{\bar{f}}$.
- It is natural to equip the spectral triple $(\mathcal{A}, \mathcal{H}, D)$ with another object, γ, the grading operator.

For example,

- In the case of $(\mathcal{A}, \mathcal{H}, D)=\left(C^{\infty}(M), \Gamma(M, S), i \not \partial\right), \gamma=\gamma^{5}$.

Grading

- Physically, we are specifically interested in the type of algebra $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$. e.g. the model with $U(1)_{Y} \times S U(2)_{L}$, or $S U(2)_{R} \times S U(2)_{L}$, etc.
- They correspond to a representation space $\sim \mathcal{H}_{L} \oplus \mathcal{H}_{R}$, or $\mathcal{H}_{f} \oplus \mathcal{H}_{\bar{f}}$.
- It is natural to equip the spectral triple $(\mathcal{A}, \mathcal{H}, D)$ with another object, γ, the grading operator.

For example,

- In the case of $(\mathcal{A}, \mathcal{H}, D)=\left(C^{\infty}(M), \Gamma(M, S), i \not \partial\right), \gamma=\gamma^{5}$.
- In the case of $(\mathcal{A}, \mathcal{H}, D)=\left(\mathbb{C} \oplus \mathbb{C}, \mathbb{C}^{N} \oplus \mathbb{C}^{N},\left[\begin{array}{cc}0 & M^{\dagger} \\ M & 0\end{array}\right]\right)$, we can choose the grading operator to be $\gamma=\operatorname{diag}(\underbrace{1, \ldots, 1}_{\mathrm{N} \text { copies }}, \underbrace{-1, \ldots,-1}_{\mathrm{N} \text { copies }})$

Grading

- Physically, we are specifically interested in the type of algebra $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$. e.g. the model with $U(1)_{Y} \times S U(2)_{L}$, or $S U(2)_{R} \times S U(2)_{L}$, etc.
- They correspond to a representation space $\sim \mathcal{H}_{L} \oplus \mathcal{H}_{R}$, or $\mathcal{H}_{f} \oplus \mathcal{H}_{\bar{f}}$.
- It is natural to equip the spectral triple $(\mathcal{A}, \mathcal{H}, D)$ with another object, γ, the grading operator.

For example,

- In the case of $(\mathcal{A}, \mathcal{H}, D)=\left(C^{\infty}(M), \Gamma(M, S), i \not \partial\right), \gamma=\gamma^{5}$.
- In the case of $(\mathcal{A}, \mathcal{H}, D)=\left(\mathbb{C} \oplus \mathbb{C}, \mathbb{C}^{N} \oplus \mathbb{C}^{N},\left[\begin{array}{cc}0 & M^{\dagger} \\ M & 0\end{array}\right]\right)$, we can choose the grading operator to be $\gamma=\operatorname{diag}(\underbrace{1, \ldots, 1}_{N \text { copies }}, \underbrace{-1, \ldots,-1}_{N \text { copies }})$
A device that helps us distinguish one part from the other.

Grading

- Physically, we are specifically interested in the type of algebra $\mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2}$. e.g. the model with $U(1)_{Y} \times S U(2)_{L}$, or $S U(2)_{R} \times S U(2)_{L}$, etc.
- They correspond to a representation space $\sim \mathcal{H}_{L} \oplus \mathcal{H}_{R}$, or $\mathcal{H}_{f} \oplus \mathcal{H}_{\bar{f}}$.
- It is natural to equip the spectral triple $(\mathcal{A}, \mathcal{H}, D)$ with another object, γ, the grading operator.

For example,

- In the case of $(\mathcal{A}, \mathcal{H}, D)=\left(C^{\infty}(M), \Gamma(M, S), i \not \partial\right), \gamma=\gamma^{5}$.
- In the case of $(\mathcal{A}, \mathcal{H}, D)=\left(\mathbb{C} \oplus \mathbb{C}, \mathbb{C}^{N} \oplus \mathbb{C}^{N},\left[\begin{array}{cc}0 & M^{\dagger} \\ M & 0\end{array}\right]\right)$, we can choose the grading operator to be $\gamma=\operatorname{diag}(\underbrace{1, \ldots, 1}_{N \text { copies }}, \underbrace{-1, \ldots,-1}_{N \text { copies }})$
A device that helps us distinguish one part from the other.
$D, \mathcal{A}=\mathcal{A}_{1} \oplus \mathcal{A}_{2} \sim$ two sheets structure.

$$
\begin{aligned}
\mathcal{A} & =\mathbb{C} \oplus \mathbb{H}, \\
\mathcal{H} & =\mathbb{C}^{2} \oplus \mathbb{C}^{2}, \\
D & =\left[\begin{array}{cc}
0 & M^{\dagger} \\
M & 0
\end{array}\right] .
\end{aligned}
$$

$\mathcal{A}=\mathbb{C} \oplus \mathbb{H}-\mathrm{A}$ toy model

$$
\begin{aligned}
\mathcal{A} & =\mathbb{C} \oplus \mathbb{H}, \\
\mathcal{H} & =\mathbb{C}^{2} \oplus \mathbb{C}^{2}, \\
D & =\left[\begin{array}{cc}
0 & M^{\dagger} \\
M & 0
\end{array}\right] .
\end{aligned}
$$

How do we fit this with our particle spectrum? 'Flavor' space:

$$
\nu_{R}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], e_{R}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \nu_{L}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], e_{L}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

To give mass terms out of $\psi^{\dagger} D \psi$, let $M=\left[\begin{array}{cc}m_{\nu} & 0 \\ 0 & m_{e}\end{array}\right]$.

