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Introduction

Goal: further explore target space duality

Generate examples with non-trivial D/F term potential ⇒

Count matter spectrum as previous work did

Compare effective potential and explore vacuum spaces

Study structure group and enhanced symmetries

More work

Provide complete list of target space dual chains

Develop new tools (repeated entry, etc.)
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Review of Target Space Duality

Abelian, massive 2D theory → (0, 2) GLSM

Multiple U(1) gauge fields A(α) with α = 1, ..., r

Chiral superfields: {Xi|i = 1, ..., d} with U(1) charges Q
(α)
i , and

{Pl|l = 1, ..., γ} with U(1) charges −M (α)
l .

Fermi superfields: {Λa|a = 1, ..., δ} with charges N
(α)
a , and

{Γj |j = 1, ..., c} with charges −S(α)
j .

Gauge and gravitational anomaly cancellation

δ∑
a=1

N (α)
a =

γ∑
l=1

M
(α)
l

d∑
i=1

Q
(α)
i =

c∑
j=1

S
(α)
j

γ∑
l=1

M
(α)
l M

(β)
l −

δ∑
a=1

N (α)
a N (β)

a =

c∑
j=1

S
(α)
j S

(β)
j −

d∑
i=1

Q
(α)
i Q

(β)
i (1)

for all α, β = 1, ..., r.
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Put the above data in a table

xi Γj

Q
(1)
1 Q

(1)
2 . . . Q

(1)
d

Q
(2)
1 Q

(2)
2 . . . Q

(2)
d

...
...

. . .
...

Q
(r)
1 Q

(r)
2 . . . Q

(r)
d

−S(1)
1 −S(1)

2 . . . S
(1)
c

−S(2)
1 −S(2)

2 . . . S
(2)
c

...
...

. . .
...

−S(r)
1 −S(r)

2 . . . S
(r)
c

Λa pl

N
(1)
1 N

(1)
2 . . . N

(1)
δ

N
(2)
1 N

(2)
2 . . . N

(2)
δ

...
...

. . .
...

N
(r)
1 N

(r)
2 . . . N

(r)
δ

−M (1)
1 −M (1)

2 . . . −M (1)
γ

−M (2)
1 −M (2)

2 . . . −M (2)
γ

...
...

. . .
...

−M (r)
1 −M (r)

2 . . . −M (r)
γ

(2)
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GLSM is defined via a superpotential:

S =

∫
d2zdθ

[∑
j

ΓjGj(xi) +
∑
l,a

PlΛ
aF la(xi)

]
(3)

Gj and F la are quasi-homogeneous polynomials with multi-degrees:

Gj

S1 S2 . . . Sc

Fa
l

M1 −N1 M1 −N2 . . . M1 −Nδ
M2 −N1 M2 −N2 . . . M2 −Nδ

.

.

.
.
.
.

. . .
.
.
.

Mγ −N1 Mγ −N2 . . . Mγ −Nδ

(4)

F la satisfies transversality condition: all F la(x) = 0 only when all xi = 0
F-term potential:

VF =
∑
j

∣∣Gj(xi)∣∣2 +
∑
a

∣∣∑
l

plF
l
a(xi)

∣∣2 (5)

D-term potential:

VD =

r∑
α=1

( d∑
i=1

Q
(α)
i |xi|

2 −
γ∑
l=1

M
(α)
l |pl|

2 − ξ(α)

)2

(6)
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Fayet-Iliopoulos (FI) parameter controls the phase, consider a single U(1):

For ξ > 0, not all xi are zero thus not all Fa are zero, Gj(xi) = 0 and
< p >= 0 ⇒ “geometric” phase

(X, V) where X is a CY and V is a bundle, V =
ker(F la)
im(Eai ) in the monad:

0→ O⊕rVM
⊗Eai−−−→

δ⊕
a=1

OM(Na)
⊗F la−−−→

γ⊕
l=1

OM(Ml)→ 0 (7)

