
Localization on twisted spheres
and supersymmetric GLSMs

Cyril Closset

SCGP, SUNY Stony Brook

Southeastern regional string theory meeting, Duke University
Oct 25, 2015

Based on: arXiv:1504.06308 with S. Cremonesi and D. S. Park
To appear, with W. Gu, B. Jia and E. Sharpe

Cyril Closset (SCGP) 2d localization on twisted spheres Duke, Oct 25, 2015 1 / 45



Introduction

Supersymmetric gauge theories in two dimensions

Two-dimensional supersymmetric gauge theories—a.k.a. GLSM—are
an interesting playground for the quantum field theorist.

I They exhibit many of the qualitative behaviors of their
higher-dimensional cousins.

I Supersymmetry allows us to perform exact computations.
I They provide useful UV completions of non-linear σ-models,

including conformal ones, and of other interesting 2d SCFTs.
I Consequently, they are useful tools for string theory and

enumerative geometry:
• N = (2, 2) susy: IIB string theory compactifications.
• N = (0, 2) susy: heterotic compactifications.
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Introduction

GLSM Observables

Consider a GLSM with at least one U(1) factor. We have the
complexified FI parameter

τ =
θ

2π
+ iξ

which is classically marginal in 2d.

Schematically, expectation values of appropriately supersymmetric
local operators O have the expansion

〈O〉 ∼
∑

k

qkZk(O) , q = e2πiτ .

The 2d instantons are gauge vortices.
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Introduction

GLSM supersymmetric observables

We consider half-BPS local operators.

In the N = (2, 2) case, we have two choices (up to charge
conjugation):

I [Q̃−,O] = [Q̃+,O] = 0 , chiral ring.
I [Q−,O] = [Q̃+,O] = 0 , twisted chiral ring.

The so-called “twisted” theories [Witten, 1988] efficiently isolate these
subsectors: B- and A-twist, respectively. We will focus on the latter.

In the (0, 2) case, half-BPS operators commute with a single
supercharge and there is no chiral ring, in general. However, some
interesting models share properties with the (2, 2) case. We will
discuss them in the second part of the talk.
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Introduction

S2
εΩ

correlators for (2, 2) theories

We will consider correlations of twisted chiral ring operators on the
Ω-deformed sphere,

〈O〉S2
Ω
.

This Ω-background constitutes a one-parameter deformation of the
A-twist at genus zero.

We will derive a formula for GLSM supersymmetric observables on S2
Ω

of the schematic form:

〈O〉 =
∑

k

qk
∮
C

drσ Z1-loop
k (σ)O(σ) ,

valid for any standard GLSM. This results simplifies previous
computations [Morrison, Plesser, 1994; Szenes, Vergne, 2003] and generalizes
them to non-Abelian theories.
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Introduction

Some further motivations

In field theory:
I These 2d N = (2, 2) theories appear on the worldvolume of

surface operators in 4d N = 2 theories.
I Our 2d setup can also be uplifted to 4d N = 1 on S2 × T2.

[C.C., Shamir, 2013, Benini, Zaffaroni, 2015, Gadde, Razamat, Willett, 2015]

In string theory or “quantum geometry”:
I Think in terms of a target space Xd with ξ ∼ vol(Xd). New

localization results can give new tools for enumerative geometry.
[Jockers, Kumar, Lapan, Morrison, Romo, 2012]

I The (0, 2) results are relevant for heterotic string compactifications.
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Curved-space supersymmetry in 2d

Curved-space (2, 2) supersymmetry

The first step is to define the theory of interest in curved space, while
preserving some supersymmetry. A systematic way to do this is by
coupling to background supergravity. [Festuccia, Seiberg, 2011]

Assumption: The theory possesses a vector-like R-symmetry, RV = R.

In that case, we have:

j(R)
µ , Sµ , Tµν , jZµ , jZ̃µ

A(R)
µ , Ψµ , gµν , Cµ , C̃µ

A supersymmetric background corresponds to a non-trivial solution of
the generalized Killing spinor equations, δζΨµ = 0.
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Curved-space supersymmetry in 2d

Supersymmetric backgrounds in 2d

The allowed supersymmetric background are easily classified.
[C.C., Cremonesi, 2014]

For Σ a closed orientable Riemann surface of genus g:

I If g > 1, we need to identify A(R)
µ = ±1

2ωµ. Witten’s A-twist.
I If g = 1, this is flat space.
I If g = 0, we have two possibilities, depending on

1
2π

∫
Σ

dAR = 0,±1
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Curved-space supersymmetry in 2d

Supersymmetric backgrounds on S2

On the sphere, we can have:

1
2π

∫
S2

dAR = 0 ,
1

2π

∫
S2

dC =
1

2π

∫
S2

dC̃ = 1

This was studied in detail in [Doroud, Le Floch, Gomis, Lee, 2012; Benini, Cremonesi,

2012]. In this case, the R-charge can be arbitrary but the real part of the
central charge, Z + Z̃, is constrained by Dirac quantization.