The unitary transformations are

$$
\left\{u \in \mathcal{A} \mid u^{\dagger} u=u u^{\dagger}=1\right\}
$$

This implies

$$
u=\left[\begin{array}{cccc}
\mathrm{e}^{\mathrm{i} \theta} & & & \\
& e^{-i \theta} & & \\
& & \alpha & \beta \\
& & -\bar{\beta} & \bar{\alpha}
\end{array}\right], \text { s.t. }|\alpha|^{2}+|\beta|^{2}=1
$$

which automatically fulfills det $u=1$. This is the symmetry $U(1)_{R} \times S U(2)_{L}$. The $U(1)_{R}$ charge is
$2_{R} \quad 1 \quad-1$
$2_{L} \quad 0 \quad 0$

When we make the $U(1)_{R} \times S U(2)_{L}$ transformation,

$$
\begin{aligned}
\mathcal{L} & =\Psi^{\dagger} D \Psi \\
& \mapsto \Psi^{\dagger} u^{\dagger} D u \Psi=\Psi^{\dagger} D \Psi+\underbrace{\Psi^{\dagger} u^{\dagger}[D, u] \Psi}_{\text {the 'local' twist }} .
\end{aligned}
$$

In general $[D, u] \neq 0$, therefore, this demands for a 'gauge' field to absorb the local twist, in the discrete direction.

According to our recipe, we do have a gauge field between the two sheets,

$$
A=\sum_{i} a_{i}\left[D, b_{i}\right] .
$$

$$
\begin{aligned}
\mathcal{L} & =\Psi^{\dagger}(D+A) \Psi \\
& \mapsto \Psi^{\dagger} D \Psi+\Psi^{\dagger} u^{\dagger}[D, u] \Psi+\Psi^{\dagger} A \Psi-\Psi^{\dagger} u^{\dagger}[D, u] \Psi \\
& =\Psi^{\dagger}(D+A) \Psi
\end{aligned}
$$

Demanded to be Hermitian, this gauge field is

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
& M^{\dagger} \Phi^{\dagger} \\
\Phi M & , \\
& \Phi=\left[\begin{array}{ll}
\phi_{1} & \phi_{2}
\end{array}\right]=\left[\begin{array}{ll}
\phi_{1} & \frac{\phi_{2}}{-\phi_{2}}
\end{array}\right]
\end{array}, \begin{array}{l}
\phi_{1}
\end{array}\right]
\end{aligned}
$$

Demanded to be Hermitian, this gauge field is

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
M^{\dagger} \Phi^{\dagger}
\end{array}\right] \\
D+A & =\left[\begin{array}{ll}
(\Phi+1) M & M^{\dagger}\left(\Phi^{\dagger}+1\right)
\end{array}\right] .
\end{aligned}
$$

Demanded to be Hermitian, this gauge field is

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
& M^{\dagger} \Phi^{\dagger} \\
\Phi M &
\end{array}\right] \\
D+A & =\left[\begin{array}{ll}
(\Phi+1) M & M^{\dagger}\left(\Phi^{\dagger}+1\right)
\end{array} .\right.
\end{aligned}
$$

The perturbation of ' D^{2} ' derived from the (spectral) action:

$$
\operatorname{Tr}\left((D+A)^{2}-D^{2}\right) \operatorname{Tr}\left((D+A)^{2}-D^{2}\right) \sim \operatorname{Tr}\left(\left(M M^{\dagger}\right)^{2}\right)\left(|\Phi+1|^{2}-1\right)^{2} .
$$

Demanded to be Hermitian, this gauge field is

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
M^{\dagger} \Phi^{\dagger}
\end{array}\right], \\
D+A & =\left[\begin{array}{ll}
(\Phi+1) M & M^{\dagger}\left(\Phi^{\dagger}+1\right)
\end{array}\right] .
\end{aligned}
$$

The perturbation of ' D^{2} ' derived from the (spectral) action:

$$
\operatorname{Tr}\left((D+A)^{2}-D^{2}\right) \operatorname{Tr}\left((D+A)^{2}-D^{2}\right) \sim \operatorname{Tr}\left(\left(M M^{\dagger}\right)^{2}\right)\left(|\Phi+1|^{2}-1\right)^{2} .
$$

- This gives us a Mexican-hat-shaped potential.
- A field expanded at the minimum $\neq 0$.
- By counting d.o.f, we have $4+4-4=4$ real degrees, i.e. Φ is a pair of complex numbers.