For ξ < 0, < p >6= 0 thus all < xi >= 0 ⇒ “nongeometric” phase
Landau-Ginzburg orbifold with a superpotential:

W(xi,Λ
a,Γi) =

∑
j

ΓjGj(xi) +
∑
a

ΛaFa(xi) (8)

For multiple U(1)’s, hybrid phase
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Target space duality

For Landau-Ginzburg orbifold with a superpotential:

W(xi,Λ
a,Γi) =

∑
j

ΓjGj(xi) +
∑
a

ΛaFa(xi) (9)

Observation (Distler, Kachru): An exchange/relabeling of the functions Gj
and Fa will not affect the Landau-Ginzburg model, as long as anomaly
cancellation conditions are satisfied.

Procedure:
Geometric to nongeometric phase: find phase with one 〈pl〉 6= 0 for some l, say
l = 1.
Rescale: Λ̃ai := Γji

〈p1〉 , Γ̃ji := 〈p1〉Λai s.t.
∑
i ||Gji || =

∑
i ||Fai

1||.
Move to a region where Λai appear only with P1, i.e. choose F lai = 0 ∀l 6= 1,
i = 1, . . . k.
Leave non-geometric phase: ||Λ̃ai || = ||Γji || − ||P1|| and ||Γ̃ji || = ||Λai ||+ ||P1||,
return to a generic pt. and get new (X̃, Ṽ ).
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Example

xi Γj Λa pl
0 0 0 1 1 1 1
1 1 1 2 2 2 0

−2 −2
−4 −5

1 0 0 2
0 1 1 6

−3
−8

(10)

Here ||G1|| = (2, 4), ||G2|| = (2, 5),
||F 1

1 || = (2, 8), ||F 1
2 || = (3, 7), ||F 1

3 || = (3, 7), ||F 1
4 || = (1, 2).

Sum of third and fourth F equals sum of two G’s.

Redefine: Γ̃1 = 〈p1〉Λ3, Γ̃2 = 〈p1〉Λ4, Λ̃3 = Γ1

〈p1〉 , Λ̃4 = Γ2

〈p1〉 ,

G̃ = F 1
3 , G̃2 = F 1

4 , F̃ 1
3 = G1, F̃ 1

4 = G2

then the new geometry is given by:
||G̃1|| = (3, 7), ||G̃2|| = (1, 2), ||F̃ 1

3 || = (2, 4), ||F 1
4 || = (2, 5)

xi Γj Λa pl
0 0 0 1 1 1 1
1 1 1 2 2 2 0

−3 −1
−7 −2

1 0 1 1
0 1 4 3

−3
−8

(11)
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Compare degree of freedom:

xi Γj Λa pl
0 0 0 1 1 1 1
1 1 1 2 2 2 0

−2 −2
−4 −5

1 0 0 2
0 1 1 6

−3
−8

(10)

dim(M0) = h1,1(X) + h2,1(X) + h1(End0(V )) = 2 + 68 + 322 = 392,
h∗(V ) = (0, 120, 0, 0)

xi Γj Λa pl
0 0 0 1 1 1 1
1 1 1 2 2 2 0

−3 −1
−7 −2

1 0 1 1
0 1 4 3

−3
−8

(11)

dim(M̃0) = h1,1(X̃) + h2,1(X̃) + h1(End0(Ṽ )) = 2 + 95 + 295 = 392,

h∗(Ṽ ) = (0, 120, 0, 0)

Landscape scan by Blumenhagen + Rahn, agreement in nearly all ∼80,000
examples.
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TS duality with extra U(1)

Add a new coord y1 with multi-degree B and a hypersurface of degree B.
Perform previous procedure (e.g. ||B|| = ||F 1

1 ||+ ||F 1
2 || − S1)

Resolve singularities (Distler, Greene, Morrison) by formally adding a P1

(another coord y2)
Set constraint GB = y1 = 0 to eliminate y1. Use additional U(1) and D-term
to fix y2 to a real constant.↔ X× a single pt.