The second possibility is

1
2π

∫
S2

dAR = 1 ,
1

2π

∫
S2

dC =
1

2π

∫
S2

dC̃ = 0

This is the case of interest to us. Note that the R-charges must be
integers, while Z, Z̃ can be arbitrary.
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Curved-space supersymmetry in 2d

Equivariant A-twist, a.k.a. Ω-deformation

Consider this latter case. We preserve two supercharges if the metric
on S2 has a U(1) isometry with Killing vector Vµ. This gives a
one-parameter deformation of the A-twist:

Q2 = 0 , Q̃2 = 0 , {Q, Q̃} = Z + εΩLV .

The supergravity background reads:

ds2 =
√

g(|z|2)dzdz̄ , A(R)
µ =

1
2
ωµ , Cµ =

1
2
εΩVµ , C̃µ = 0 .

Using the general results of [C.C., Cremonesi, 2014], we can write down any
supersymmetric Lagrangian we want.
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(2, 2) GLSM and supersymmetric observables

GLSMs: Lightning review

Let us consider 2d N = (2, 2) supersymmetric GLSM on this S2
Ω.

We have the following field content:
I Vector multiplets Va for a gauge group G, with Lie algebra g.
I Chiral multiplets Φi in representations Ri of g.

We also have interactions dictated by:
I A superpotential W(Φ)

I A twisted superpotential Ŵ(σ), where σ ⊂ V.
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(2, 2) GLSM and supersymmetric observables

Assumption: The classical twisted superpotential is linear in σ:

Ŵ = τ I TrI(σ) .

That is, we turn on one FI parameter for each U(1)I factor in G.

The FI term often runs at one-loop:

τ(µ) = τ(µ0)− b0

2πi
log
(
µ

µ0

)
,

If b0 = 0, we expect an SCFT in infrared.

This Ŵ preserves a U(1)A axial R-symmetry, broken to Z2b0 by an
anomaly if b0 6= 0.

Cyril Closset (SCGP) 2d localization on twisted spheres Duke, Oct 25, 2015 13 / 45



(2, 2) GLSM and supersymmetric observables

Examples with G = U(1)

Example 1: CPn−1 model. With n chirals with Qi = 1, ri = 0.
τ runs at one-loop (b0 = n), and there is a dynamical scale:

Λ = µq
1
n .

For ξ � 0, target space is CPn−1.

Example 2: The quintic model. 5 chirals xi with Qi = 1, ri = 0, and one
chiral p with Qp = −5, rp = 2, with a superpotential

W = pF(xi)

F is homogeneous of degree 5.

b0 = 0. For ξ � 0: quintic CY3 in CP4.
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(2, 2) GLSM and supersymmetric observables

Non-Abelian examples

Example 3: Grassmanian models. Consider a U(Nc) vector multiplet
with Nf chirals in the fundamental.

This non-Abelian GLSM flows to the NLσM on the Grassmanian
Gr(Nc,Nf ).

The Grassmanian duality

Gr(Nc,Nf ) ∼= Gr(Nf − Nc,Nf )

corresponds to a Seiberg-like duality of the GLSMs.
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(2, 2) GLSM and supersymmetric observables

We can also study new classes of CY manifolds inside Grassmanians
(and generalizations thereof). [Hori, Tong, 2006; Jockers, Kumar, Morrison, Lapan,

Romo, 2012]

Example 4: The Rødland CY3 model. Consider G = U(2) with 7 chirals Φi

in the fundamental with ri = 0 and 7 chirals Pα in the det−1 rep. with rα = 2.
We have the baryons

Bij = εa1a2Φ
a1
i Φa2

j ,

charged under the diagonal U(1) ⊂ U(2). Let Gα(B) be polynomials of degree
one in Bij. We have a superpotential

W =

7∑
α=1

PαGα(B)

The target space for ξ � 0 is a complete intersection in the Grassmanian
G(2, 7) known as the Rødland CY3.
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(2, 2) GLSM and supersymmetric observables

Supersymmetric observables

When εΩ = 0, the only local operators (built from elementary fields)
which are Q-closed and not Q-exact are

O(σ) ,

the gauge-invariant polynomials in σ. Supersymmetry also ensures
that the theory is topological. In particular:

∂µ〈Ox · · · 〉 = 〈{Q, · · · }〉 = 0 .