Demanded to be Hermitian, this gauge field is

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
M^{\dagger} \Phi^{\dagger}
\end{array}\right], \\
D+A & =\left[\begin{array}{ll}
(\Phi+1) M & M^{\dagger}\left(\Phi^{\dagger}+1\right)
\end{array}\right] .
\end{aligned}
$$

The perturbation of ' D^{2} ' derived from the (spectral) action:

$$
\operatorname{Tr}\left((D+A)^{2}-D^{2}\right) \operatorname{Tr}\left((D+A)^{2}-D^{2}\right) \sim \operatorname{Tr}\left(\left(M M^{\dagger}\right)^{2}\right)\left(|\Phi+1|^{2}-1\right)^{2} .
$$

- This gives us a Mexican-hat-shaped potential.
- A field expanded at the minimum $\neq 0$.
- By counting d.o.f, we have $4+4-4=4$ real degrees, i.e. Φ is a pair of complex numbers.
SSB now has a reason:

$$
D+A \text { gives a VEV shift. }
$$

By analogy,

local 'twist'	$e^{-i \theta} \partial_{\mu} e^{i \theta}=\partial_{\mu} \theta$	$u^{\dagger}[D, u]$
ω	$A_{\mu} \mathrm{d}^{\mu} x$	$\sum a_{i}\left[D, b_{i}\right]=\left[\begin{array}{l}M^{\dagger} \Phi^{\dagger} \\ \Phi M\end{array}\right]$
basis	$d^{\mu} x$	$\left[\begin{array}{l}M^{\dagger} \\ M\end{array}\right]$
comp'	A_{μ}	Φ
θ	$(d+A) \wedge(d+A)$	$\operatorname{Tr}\left((D+A)^{2}-D^{2}\right)$
$\sim F^{\mu \nu}$	$\sim \partial_{\mu} A_{\nu}+\left[A_{\mu}, A_{\nu}\right]$	$\sim D A+A^{2}$
S	$\int F^{\mu \nu} F_{\mu \nu} \mathrm{d}^{4} x$	$\left(\operatorname{Tr}\left((D+A)^{2}-D^{2}\right)\right)^{2}$

Product geometry

Consider the algebra:

$$
\begin{aligned}
\mathcal{A} & =C^{\infty}(M) \oplus C^{\infty}(M) \\
& \sim C^{\infty}(M) \otimes(\mathbb{C} \oplus \mathbb{C}) .
\end{aligned}
$$

This corresponds to a geometry

$$
\begin{aligned}
F & =M \oplus M \\
& \sim M \times\left\{p_{1}, p_{2}\right\}
\end{aligned}
$$

Product geometry

Consider the algebra:

$$
\begin{aligned}
\mathcal{A} & =C^{\infty}(M) \oplus C^{\infty}(M) \\
& \sim C^{\infty}(M) \otimes(\mathbb{C} \oplus \mathbb{C}) .
\end{aligned}
$$

This corresponds to a geometry

$$
\begin{aligned}
F & =M \oplus M \\
& \sim M \times\left\{p_{1}, p_{2}\right\}
\end{aligned}
$$

Combining continuous part with $\mathbb{C} \oplus \mathbb{H}$,

$$
\mathcal{A}=C^{\infty}(M) \otimes(\mathbb{C} \oplus \mathbb{H})
$$

\sim a double-layer structure.

The Dirac operator of the product geometry:

$$
D_{x}=i \not \partial+\gamma^{5} \otimes D .
$$

The gauge field:

The Dirac operator of the product geometry:

$$
D_{x}=i \not \partial+\gamma^{5} \otimes D .
$$

The gauge field:

$$
A_{x} \sim \underbrace{\sum f_{i}\left[\not \partial, g_{i}\right]}_{A^{[1,0]}}+\underbrace{\sum a_{i}\left[D, b_{i}\right]}_{A^{[0,1]}}
$$

The Dirac operator of the product geometry:

$$
D_{x}=i \not \partial+\gamma^{5} \otimes D .
$$

The gauge field:

$$
\begin{aligned}
A_{x} & \sim \underbrace{\sum_{i} f_{i}\left[\not \partial, g_{i}\right]}_{A^{[1,0]}}+\underbrace{\sum_{i} a_{i}\left[D, b_{i}\right]}_{A^{[0,1]}} \\
& \sim\left[\begin{array}{cc}
B & \Phi^{*} \\
\Phi & W
\end{array}\right] .
\end{aligned}
$$

Highlights:

- A two sheet structure.
- A gauge field in between.
- SSB feature out of box.

Highlights:

- A two sheet structure.
- A gauge field in between.
- SSB feature out of box.
~ Implies a Higgs as the discrete gauge, generated similarly as the continous gauge fields.

Color sector

In order to reproduce SM, color sector must be involved.
■ Introduce the 'color' space. $\mathcal{H}=\mathbb{C} \oplus \mathbb{C}^{3}$, with basis

$$
\ell=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], r=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], g=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], b=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

- $\mathcal{A}=\mathbb{C} \oplus M_{3}(\mathbb{C})$, with $\forall a \in \mathcal{A}$,

$$
a=\left[\begin{array}{llll}
\lambda & & & \\
& m_{11} & m_{12} & m_{13} \\
& m_{21} & m_{22} & m_{23} \\
& m_{31} & m_{32} & m_{33}
\end{array}\right] .
$$

- Symmetry group is

$$
\left\{u \in \mathcal{A} \mid u^{\dagger} u=u u^{\dagger}=1\right\}
$$

- together with the 'unimodularity' condition, $\operatorname{det} u=1$.

$$
a=\left[\begin{array}{ll}
e^{-i \theta} & \\
& e^{i \theta / 3} m^{\prime}
\end{array}\right], m^{\prime} \in S U(3) .
$$

$$
a=\left[\begin{array}{ll}
e^{-i \theta} & \\
& e^{i \theta / 3} m^{\prime}
\end{array}\right], m^{\prime} \in S U(3)
$$

This gives the $U(1)$ charge

$$
\begin{array}{cccc}
\ell & r & g & b \\
-1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}
$$

We recognize them as $B-L$ charge, and this gives us the symmetry $U(1)_{B-L} \times S U(3)_{C}$.