x1 . . . xd y1 y2 Γ1 . . . Γc ΓB

0 . . . 0 1 1 0 . . . 0 −1
Q1 . . . Qd B 0 −S1 . . . −Sc −B

Λ1 Λ2 . . . Λδ p1 p2 . . . pγ
0 0 . . . 0 −1 0 . . . 0
N1 N2 . . . Nδ −M1 −M2 . . . −Mγ

End up with new geometry:

x1 . . . xd y1 y2 Γ̃1 . . . Γc Γ̃B

0 . . . 0 1 1 −1 . . . 0 −1
Q1 . . . Qd B 0 −(M1 −N1) . . . −Sc −(M1 −N2)

Λ̃1 Λ̃2 . . . Λδ p1 p2 . . . pγ
1 0 . . . 0 −1 0 . . . 0
0 M2 −B . . . Nδ −M1 −M2 . . . −Mγ
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More TS Duality with Redundant Entry

We consider V = ker(F la) defined by a short exact sequence

0→ V →
δ⊕
a=1

OM(Na)
F la−−→

γ⊕
l=1

OM(Ml)→ 0 (12)

Adding a redundant entry can lead to non trivial results after TS duality

0→ V → B
F−→ C → 0

0→ V ′ → B ⊕ L F ′−→ C ⊕ L→ 0 (13)

where the new defining map F ′ is given by

F ′ =

(
F α
β C

)
(14)

This repeated L is bounded, because of well-defined map F la;
Too many L’s won’t enroll in the transformation so keep redundant.
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Bundle stability/holomorphy and D/F-term

N = 1 Supersymmetry in 4D ⇒ Hermitian-Yang Mills Eqns

Fab = Fab = gabFba = 0 (15)

gabFba = 0 ⇔ Donaldson-Uhlenbeck-Yau Thm: V is stable (poly-stable).
Fab = Fab = 0 ⇔ V is holomorphic.

Stability⇔ 4D D-terms

Holomorphy⇔ 4D F-terms

Our work:
Test TS duality with bundles not stable/holomorphic everywhere
See if the stability/holomorphy properties (etc.) carry through
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D-term and stability

Thanks to recent progress (Sharpe, Anderson, Gray, Lukas, Ovrut)
The slope, µ(V ), of a vector bundle is

µ(V ) ≡ 1

rk(V )

∫
X

c1(V ) ∧ ω ∧ ω (16)

where ω = tkωk is the Kahler form on X (ωk a basis for H1,1(X)).

V is Stable if for every sub-sheaf F ⊂ V s.t. µ(F) < µ(V )
V is Poly-stable if V =

⊕
i Vi, where Vi stable s.t. µ(V ) = µ(Vi) ∀i. Problem:

hard to find all sub-sheaves.
V is stable if ∀ sub-line bundles L, µ(L) < µ(∧kV ) = 0, where 0 < k < n.

If there is a sub-bundle L = O(a, b), where ab < 0, then V is stable in the
region

µ(L) =
1

rk(L)
dijkc

i
1(L)tjtk =

1

rk(L)
sic

i
1(F) = s1a+ s2b < 0 (17)
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Consider the following rank 5 bundle V on a CICY:
P1

P3

[
2
4

]
, anomaly

cancellation condition: c1(TX) = c1(V ) = 0, c2(TX) = c2(V )

xi Γj Λa pl
1 1 0 0 0 0
0 0 1 1 1 1

−2
−4

0 0 0 0 1 1 1
1 1 1 2 −1 1 2

−1 −2
−4 −3

(18)
The bundle V is given by SES:

0→ V → O(0, 1)⊕3 ⊕O(0, 2)⊕O(1,−1)⊕O(1, 1)⊕O(1, 2)⊕O(3, 2)

→ O(3, 2)⊕O(1, 4)⊕O(2, 3)→ 0
(19)

The “maximally destabilizing” sub-bundle is a rank 4 bundle Q4 with
c1(Q4) = −J1 + J2, so that

0→ Q4 → V → L → 0 (20)

where
L = O(1,−1) (21)

V is stable in region s2 < s1.
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On the stability wall (s2 = s1), V is poly-stable and can break into a sum of
two pieces: V = Q4 ⊕ L. The structure group of an SU(5) will become
S[U(4)× U(1)] ' SU(4)× SU(1)× U(1).