When εΩ 6= 0, instead:

[Q, σ] ∼ εΩ VµΛµ .

Thus σ is only Q-closed at the fixed points of V.
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(2, 2) GLSM and supersymmetric observables

Supersymmetric observables

We can insert O(σ) at the north or south poles of S2
Ω:

〈ON(σ)OS(σ)〉

This is what we shall compute explicitly, as a function of q and εΩ.

Note: One can write down a supersymmetric local term:

S =

∫
d2x(F(ω)R + · · · ) ∼ F(ω)

Thus, correlators 〈O〉 are only defined up to an overall holomorphic
function.
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Localization on the Coulomb branch

Localizations

Localization principle: For any O which is Q-closed,

〈O〉 = 〈 et Sloc O〉 if Sloc = {Q,Ψloc} .

Therefore, we can take t→∞ and localize the path integral on the
saddle point configurations of Sloc. The question is how to choose Sloc.

We can consider two distinct localizations:

I “Higgs branch” localization: Sum over vortices.
[Morrison, Plesser, 1994]

I “Coulomb branch” localization: Contour integral.

We will discuss the latter. The contour picks ‘poles’ on the Coulomb
branch corresponding to the vortices.
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Localization on the Coulomb branch

“Coulomb branch” localization

Choose:
Lloc = LYM .

Note: We also localize the matter sector with its standard kinetic term.

The saddles are on the Coulomb branch:

σ = diag(σa) , G→ H =

rank(G)∏
a=1

U(1)a

There is a family of gauge field saddles for each allowed (GNO) flux:

k = (ka) ∈ ΓG∨

Cyril Closset (SCGP) 2d localization on twisted spheres Duke, Oct 25, 2015 20 / 45



Localization on the Coulomb branch

When εΩ 6= 0, there is a non-trivial profile for σ

σ = σ(|z|2) ,

related to the gauge flux by supersymmetry:

f11̄ = − 1
εΩ
√

g
∂|z|2σ .

The important feature is that:

σN = σ̂ − εΩ
k
2
, σS = σ̂ + εΩ

k
2
,

with σ̂ a constant mode, over which we need to integrate.
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Localization on the Coulomb branch

In this localization scheme, we also have gaugino zero modes,
λ, λ̃ = constant.

The path integral reduces to a supersymmetric ordinary integral:

〈ON,S(σ)〉 ∼
∑

k

∫
dλdλ̃

∫
dD
∫

d2σ̂Zk(σ̂, ˆ̄σ, λ, λ̃,D)ON,S(σN,S)

We refrained from integrating over the constant mode of the auxiliary
field D in the vector multiplet.

We have
Zk = e−Scl Z1−loop

k .

The one-loop term results from integrating out the chiral multiplets and
the W-bosons. It can be computed explicitly by standard techniques.
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Localization on the Coulomb branch

The integration over the gaugino zero-modes can be performed
implicitly by using the residual supersymmetry of Zk. We have

δσ = 0 , δσ̃ = λ̃ , δλ̃ = 0 , δλ = D , δD = 0 .

and therefore

δZk =
(
λ̃∂σ̃ + D∂λ

)
Zk = 0 ⇒ D ∂λ∂λ̃Zk

∣∣∣
λ=λ̃=0

= ∂σ̃Zk

∣∣∣
λ=λ̃=0

This crucial step leads to a contour integral on the σ-plane:∫
d2λd2σZ ∼

∫
d2σ

1
D
∂σ̃Z ∼

∮
dσ

1
D
Z .

This is like in case of the flavored elliptic genus. [Benini, Eager, Hori,

Tachikawa, 2013]
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Localization on the Coulomb branch

The Coulomb branch formula
The remaining steps are similar to previous works [Benini, Eager, Hori,

Tachikawa, 2013; Hori, Kim, Yi, 2014]. We find:

〈ON,S(σ)〉 =
1
|W|

∑
k

∮
JK

rank(G)∏
a=1

[
dσ̂a qka

a
]

Z1−loop
k (σ̂)ON,S

(
σ̂ ∓ 1

2
εΩk
)

I |W| denotes the order of the Weyl group.
I The contour is determined by a Jeffrey-Kirwan residue.
I The result depends on the FI parameters explicitly and through

the definition of the contour.
I The sum is over all fluxes k’s. However, only some chambers in
{ka} effectively contribute residues.
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Localization on the Coulomb branch

The Coulomb branch formula

〈ON,S(σ)〉 =
1
|W|

∑
k

∮
JK

rank(G)∏
a=1

[
dσ̂a qka

a
]

Z1−loop
k (σ̂)ON,S

(
σ̂ ∓ 1

2
εΩk
)

I The distinct qa’s are a formal device. We have as many actual q’s
as the number of U(1) factors in g.
For instance, for G = U(N) we have qa = q for a = 1, · · · ,N.

I The one-loop term reads

Z1−loop
k (σ̂) =

∏
α∈g

ZW
k (α(σ̂))

∏
ρ∈R

ZΦ
k (ρ(σ̂))

from the W-bosons and chiral multiplets.
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Localization on the Coulomb branch

The Coulomb branch formula

〈ON,S(σ)〉 =
1
|W|

∑
k

∮
JK

rank(G)∏
a=1

[
dσ̂a qka

a
]

Z1−loop
k (σ̂)ON,S

(
σ̂ ∓ 1

2
εΩk
)

I For chiral multiplet of U(1) charge Q and R-charge r, we have

ZΦ
k (σ̂) = εΩ

Qk+1−r
Γ
(

Q σ̂
εΩ
− Q k

2 + r
2

)
Γ
(

Q σ̂
εΩ

+ Q k
2 −

r
2 + 1

) =
εΩ

Qk+1−r(
Q σ̂
εΩ
− Q k

2 + r
2

)
Qk−r+1

.

I The W-boson Wα contributes exactly like a chiral of R-charge
r = 2 and gauge charges α.

I Twisted masses mi for global symmetries can be introduced in the
obvious way.
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Localization on the Coulomb branch

A-model Coulomb branch formula (εΩ = 0)

For εΩ = 0, the Coulomb branch formula simplifies to:

〈O(σ)〉0 =
1
|W|

∑
k

∮
JK

rank(G)∏
a=1

[
dσ̂a qka

a
]

Z1−loop
k (σ̂)O (σ̂)

with

Z1−loop
k (σ̂) = (−1)

∑
α>0(α(k)+1)

∏
α>0

α(σ̂)2
∏

i

∏
ρi∈Ri

ρi(σ̂)ri−1−ρi(k)

In the Abelian case, this is a known mathematical result by [Szenes,

Vergne, 2003] about volumes of vortex moduli spaces. Our physical
derivation generalizes it to non-Abelian GLSMs.

Cyril Closset (SCGP) 2d localization on twisted spheres Duke, Oct 25, 2015 27 / 45



Localization on the Coulomb branch

A-model Coulomb branch formula (εΩ = 0)
In favorable cases, one can do the sum over fluxes explicitly:

〈O(σ)〉0 =
1
|W|

∮
JK

rank(G)∏
a=1

[
dσ̂a

1

1− e2πi∂σa Ŵeff

]
Z1−loop

0 (σ̂)O (σ̂)

Here Ŵeff is the one-loop effective twisted superpotential. Finally, if the
critical locus

e2πi∂σa Ŵeff = 1, σa 6= σb (if a 6= b)

consists of isolated points (such as typically happens for massive
theories), we can write the contour integral as

〈O(σ)〉0 =
∑

σ̂∗|dŴ=0

Z1−loop
0 (σ̂∗)O (σ̂∗)

H(σ̂∗)
, H = det ∂σa∂σbŴ

This same formula appeared in [Nekrasov, Shatashvili, 2014] and also in
[Melnikov, Plesser, 2005].

Cyril Closset (SCGP) 2d localization on twisted spheres Duke, Oct 25, 2015 28 / 45



Examples and applications

U(1) examples

Example 1. In the CPn−1 model, we have

〈ON,S(σ)〉 =

∞∑
k=0

qk
∮

dσ̂
k∏

p=0

n∏
i=1

1
σ̂ − mi − k/2 + p

O
(
σ̂ ∓ k

2

)

with mi the twisted masses coupling to the SU(n) flavor symmetry.