$\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$

To combine the flavor sector with the color sector,

- let $\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$.

$\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$

To combine the flavor sector with the color sector,

- let $\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$.
- Introduce the bimodule representation:

$$
\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right] \otimes\left[\begin{array}{l}
\ell \\
r \\
g \\
b
\end{array}\right] .
$$

$\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$

To combine the flavor sector with the color sector,

- let $\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$.
- Introduce the bimodule representation:

$$
\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right] \otimes\left[\begin{array}{l}
\ell \\
r \\
g \\
b
\end{array}\right] .
$$

- Denote the space as

$$
\left(\mathbf{2}_{R} \oplus \mathbf{2}_{L}\right) \otimes\left(\mathbf{1}_{\ell} \oplus \mathbf{3}_{C}\right) .
$$

$\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$

To combine the flavor sector with the color sector,

- let $\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$.
- Introduce the bimodule representation:

$$
\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right] \otimes\left[\begin{array}{l}
\ell \\
r \\
g \\
b
\end{array}\right] .
$$

- Denote the space as

$$
\left(\mathbf{2}_{R} \oplus \mathbf{2}_{L}\right) \otimes\left(\mathbf{1}_{\ell} \oplus \mathbf{3}_{C}\right) .
$$

- Can identify the basis with SM particle spectrum, for example

$\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$

To combine the flavor sector with the color sector,

- let $\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$.
- Introduce the bimodule representation:

$$
\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right] \otimes\left[\begin{array}{l}
\ell \\
r \\
g \\
b
\end{array}\right]
$$

- Denote the space as

$$
\left(\mathbf{2}_{R} \oplus \mathbf{2}_{L}\right) \otimes\left(\mathbf{1}_{\ell} \oplus \mathbf{3}_{C}\right) .
$$

- Can identify the basis with SM particle spectrum, for example

$$
\nu_{L}=|\uparrow\rangle_{L} \otimes \ell \quad \in \mathbf{2}_{L} \otimes \mathbf{1}_{\ell},
$$

$\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$

To combine the flavor sector with the color sector,

- let $\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$.
- Introduce the bimodule representation:

$$
\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right] \otimes\left[\begin{array}{l}
\ell \\
r \\
g \\
b
\end{array}\right]
$$

- Denote the space as

$$
\left(\mathbf{2}_{R} \oplus \mathbf{2}_{L}\right) \otimes\left(\mathbf{1}_{\ell} \oplus \mathbf{3}_{C}\right) .
$$

- Can identify the basis with SM particle spectrum, for example

$$
d_{R, g}=|\downarrow\rangle_{R} \otimes g
$$

$\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$

To combine the flavor sector with the color sector,

- let $\mathcal{A}=C^{\infty}(M) \otimes\left(\mathbb{C} \oplus \mathbb{H} \oplus M_{3}(\mathbb{C})\right)$.
- Introduce the bimodule representation:

$$
\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right] \otimes\left[\begin{array}{l}
\ell \\
r \\
g \\
b
\end{array}\right] .
$$

- Denote the space as

$$
\left(\mathbf{2}_{R} \oplus \mathbf{2}_{L}\right) \otimes\left(\mathbf{1}_{\ell} \oplus \mathbf{3}_{C}\right) .
$$

- Can identify the basis with SM particle spectrum, for example

$$
d_{R}=|\downarrow\rangle_{R} \otimes\left[\begin{array}{l}
r \\
g \\
b
\end{array}\right] \quad \in \mathbf{2}_{R} \otimes \mathbf{3}_{C}
$$

■ Introduce J, charge conjugate,

$$
J\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right] \otimes\left[\begin{array}{c}
\ell \\
r \\
g \\
b
\end{array}\right] \sim\left[\begin{array}{c}
\ell \\
r \\
g \\
b
\end{array}\right] \otimes\left[\begin{array}{l}
|\uparrow\rangle_{R} \\
|\downarrow\rangle_{R} \\
|\uparrow\rangle_{L} \\
|\downarrow\rangle_{L}
\end{array}\right],
$$

- $\forall a \in \mathcal{A}$ with left action on flavor space as before, Ja^{-1} is the right action on color space.
- Ready to combine the previous result on flavor space and color space.
$|\uparrow\rangle \quad|\downarrow\rangle$

$\mathbf{2}_{R}$	1	-1	ℓ	r	g
$\mathbf{2}_{L}$	0	0	-1	$\frac{1}{3}$	$\frac{1}{3}$

$U(1)_{R}:$

	$\|\uparrow\rangle \otimes \mathbf{1}^{0}$	$\|\downarrow\rangle \otimes \mathbf{1}^{0}$	$\|\uparrow\rangle \otimes \mathbf{3}^{0}$	$\|\downarrow\rangle \otimes \mathbf{3}^{0}$
$\mathbf{2}_{L}$	0	0	0	0
$\mathbf{2}_{R}$	1	-1	1	-1

$U(1)_{B-L}:$

	$\|\uparrow\rangle \otimes \mathbf{1}^{0}$	$\|\downarrow\rangle \otimes \mathbf{1}^{0}$	$\|\uparrow\rangle \otimes \mathbf{3}^{0}$	$\|\downarrow\rangle \otimes \mathbf{3}^{0}$
$\mathbf{2}_{L}$	-1	-1	$\frac{1}{3}$	$\frac{1}{3}$
$\mathbf{2}_{R}$	-1	-1	$\frac{1}{3}$	$\frac{1}{3}$