To explore 4D vacuum space through D-term potential (Sharpe, Lukas, Stelle,
Blumenhagen, Weigand, Honecker, ...):

DU(1) ∼ µ(F)

V ol(X)
− 1

2

∑
i

QiGLM̄C
L
i C̄

M̄
i (22)

In this case, the D-term looks like:

DU(1) ∼ µ(Q4)

V ol(X)
− 1

2
q1GLM̄C

L
1 C

M̄
1 +

1

2
q2GLM̄C

L
2 C

M̄
2 (23)

with
C1 ∈ H1(X,L ⊗Q∗4) C2 ∈ H1(X,Q4 ⊗ L∗) (24)

In region V stable, < C1 >= 0, < C2 > 6= 0.

He Feng (Virginia Tech) New Evidence for (0, 2) Target Space Duality 15 / 35



Figure: D-term potential for bundle V, stable in region s2 < s1
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Question

Start from the wall, take infinitesimal fluctuation to leave the wall, and take
TS duals, is this fluctuation preserved?

V1
dual−→ Ṽ1

〈C〉 ↓ ↓ 〈C̃〉??

V2
dual−→ Ṽ2

Deform V1 to get V2, and take duals, is Ṽ2 the same deformation of Ṽ1?

How to build the geometry?
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Example

Start from an example which is only stable on a line, where
c2(V ) = c2(TX) = {24, 44}

xi Γj Λa pl
1 1 0 0 0 0
0 0 1 1 1 1

−2
−4

1 −1 0 0 2 1 1 2
−1 1 1 1 1 2 2 2

−3 −1 −2
−2 −4 −3

(25)

dim(M0) = h1,1(X) + h2,1(X) + h1(X,End0(V )) = 2 + 86 + 340 = 428

dim(M1) = dim(M0)− 1 = 427 (restricted on the wall) (26)

the stability condition writes:

0→ Q4 → V → O(1,−1)→ 0

0→ Q̃4 → V → O(−1, 1)→ 0 (27)

On the stability wall, V breaks into three parts:

V → U3 ⊕ L⊕ L∨ where L = O(1,−1) (28)
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Structure group: seems like SU(5) bundle ⇒ SU(5) 4d effective theory
Non-Abelian Enhancement: S[U(1)× U(1)]× SU(3) ⊂ E8 ⇒ SU(6)× U(1),
with U(1) symmetry visible in 4d theory.

Field Cohom. Multiplicity Field Cohom. Multiplicity
1+2 H1(L⊗ L) 0 1−2 H1(L∨ ⊗ L∨) 10
150 H1(U3

∨) 0 150 H1(U3) 80
20+1 H1(L) 0 20−1 H1(L∨) 0
6+1 H1(L⊗ U3) 72 6−1 H1(L∨ ⊗ U3) 90
6+1 H1(L⊗ U3

∨) 0 6−1 H1(L∨ ⊗ U3
∨) 2

10 H1(U3 ⊗ U3
∨) 166

Table: Particle content of the SU(6)× U(1) theory associated to the bundle along its
reducible and poly-stable locus V = O(−1, 1)⊕O(1,−1)⊕ U3 (i.e. on the stability
wall).
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Target Space Dual

A target space dual with c2(Ṽ ) = c2(TX̃) = {24, 24, 44}

xi Γj Λa pl
P1

P1

P3

−1 −1
−2 0
−2 −2

0 0 1 0 0 0 0 0
1 −1 0 0 2 1 1 2
−1 1 −1 1 3 2 2 2

0 0 −1
−3 −1 −2
−2 −4 −3

(29)

dim(M̃0) = h1,1(X̃) + h2,1(X̃) + h1(X,End0(Ṽ )) = 3 + 55 + 370 = 428

dim(M̃1) = dim(M̃0)− 1 = 427 (restricted on the wall) (30)

the stability condition writes:

0→ F̃1 → Ṽ → O(0, 1,−1)→ 0 c1(F̃1) = (0,−1, 1)

0→ F̃2 → Ṽ → O(0,−1, 1)→ 0 c1(F̃2) = (0, 1,−1) (31)

0→ F̃3 → Ṽ → O(1, 0,−1)→ 0 c1(F̃3) = (−1, 0, 1)
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Figure: Stable region for Ṽ (s3 < s1 and s2 = s3)
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V breaks the same way: Ṽ → L̃⊕ L̃∨ ⊕ Ũ3

Identical Non-Abelian Symmetry Enhancement: S[U(1)×U(1)]× SU(3) ⊂ E8

⇒ SU(6)× U(1)

Field Cohom. Multiplicity Field Cohom. Multiplicity

1+2 H1(L̃⊗ L̃) 0 1−2 H1(L̃∨ ⊗ L̃∨) 10

150 H1(Ũ∨3 ) 0 150 H1(Ũ3) 80

20+1 H1(L̃) 0 20−1 H1(L̃∨) 0

6+1 H1(L̃⊗ Ũ3) 72 6−1 H1(L̃∨ ⊗ Ũ3) 90

6+1 H1(L̃⊗ Ũ∨3 ) 0 6−1 H1(L̃∨ ⊗ Ũ∨3 ) 2

10 H1(Ũ3 ⊗ Ũ∨3 ) 196

Table: Particle content of the SU(6)× U(1) theory ↔ Ṽ = L̃⊕ L̃∨ ⊕ Ũ3.
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Branch Structure

Search for breaking: SU(6)→ SU(5) stable off the wall, i.e. glue the
components together. (L+ L∨ + U3 → V5)

But how? Consider D-term potential:

D
U(1)
GS ∼

3

16

εSεR
2µ(L∨)

κ4
2V

−
1

2

(
(−2)|C−2,0|2 + (+1)|C+1,−5|2 + (−1)|C−1,−5|2 + (−1)|C−1,+5|2

)
(32)

D
U(1)

SU(6)
∼

1

2

(
(−5)|C+1,−5|2 + (−5)|C−1,−5|2 + (+5)|C−1,+5|2

)
(33)

Previous case corresponds to < C >= 0 so µ(F) = 0.

To find new branch, choose < C > 6= 0, take the second D-term potential to 0
and substitute into the first D-term potential, to make it to 0 requires:
µ(L∨) < 0,
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Observation: L∨ = O(−1, 1) itself can be written as a monad:

0→ Lnew → O(0, 1)⊕2 g−→ O(1, 1)→ 0 (34)

because line bundles on CY 3-folds are classified by their first Chern class
(here c1(Lnew) = −J1 + J2).

Replace L∨ with new expression and mix them up:

xi Γj Λa pl
P1

P3
−2
−4

1 0 0 0 0 2 1 1 2
−1 1 1 1 1 1 2 2 2

−1 −3 −1 −2
−1 −2 −4 −3

(35)

Degree of freedom count gives:

dim(M0) = dim(M1) = h1,1(X)+h2,1(X)+h1(End0(V )) = 2+86+338 = 426
(36)

compared to 427 of the on-wall branch.
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Figure: Two bundle moduli spaces touch
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New Branch of the TS dual

Similarly replace L̃ = O(0,−1, 1) with new expression

0→ L̃new → O(0, 0, 1)⊕2 g̃−→ O(0, 1, 1)→ 0 (37)

This leads at last to the bundle

xi Γj Λa pl
P1

P1

P3

−1 −1
−2 0
−2 −2

0 0 0 1 0 0 0 0 0
1 0 0 0 0 2 1 1 2
−1 1 1 −1 1 3 2 2 2

0 0 0 −1
−1 −3 −1 −2
−1 −2 −4 −3

(38)