In the A-model limit and with mi = 0, this simplifies to

〈O(σ)〉εΩ=0 =

∮
dσ̂
(

1
1− qσ̂−n

)
O(σ̂)

σ̂n =

∮
dσ̂
O(σ̂)

σ̂n − q

This reproduces known results.
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Examples and applications

Example 2. For the quintic model, we have

〈ON(σ)〉 =
1
εΩ3

∞∑
k=0

qk
∮

ds
∏5k

l=0(−5s− l)∏k
p=0(s + p)5

O(εΩs)

In the A-model limit, we obtain

〈O(σ)〉εΩ=0 =

∞∑
k=0

(−55q)k
∮

dσ̂
5σ̂O(σ̂)

σ̂5 =
5

1 + 55q

∮
dσ̂
O(σ̂)

σ̂4

For any εΩ, we find 〈σn〉 = 0 if n = 0, 1, 2, and

〈
σ3〉 =

5
1 + 55q

,
〈
σ4〉 = 10εΩ

55q
(1 + 55q)2 , · · ·

in perfect agreement with [Morrison, Plesser, 1994].
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Examples and applications

Non-Abelian examples

For simplicitly, let us focus on εΩ = 0, the A-model.

Example 3. For the Grassmanian model, the residue formula gives

〈O〉0 =
∑

k∈Z≥0

qkZk(O) ,

with

Zk =
1

Nc!

∑
ka|

∑
a ka=k

(−1)2ρW (k)

(2πi)Nc

∮
dNcσ

∏Nc
a,b=1(σa − σb)∏Nc

a=1

∏Nf
i=1(σa − mi)1+ka

O(σ) .

Here mi are twisted masses, corresponding to a SU(Nf )-equivariant
deformation of Gr(Nc,Nf ).

For mi = 0, the numbers Zk are the g = 0 Gromov-Witten invariants.
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Examples and applications

Example 3, continued. This simplifies explicit formulas found in the
math literature. For instance, one finds [C.C., N. Mekareeya, work in progress]

〈u1(σ)p〉0 = δp,(Nf−Nc)Nc+kNf qk deg(Kk
Nf−Nc,Nc

)

with deg(Kk
Nf−Nc,Nc

) given by [Ravi, Rosenthal, Wang, 1996]

(−1)k(Nc+1)+ 1
2 Nc(Nc−1)

[Nc(Nf − Nc + kNf )]!
∑

ka|
∑

a ka=k

∑
σ∈SNc

Nc∏
j=1

1

(Nf − 2Nc − 1 + j + σ(j) + kjNf )!
,

Example: for Nc = 2,Nf = 5, we have the non-vanishing correlators:

〈u6
1〉0 = 5 , 〈u11

1 〉0 = 55 q , 〈u16
1 〉0 = 610 q2 , 〈u21

1 〉0 = 6765 q3 , · · ·

This generalizes to the computation of GW invariants of non-CY target
space, and is thus complementary of the techniques of [Jockers, Kumar,

Lapan, Morrison, Romo, 2012] valid for conformal models.
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Examples and applications

Example 4. For the Rødland CY3 model, our formula reads

1
2

∞∑
k1,k2=0

qk1+k2

∮
(σ̂a=0)

dσ̂1dσ̂2(σ̂1 − σ̂2)2 (−σ̂1 − σ̂2)7(1+k1+k2)

σ̂
7(1+k1)
1 σ̂

7(1+k2)
2

O(σ̂) .

The observables are polynomials in the gauge invariants

u1(σ) = Tr(σ) = σ1 + σ2 , u2(σ) = Tr(σ2) = σ2
1 + σ2

2 .

The only non-vanishing correlators are given by:

〈u1(σ)3〉 =
42− 14q

1− 57q− 289q2 + q3 ,

〈u2(σ)u1(σ)〉 =
14 + 126q

1− 57q− 289q2 + q3 .
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Examples and applications

Note:
I The Yukawa 〈u1(σ)3〉 was computed by mirror symmetry in [Batyrev

et al., 1998]. The second correlator is a new result.
I More generally, the correlators

〈un(σ) · · · 〉 , n > 1 ,

in any non-Abelian GLSM are new results which could not be
obtained by previous methods (to the best of my knowledge).