	$\|\uparrow\rangle \otimes \mathbf{1}^{0}$	$\|\downarrow\rangle \otimes \mathbf{1}^{0}$	$\|\uparrow\rangle \otimes \mathbf{3}^{0}$	$\|\downarrow\rangle \otimes \mathbf{3}^{0}$
$\mathbf{2}_{L}$	-1	-1	$\frac{1}{3}$	$\frac{1}{3}$
$\mathbf{2}_{R}$	0	-2	$\frac{4}{3}$	$-\frac{2}{3}$

Spectral Action

According to Chamseddine et. al. (hep-th/9606001), one builds the action based on spectral action principle:

The physical (bosonic) action only depends upon the spectrum of D.

Spectral Action

According to Chamseddine et. al. (hep-th/9606001), one builds the action based on spectral action principle:

The physical (bosonic) action only depends upon the spectrum of D.

$$
S_{\text {spec }}=\operatorname{Tr}\left(f\left(D_{A} / \Lambda\right)\right) .
$$

We can expand it as

$$
\operatorname{Tr}\left(f\left(D_{A} / \Lambda\right)\right) \sim \int_{M} \mathcal{L}\left(g_{\mu \nu}, A\right) \sqrt{g} \mathrm{~d}^{4} x
$$

The bosonic action,

$$
\begin{aligned}
S_{\text {Bosonic }}= & S_{\text {Higgs }}+S_{Y M}+S_{\text {Cosmology }}+S_{\text {Riemann }}, \\
S_{\text {Higgs }}= & \frac{f_{0} a}{2 \pi^{2}} \int\left|D_{\mu} \phi\right|^{2} \sqrt{g} d^{4} x+\frac{-2 a f_{2} \Lambda^{2}+e f_{0}}{\pi^{2}} \int|\phi|^{2} \sqrt{g} d^{4} x \\
& +\frac{f_{0} b}{2 \pi^{2}} \int|\phi|^{4} \sqrt{g} d^{4} x, \\
S_{Y M}= & \frac{f_{0}}{16 \pi^{2}} \operatorname{Tr}\left(\mathbb{F}_{\mu \nu} \overline{\mathbb{F}}^{\mu \nu}\right) \\
= & \frac{f_{0}}{2 \pi^{2}} \int\left(g_{3}^{2} G_{\mu \nu}^{i} \bar{G}^{\mu \nu i}+g_{2}^{2} W_{\mu \nu}^{i} \bar{W}^{\mu \nu i}+\frac{5}{3} g_{1}^{2} B_{\mu \nu} \bar{B}^{\mu \nu}\right) \sqrt{g} d^{4} x
\end{aligned}
$$

where the parameters are

$$
\begin{aligned}
& a=\operatorname{Tr}\left(M_{\nu}^{*} M_{\nu}+M_{e}^{*} M_{e}+3\left(M_{u}^{*} M_{u}+M_{d}^{*} M_{d}\right)\right) \\
& b=\operatorname{Tr}\left(\left(M_{\nu}^{*} M_{\nu}\right)^{2}+\left(M_{e}^{*} M_{e}\right)^{2}+3\left(M_{u}^{*} M_{u}\right)^{2}+3\left(M_{d}^{*} M_{d}\right)^{2}\right) \\
& c=\operatorname{Tr}\left(M_{R}^{*} M_{R}\right) \\
& d=\operatorname{Tr}\left(\left(M_{R}^{*} M_{R}\right)^{2}\right) \\
& e=\operatorname{Tr}\left(M_{R}^{*} M_{R} M_{\nu}^{*} M_{\nu}\right),
\end{aligned}
$$

f_{n} is the $(n-1)$ th momentum of f.

Output:

Output:

$$
\text { - } g_{3}^{2}=g_{2}^{2}=\frac{5}{3} g_{1}^{2}
$$

Output:

- $g_{3}^{2}=g_{2}^{2}=\frac{5}{3} g_{1}^{2}$,
- $\langle\phi\rangle \neq 0$,

Output:

- $g_{3}^{2}=g_{2}^{2}=\frac{5}{3} g_{1}^{2}$,
- $\langle\phi\rangle \neq 0$,
- $M_{W}^{2}=\frac{1}{8} \sum_{i}\left(m_{\nu}^{i}{ }^{2}+m_{e}^{i^{2}}+3 m_{u}^{i^{2}}+3 m_{d}^{i}\right)$,

Output:

$$
\begin{aligned}
& -g_{3}^{2}=g_{2}^{2}=\frac{5}{3} g_{1}^{2} \\
& =\langle\phi\rangle \neq 0 \\
& =M_{W}^{2}=\frac{1}{8} \sum_{i}\left(m_{\nu}^{i^{2}}+m_{e}^{i^{2}}+3 m_{u}^{i^{2}}+3 m_{d}^{i^{2}}\right),
\end{aligned}
$$

Can be calculated from spectral action.