Again degree of freedom count gives:

dim(M0) = dim(M1) = 426 (39)

Interestingly, the off-wall branch of the TS dual is also a TS dual of the
off-wall branch, which gives the commutative diagram:

V1
dual−→ Ṽ1

〈C〉 ↓ ↓ 〈C̃〉
V2

dual−→ Ṽ2
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Isomorphic geometry in TS duality

Compare numbers of TS duals of two manifolds of the same homotopy type:
Among all TS duals of the original bundle on the wall, 3 and 5 results on the

following two manifolds, respectively:
P1

P1

P3

 1 1
0 2
2 2

 and
P1

P1

P3

 1 1
1 1
2 2

.

TS duality can result in the same manifold: consider the following dual to our
original bundle:

xi Γj Λa pl
P1

P1

P3

−1 −1
−1 −1
−4 0

1 0 0 0 0 0 0 0 0
0 −1 0 0 2 1 1 2 2
−1 1 1 1 1 2 2 2 3

0 0 −1 0
−3 −1 −2 −1
−2 −4 −3 −3

(40)

base manifold is the same as the {2, 4} on P1 × P3, but bundle is not trivially
related to the original V (need some lemma to prove this).
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Two seemingly different bundle can be related by an isomorphism, e.g.

xi Γj Λa pl
1 1 0 0 0 0
0 0 1 1 1 1

−2
−4

0 0 0 0 1 1 1
1 1 1 2 −1 1 2

−1 −2
−4 −3

(41)
This bundle shares identical topology with the bundle of the off-wall branch,

xi Γj Λa pl
P1

P3
−2
−4

1 0 0 0 0 2 1 1 2
−1 1 1 1 1 1 2 2 2

−1 −3 −1 −2
−1 −2 −4 −3

(35)

because these two bundle share a stability wall and stable in the same region:

0→ Q4 → V5 → O(1,−1)→ 0

0→ U4 → V ′5 → O(1,−1)→ 0 (42)

a calculation gives:
dim(Hom(Q4, U4)) = 1 (43)

Corollary: (Morphism Lemma) if φ : V1 → V2 homomorphism,
rk(V1) = rk(V2), c1(V1) = c1(V2), V1 or V2 stable, then φ is an isomorphism.
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F-term and holomorphy

Next consider 4D F-terms in a supersymmetric Minkowski vacuum

FCi =
∂W

∂Ci
∼
∫
X

∂ω3YM

∂Ci
(44)

where the Gukov-Vafa-Witten superpotential is given by

W =

∫
X

Ω ∧H (45)

Geometrically this is associated with complex structure.

However consider a holomorphic bundle and vary the complex structure ⇒
bundle may not stay holomorphic.

Precisely, complex moduli 6= bundle moduli + complex structure moduli, but
rather the mix of the two.

Question: Can we see this property in TS duals? How to engineer non-trivial
F-term geometry?
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Def(X): complex structure deformations of X, parameterized by
H1(TX) = H2,1(X).

Def(V ): bundle moduli of V , deformation of V for fixed C.S. moduli,
measured by H1(End(V )) = H1(V ⊗ V ∨).

Def(V,X): Simultaneous holomorphic deformations of V and X. The
tangent space is H1(X,Q) where Q is defined by Atiyah Sequence:

0→ V ⊗ V ∨ → Q π→ TX → 0 (46)

H1(X,Q) are the actual complex moduli of a heterotic theory

Long exact sequence in cohomology

0→ H1(V ⊗ V ∨)→ H1(Q)
dπ→ H1(TX)

α→ H2(V ⊗ V ∨)→ . . . (47)

H1(Q)
?→ H1(V ⊗ V ∨)⊕H1(TX) decided by Atiyah Class α (48)
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An explicit way of calculating Atiyah class is to use “jumping” phenomena.
Consider line bundle O(−2, 4) on the {2, 4} hypersurface in P1 × P3:

h0(X,O(−2, 4)) = 0 for generic values of complex structure (49)