I Many more examples can be considered. In particular, one can
study the PAX/PAXY models of [Jockers, Kumar, Morrison, Lapan, Romo, 2012]

for determinantal CY varieties.
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Generalization to (some) (0, 2) theories with a Coulomb branch

N = (0, 2) observables

A priori, the above would not generalize to (0, 2) theories with only two
right-moving supercharges:

{Q+, Q̃+} = −4Pz̄ .

Half-BPS operators are Q̃+-closed, and generally do not form a ring
but a chiral algebra:

Oa(z)Ob(0) ∼
∑

c

fabc

zsa+sb−sc
Oc(z) ,

In some favorable cases with an extra U(1)L symmetry, there exists a
subset of the Oa, of spin s = 0, with trivial OPE. These pseudo-chiral
rings are known as “topological heterotic rings".

[Adams, Distler, Ernebjerg, 2006]
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Generalization to (some) (0, 2) theories with a Coulomb branch

Theories with a (2, 2) locus and A/2-twist
In this talk, I will focus on (0, 2) supersymmetric GLSMs with a (2, 2)
locus. Schematically, they are determined by the following (0, 2) matter
content:

I A vector multiplet V and a chiral Σ in the adjoint of the gauge
group G, with g = Lie(G).

I Pairs of chiral and Fermi multiplets Φi and Λi, in representations
Ri of g.

The interactions are encoded in two sets of holomorphic functions of
the chiral multiplets:

Ei(Σ,Φ) = ΣEi(Φ) , Ji = Ji(Φ)

By assumption, we preserve an additional U(1)L symmetry classically,
which leads to Ei linear in Σ

We also turn on an FI term τ I for each U(1)I in G.
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Generalization to (some) (0, 2) theories with a Coulomb branch

Theories with a (2, 2) locus and A/2-twist

We assign the R-charges:

RA/2[Σ] = 0 , RA/2[Φi] = ri , RA/2[Λi] = ri − 1 ,

which is always anomaly-free.

We can define the theory on S2 (with any metric) by a so-called
half-twist:

S = S0 +
1
2

RA/2 ,

preserving one supercharge Q̃ ∼ Q̃+. The R-charges ri must be
integers (typically, ri = 0 or 2).

Incidentally, half-twisting is the only way to preserve supersymmetry on the sphere, unlike for

(2, 2) GLSM.
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Generalization to (some) (0, 2) theories with a Coulomb branch

The Coulomb branch of theories with a (2, 2) locus
If we have a generic Ei potentials, there is a Coulomb branch spanned
by the scalar σ in Σ:

σ = diag(σa) .

The matter fields obtain a mass

Mij = ∂jEi
∣∣
φ=0 = σa ∂jEa

i

∣∣
φ=0 .

By gauge invariance, Mij is block-diagonal, with each block spanned by
fields with the same gauge charges. We denote these blocks by Mγ .
(On the (2, 2) locus, Mij = δijQi(σ).)

Let us introduce the notation

Pγ(σ) = det Mγ ∈ C[σ1, · · · , σr] , (r = rank(G))

which is a homogeneous polynomial of degree nγ ≥ 1 in σ.
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Generalization to (some) (0, 2) theories with a Coulomb branch

A residue formula for A/2-model correlators on S2

All the fields are massive on the Coulomb branch, and the localization
argument can be carried out similarly to the (2, 2) case, allowing us to
compute the A/2-twisted correlators on S2 with an half-twist:

〈O(σ)〉A/2 =
∑

k

1
|W|

∑
k

∮
JKG

rank(G)∏
a=1

[
dσa qka

a
]

Z1−loop
k (σ)O (σ) ,

with

Z1−loop
k (σ) = (−1)

∑
α>0(α(k)+1)

∏
α>0

α(σ)2
∏
γ

∏
ργ∈Rγ

(
det M(γ, ργ)

)rγ−1−ργ(k)
.

Here we have a new residue prescription generalizing the
Jeffrey-Kirwan residue relevant on the (2, 2) locus.

In the Abelian case, this reproduces previous results of [McOrist, Melnikov,

2007].
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Generalization to (some) (0, 2) theories with a Coulomb branch

The Jeffrey-Kirwan-Grothendieck residue

In the (2, 2) case, the Jeffrey-Kirwan residue determined a way to pick
a middle-dimensional contour in

Cr − ∪i∈IHi , I = {i1, · · · , is} (s ≥ r) , Hi = {σa |Qi(σ) = 0} ,

when the integrand has poles on Hi only.