Output:

- $g_{3}^{2}=g_{2}^{2}=\frac{5}{3} g_{1}^{2}$,
- $\langle\phi\rangle \neq 0$,
- $M_{W}^{2}=\frac{1}{8} \sum_{i}\left(m_{\nu}^{i^{2}}+m_{e}^{i^{2}}+3 m_{u}^{i}{ }^{2}+3 m_{d}^{i}{ }^{2}\right)$,

Can be calculated from spectral action. Intuitively,

	Cont'	Disc'
Fermion	$\bar{\psi} \not \partial \psi$	$\Psi^{\dagger} D \psi$
Boson	$\partial_{\mu} W \partial^{\mu} W$	$D^{2} W^{2}$

Output:

- $g_{3}^{2}=g_{2}^{2}=\frac{5}{3} g_{1}^{2}$,
- $\langle\phi\rangle \neq 0$,
- $M_{W}^{2}=\frac{1}{8} \sum_{i}\left(m_{\nu}^{i}{ }^{2}+m_{e}^{i^{2}}+3{m_{u}^{i}}^{2}+3 m_{d}^{i}\right)$,
- $m_{H} \approx 170 \mathrm{GeV}$,

Output:

- $g_{3}^{2}=g_{2}^{2}=\frac{5}{3} g_{1}^{2}$,
- $\langle\phi\rangle \neq 0$,
- $M_{W}^{2}=\frac{1}{8} \sum_{i}\left(m_{\nu}^{i^{2}}+m_{e}^{i^{2}}+3 m_{u}^{i^{2}}+3 m_{d}^{i^{2}}\right)$,
- $m_{H} \approx 170 \mathrm{GeV}$, problematic, which is naturally saved by the left-right completion we propose.

Other Fun Facts - 'local twist'

- $[D, u]$ is insensitive to local/global transformation w.r.t. M.
- $\phi \mapsto \phi+\delta \phi$, with $\delta \phi=\epsilon^{i} \sigma^{i} \phi=\epsilon^{i} \Phi^{i}$,

Other Fun Facts - 'local twist'

- $[D, u]$ is insensitive to local/global transformation w.r.t. M.
- $\phi \mapsto \phi+\delta \phi$, with $\delta \phi=\epsilon^{i} \sigma^{i} \phi=\epsilon^{i} \Phi^{i}$,

$$
\begin{aligned}
\delta S & =\int \frac{\delta \mathcal{L}}{\delta \phi} \delta \phi+\frac{\delta \mathcal{L}}{\delta \partial \phi} \delta \partial \phi \\
& =\int \frac{\delta \mathcal{L}}{\delta \phi} \delta \phi+\partial\left(\frac{\delta \mathcal{L}}{\delta \partial \phi} \delta \phi\right)-\partial\left(\frac{\delta \mathcal{L}}{\delta \partial \phi}\right) \delta \phi \\
& \stackrel{E O M}{=} \int \partial\left(\frac{\delta \mathcal{L}}{\delta \partial \phi} \delta \phi\right) \\
& =\int \partial\left(\epsilon \frac{\delta \mathcal{L}}{\delta \partial \phi} \Phi\right) \\
& =\int \partial(\epsilon j) \\
& =\int \partial_{\mu}(\epsilon) j^{\mu}+\int \epsilon \partial_{\mu} j^{\mu} .
\end{aligned}
$$

Other Fun Facts - 'local twist'

- $[D, u]$ is insensitive to local/global transformation w.r.t. M.
- $\phi \mapsto \phi+\delta \phi$, with $\delta \phi=\epsilon^{i} \sigma^{i} \phi=\epsilon^{i} \Phi^{i}$,

$$
\delta S=\int \partial(\epsilon j)=\int \partial_{\mu}(\epsilon) j^{\mu}+\int \epsilon \partial_{\mu} j^{\mu} .
$$

- $\partial_{\mu} j^{\mu}=0$ a symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right)=0$ a global symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right) \neq 0$, a local symmetry with a gauge.

Other Fun Facts - 'local twist'

- $[D, u]$ is insensitive to local/global transformation w.r.t. M.
- $\phi \mapsto \phi+\delta \phi$, with $\delta \phi=\epsilon^{i} \sigma^{i} \phi=\epsilon^{i} \Phi^{i}$,

$$
\delta S=\int \partial(\epsilon j)=\int \partial_{\mu}(\epsilon) j^{\mu}+\int \epsilon \partial_{\mu} j^{\mu} .
$$

- $\partial_{\mu} j^{\mu}=0$ a symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right)=0$ a global symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right) \neq 0$, a local symmetry with a gauge.

$$
\Psi^{\dagger} D \Psi \mapsto \Psi^{\dagger} D \Psi+\Psi^{\dagger}\left[D, \epsilon^{i} \sigma^{i}\right] \Psi
$$

Other Fun Facts - 'local twist'

- $[D, u]$ is insensitive to local/global transformation w.r.t. M.
- $\phi \mapsto \phi+\delta \phi$, with $\delta \phi=\epsilon^{i} \sigma^{i} \phi=\epsilon^{i} \Phi^{i}$,

$$
\delta S=\int \partial(\epsilon j)=\int \partial_{\mu}(\epsilon) j^{\mu}+\int \epsilon \partial_{\mu} j^{\mu} .
$$

- $\partial_{\mu} j^{\mu}=0$ a symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right)=0$ a global symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right) \neq 0$, a local symmetry with a gauge.

$$
\Psi^{\dagger} D \Psi \mapsto \Psi^{\dagger} D \Psi+\Psi^{\dagger}\left[D, \epsilon^{i} \sigma^{i}\right] \Psi
$$

- $\Psi^{\dagger}\left[D, \epsilon^{i} \sigma^{i}\right] \Psi$ by analogy with $\partial_{\mu}\left(\epsilon j^{\mu}\right)$.