As computed in Anderson, Gray, Lukas, Ovrut: arXiv:1107.5076, on a 53-dim
sub-locus of the 86-dim CS moduli space, this cohomology can “jump” to

On CSjump, h0(X,O(−2, 4)) = 1 (50)

Now consider a bundle V

0→ V → O(b1)⊕ . . .O(bn+1)
F−→ O(c)→ 0 (51)

s.t. a given map element, say h0(X,O(c− b1)) = h0(X,O(−2, 4)) then V is
reducible in the 33 dimensions: V → O(b1)⊕ V ′.
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Example

Consider the following bundle:

xi Γj Λa pl
1 1 0 0 0 0
0 0 1 1 1 1

−2
−4

2 −1 −1 1 0
0 2 2 0 2

0 −1
−4 −2

(52)

the map F takes the form:

F la =

(
f(−2,4) f(1,2) f ′(1,2) f(−1,4) f(0,2))

0 f(1,0) f ′(1,0) f(0,2) f(1,0)

)
(53)

where h0(X,O(−2, 4)) = 1 fixes 33 CS moduli:

dim(M0) = h1,1 + h2,1 + h1(X,End0(V )) = 2 + 86 + 92 = 180

dim(M1) = dim(M0)− 33 = 147 (54)

to complete degree of freedom count

h1(X,V ) = 41 (no. of 27)

h1(X,V ∨) = 1 (no. of 27) (55)
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TS duality

Construct the TS dual for the bundle above:

xi Γj Λa pl
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0

−1 −1
−1 −1
−2 −2

0 1 0 0 0
2 −2 0 1 0
0 0 4 0 2

−1 0
0 −1
−4 −2

(56)
where

dim(M0) = 3 + 55 + 122 = 180 (57)

In this case there are two jumping map components: h0(X̃,O(0,−2, 4)) = 1

fixes 15 CS moduli, h0(X̃,O(1,−2, 4)) = 1 fixes 18 CS moduli

dim(M1) = dim(M0)− 33 = 147 (58)

degree of freedom count

h1(X,V ) = 41 (no. of 27)

h1(X,V ∨) = 1 (no. of 27) (59)
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(2,2) Locus Preserved

To study the (2,2) locus of a (0,2) theory, consider tangent bundle:

xi Γj Λa pl
1 1 0 0 0 0
0 0 1 1 1 1

−2
−4

1 1 0 0 0 0
0 0 1 1 1 1

−2
−4

(60)

TS duality gives the following:

xi Γj Λa pl
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 0

−1 −1
−1 −1
−4 0

1 0 0 0 0 0 0
0 1 0 0 0 0 2
0 0 1 1 1 1 4

−1 0
−2 −1
−4 −4

(61)
this manifold is unchanged. Known that O(a, b, c) on the second manifold the

same as O(a+ b, c) on the first manifold, rewrite the dual theory:

xi Γj Λa pl
1 1 0 0 0 0
0 0 1 1 1 1

−2
−4

1 1 0 0 0 0 2
0 0 1 1 1 1 4

−3 −1
−4 −4

(62)

thus can prove the two configuration are the same:

dim(Hom(V, Ṽ )) = h0(X,V ⊗ Ṽ ∨) = 1 (63)
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Conclusion and Future Work

In our non-trivial D/F term examples, TS duality preserves not only the
matter spectrum, but also the effective potentials and vacuum spaces.

Beginning at given points in moduli space infinitesimal fluctuations are
preserved, which gives the commutative diagram.

Loci of enhanced symmetry - stability walls, and (2,2) loci are preserved.

TS duality may indicate a true (0, 2) string duality

Future work: Study the behavior in non-geometric phases

Understand TS duality in Het/F-theory duality (Blumenhagen)

Y4

π1

E

��

E
π2 ��

B3 B̃3

(64)
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