For generic (0, 2) deformations, we have an integrand with singularities
on more general divisors of Cr:

Dγ = {σa |Pγ(σ) = 0} ,

which intersect at the origin only.
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Generalization to (some) (0, 2) theories with a Coulomb branch

The Jeffrey-Kirwan-Grothendieck residue

To define the relevant Jeffrey-Kirwan-Grothendieck (JKG) residue, we
introduce the data P = {Pγ} and Q = {Qγ} of divisors Dγ and
associated gauge charges Qγ . The residue is defined by its action on
the holomorphic forms:

ωS = dσ1 ∧ · · · ∧ dσr P0

∏
b∈S

1
Pb

,

with S = {γ1, · · · , γr}, which is

JKG-Res[η] ωS =

{
sign (det(QS)) Res(0) ωS if η ∈ Cone(QS) ,

0 if η /∈ Cone(QS) ,

with Res(0) the (local) Grothendieck residue at the origin.
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Generalization to (some) (0, 2) theories with a Coulomb branch

The Jeffrey-Kirwan-Grothendieck residue

The Grothendieck residue itself is defined as:

Res(0) ωS =
1

(2πi)r

∮
Γε

dσ1 ∧ · · · ∧ dσr
P0

Pγ1 · · ·Pγr

,

with the real r-dimensional contour:

Γε =
{
σ ∈ Cr

∣∣ |Pγ1 | = ε1 , · · · , |Pγr | = εr
}
,

and it is eminently computable.

Finally, we should take η = ξUV
eff to cancel the “boundary contributions”

from infinity on the Coulomb branch.
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Generalization to (some) (0, 2) theories with a Coulomb branch

Example: CP1 × CP1 with deformed tangent bundle
Consider a theory with gauge group U(1)2, two neutral chiral multiplets
Σ1,Σ2 and four pairs of chiral and Fermi multiplets:

Φi,Λi , i = 1, 2 Qi = (1, 0) , Φj,Λj , j = 1, 2 Qj = (0, 1) ,

with holomorphic potentials Ji = Jj = 0 and

Ei = σ1(Aφ)i + σ2(Bφ)i , Ej = σ1(Cφ)j + σ2(Dφ)j .

with A,B,C,D arbitrary 2× 2 constant matrices. This realizes a
deformation of the tangent bundle to the holomorphic bundle E
described by the cokernel:

0 −→ O2

(
A B
C D

)
−−−−−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0
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Generalization to (some) (0, 2) theories with a Coulomb branch

CP1 × CP1, continued.

We have two sets γ = 1, 2:

det M1 = det(Aσ1 + Bσ2) , det M2 = det(Cσ1 + Dσ2) .

The Coulomb branch residue formula gives

〈σp1
1 σ

p2
2 〉 =

∑
k1,k2∈Z

qk1
1 qk2

2

∮
JKG

dσ1dσ2
σp1

1 σ
p2
2

(det M1)1+k1(det M2)1+k2

This can be checked against independent mathematical computations
of sheaf cohomology groups.

This result also implies the “quantum sheaf cohomology relations”:

det M1 = q1 , det M2 = q2 ,

in the A/2-ring. This can also be derived from a standard argument on
the Coulomb branch. [McOrist, Melnikov, 2008]
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Conclusion

Conclusions

I We studied N = (2, 2) supersymmetric GLSMs on the
Ω-deformed sphere, S2

Ω.
I We derived a simple Coulomb branch formula for the S2

Ω

observables.
I When εΩ = 0, this gives a simple, general formula for A-twisted

GLSM correlation functions.
• Some correlators could not be computed with other methods, such

as the ones involving Tr(σn) in a non-Abelian theory.
• Even when other methods are possible (e.g. mirror symmetry), the

Coulomb branch formula is much simpler.
I The formula is valid in any phase in FI parameter space (away

from boundaries), geometric or not.
I Surprisingly, it generalizes off the (2, 2) locus, leading to very

interesting new results for some (0, 2) models and the
corresponding heterotic geometries.

Cyril Closset (SCGP) 2d localization on twisted spheres Duke, Oct 25, 2015 45 / 45


	Curved-space supersymmetry in 2d
	(2,2) GLSM and supersymmetric observables
	Localization on the Coulomb branch
	Examples and applications
	Generalization to (some) (0,2) theories with a Coulomb branch
	Conclusion