Other Fun Facts - 'local twist'

- $[D, u]$ is insensitive to local/global transformation w.r.t. M.
- $\phi \mapsto \phi+\delta \phi$, with $\delta \phi=\epsilon^{i} \sigma^{i} \phi=\epsilon^{i} \Phi^{i}$,

$$
\delta S=\int \partial(\epsilon j)=\int \partial_{\mu}(\epsilon) j^{\mu}+\int \epsilon \partial_{\mu} j^{\mu} .
$$

- $\partial_{\mu} j^{\mu}=0$ a symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right)=0$ a global symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right) \neq 0$, a local symmetry with a gauge.

$$
\Psi^{\dagger} D \Psi \mapsto \Psi^{\dagger} D \Psi+\Psi^{\dagger}\left[D, \epsilon^{i} \sigma^{i}\right] \Psi
$$

- $\Psi^{\dagger}\left[D, \epsilon^{i} \sigma^{i}\right] \Psi$ by analogy with $\partial_{\mu}\left(\epsilon j^{\mu}\right)$.
- $\left[D, \epsilon^{i} \sigma^{i}\right]=0$ a 'global' symmetry in the discrete direction.

Other Fun Facts - 'local twist'

- $[D, u]$ is insensitive to local/global transformation w.r.t. M.
- $\phi \mapsto \phi+\delta \phi$, with $\delta \phi=\epsilon^{i} \sigma^{i} \phi=\epsilon^{i} \Phi^{i}$,

$$
\delta S=\int \partial(\epsilon j)=\int \partial_{\mu}(\epsilon) j^{\mu}+\int \epsilon \partial_{\mu} j^{\mu} .
$$

- $\partial_{\mu} j^{\mu}=0$ a symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right)=0$ a global symmetry.
- $\partial_{\mu}\left(\epsilon j^{\mu}\right) \neq 0$, a local symmetry with a gauge.

$$
\Psi^{\dagger} D \Psi \mapsto \Psi^{\dagger} D \Psi+\Psi^{\dagger}\left[D, \epsilon^{i} \sigma^{i}\right] \Psi
$$

- $\Psi^{\dagger}\left[D, \epsilon^{i} \sigma^{i}\right] \Psi$ by analogy with $\partial_{\mu}\left(\epsilon j^{\mu}\right)$.

■ $\left[D, \epsilon^{i} \sigma^{i}\right]=0$ a 'global' symmetry in the discrete direction.

- $\left[D, \epsilon^{i} \sigma^{i}\right] \neq 0$ a 'local' symmetry in the discrete direction, with a gauge.

Other Fun Facts - 'local twist'

$[D, u]=0$ refers to

$$
\begin{array}{rlrl}
& & D u & =u D, \\
\Leftrightarrow & D & =u D u^{\dagger} .
\end{array}
$$

In SM, this refers to the VEV shift is invariant under the transformation u.

This describes the transformation of VEV shift, or the symmetry under which vacuum is invariant.

Other Fun Facts - 'local twist'

$[D, u]=0$ refers to

$$
\begin{array}{rlrl}
& & D u & =u D, \\
\Leftrightarrow & D & =u D u^{\dagger} .
\end{array}
$$

In SM, this refers to the VEV shift is invariant under the transformation u.

This describes the transformation of VEV shift, or the symmetry under which vacuum is invariant.
~Remaining symmetry,

Other Fun Facts - 'local twist'

$[D, u]=0$ refers to

$$
\begin{array}{rlrl}
& & D u & =u D, \\
\Leftrightarrow & D & =u D u^{\dagger} .
\end{array}
$$

In SM, this refers to the VEV shift is invariant under the transformation u.

This describes the transformation of VEV shift, or the symmetry under which vacuum is invariant.
~Remaining symmetry,
\sim Breaking chain.

Other Fun Facts - 'local twist'

In the simplest case, $A=\mathbb{H} \oplus \mathbb{H}, D=\left[\begin{array}{cc}0 & M^{\dagger} \\ M & 0\end{array}\right]$ and $M=\left[\begin{array}{cc}0 & m_{u} \\ m_{d} & 0\end{array}\right]$.

- Pictorially, the twist between 'left sheet' and 'right sheet'.

Other Fun Facts - 'local twist'

In the simplest case, $A=\mathbb{H} \oplus \mathbb{H}, D=\left[\begin{array}{cc}0 & M^{\dagger} \\ M & 0\end{array}\right]$ and $M=\left[\begin{array}{cc}0 & m_{u} \\ m_{d} & 0\end{array}\right]$.

- Pictorially, the twist between 'left sheet' and 'right sheet'.

■ But even we make same twists for left and right, we still have a local 'twist term', unless $m_{u}=m_{d}$, isospin-like.

Other Fun Facts - The seperation

- Totally independent of the base manifold M.

Other Fun Facts - The seperation

- Totally independent of the base manifold M .
- Extra dimension but discrete.

Other Fun Facts - The seperation

- Totally independent of the base manifold M.
- Extra dimension but discrete.
- The separation introduces a second scale \sim EW, from $a_{i}\left[D, b_{i}\right]$, different from the GUT scale which is led by the fluctuation in the continuous direction $f_{i}\left[\not \partial, g_{i}\right]$.

Other Fun Facts - The seperation

- Totally independent of the base manifold M .
- Extra dimension but discrete.
- The separation introduces a second scale $\sim \mathrm{EW}$, from $a_{i}\left[D, b_{i}\right]$, different from the GUT scale which is led by the fluctuation in the continuous direction $f_{i}\left[\not \chi, g_{i}\right]$.
- When the separation goes to $\infty, m_{f} \rightarrow 0$. This corresponds to the decouple of Higgs sector: left and right stop talking to each other, physically and geometrically.

Back to the Left-Right Completion

- Different realizations.
- For example. NCG/ spectral triple is built using lattice, supersymmetric quantum mechanics operators, Moyal deformed space, etc.
■ We have tried a specific realization using superconnection, su(2|1), and the left-right completion of $s u(2 \mid 2)$.
- Low energy emergent left-right completion, $\sim 4 \mathrm{TeV}$.
(Ufuk Aydemir, Djordje Minic, C.S., Tatsu Takeuchi: Phys. Rev. D 91, 045020 (2015) [arXiv:1409.7574])

More About the Left-Right Completion

- Hints for left-right symmetry behind the scene. (Pati-Salam Unification from NCG and the TeV-scale WR boson, [arXiv:1509.01606], Ufuk Aydemir, Djordje Minic, C.S., Tatsu Takeuchi)
- Changing the algebra to $\left(\mathbb{H}_{R} \oplus \mathbb{H}_{L}\right) \otimes\left(\mathbb{C} \oplus M_{3}(\mathbb{C})\right)$ does not change the scale.

$$
\frac{2}{3} g_{B L}^{2}=g_{2 L}^{2}=g_{2 R}^{2}=g_{3}^{2}
$$

Through the mixing of $S U(2)_{R} \times U(1)_{B-L}$ into $U(1)_{Y}$, we get

$$
\frac{1}{g^{\prime 2}}=\frac{1}{g^{2}}+\frac{1}{g_{B L}^{2}}=\frac{5}{3} \frac{1}{g^{2}}
$$

\sim LR symmetry breaking at GUT.

Myths and Outlooks

■ So far it is a classical theory - only classical \mathcal{L} is given. But it has a GUT feature! Without adding new d.o.f.

- If it just happens at one scale, how to accommodate Wilson picture.
- Quantization of the theory? Loops?
- Relation to the D-brane structure?
- Measure of the Dirac operator?

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.

■ Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.
- SSB has a reason.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.
- SSB has a reason.
- Fit in all SM fermions and bosons.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.
- SSB has a reason.
- Fit in all SM fermions and bosons.
- GUT without new degrees of freedom.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.
- SSB has a reason.
- Fit in all SM fermions and bosons.
- GUT without new degrees of freedom.
- Mass relation.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.
- SSB has a reason.
- Fit in all SM fermions and bosons.
- GUT without new degrees of freedom.
- Mass relation.
- Predicts Higgs mass.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.
- SSB has a reason.
- Fit in all SM fermions and bosons.
- GUT without new degrees of freedom.
- Mass relation.
- Predicts Higgs mass.
- Local twist with different setting of D.

Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:

- $(\mathcal{A}, \mathcal{H}, D)$, the spectral triple.
- Take mass matrix as a derivative, trace as the integral.
- Generate the gauge field $A=\sum a[D, b]$.
- Spectral action, $\operatorname{Tr}(f(D / \Lambda)) \sim D A+A^{2}$, as the gauge strength Generalized free fermion action, $\Psi^{\dagger} D_{A} \Psi$, for the fermionic part.
The dish:
- Two sheets structure.
- An extra discrete direction.
- Separation of the sheets ($m_{f} \rightarrow 0$, second scale, etc.)
- Higgs is a gauge in that direction.
- SSB has a reason.
- Fit in all SM fermions and bosons.
- GUT without new degrees of freedom.
- Mass relation.
- Predicts Higgs mass.
- Local twist with different setting of D.
- Minimally coupled gravity sector.

Reference

Chamseddine, Connes, et. al.:
Nucl. Phys. Proc. Suppl. 18B, 29 (1991)
Commun. Math. Phys. 182, 155 (1996) [hep-th/9603053], Adv. Theor. Math. Phys. 11, 991 (2007) [hep-th/0610241], JHEP 0611, 081 (2006) [hep-th/0608226], Commun. Math. Phys. 186, 731 (1997) [hep-th/9606001]. Phys. Rev. Lett. 99, 191601 (2007) [arXiv:0706.3690 [hep-th]], J. Geom. Phys. 58, 38 (2008) [arXiv:0706.3688 [hep-th]], Fortsch. Phys. 58, 553 (2010), [arXiv:1004.0464 [hep-th]].

Neeman, Fairlie, et. al.:
Phys. Lett. B 81, 190 (1979),
J. Phys. G 5, L55 (1979),

Phys. Lett. B 82, 97 (1979).
Ufuk Aydemir, Djordje Minic, C.S., Tatsu Takeuchi:
Phys. Rev. D 91, 045020 (2015) [arXiv:1409.7574],
Pati-Salam Unification from Non-commutative Geometry and the TeV-scale W_{R} boson [arXiv:1509.01606].

