New Evidence for (0, 2) Target Space Duality

He Feng

Department of Physics, Virginia Tech

based on: arXiv:1607.04628[hep-th]

Lara B. Anderson and He Feng

AMS Special Session - Nov. 13, 2016

- Goal: further explore target space duality
- Generate examples with non-trivial D/F term potential \Rightarrow
 - Count matter spectrum as previous work did
 - Compare effective potential and explore vacuum spaces
 - Study structure group and enhanced symmetries
- More work
 - Provide complete list of target space dual chains
 - Develop new tools (repeated entry, etc.)

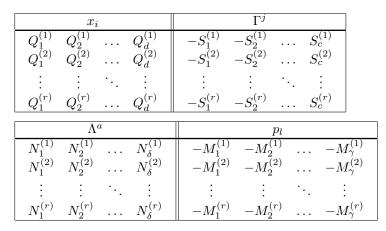
Review of Target Space Duality

- Abelian, massive 2D theory $\rightarrow (0,2)$ GLSM
- Multiple U(1) gauge fields $A^{(\alpha)}$ with $\alpha = 1, ..., r$
- Chiral superfields: $\{X_i | i = 1, ..., d\}$ with U(1) charges $Q_i^{(\alpha)}$, and $\{P_l | l = 1, ..., \gamma\}$ with U(1) charges $-M_l^{(\alpha)}$.
- Fermi superfields: $\{\Lambda^a | a = 1, ..., \delta\}$ with charges $N_a^{(\alpha)}$, and $\{\Gamma^j | j = 1, ..., c\}$ with charges $-S_j^{(\alpha)}$.
- Gauge and gravitational anomaly cancellation

$$\sum_{a=1}^{\delta} N_a^{(\alpha)} = \sum_{l=1}^{\gamma} M_l^{(\alpha)} \qquad \qquad \sum_{i=1}^{d} Q_i^{(\alpha)} = \sum_{j=1}^{c} S_j^{(\alpha)}$$
$$\sum_{l=1}^{\gamma} M_l^{(\alpha)} M_l^{(\beta)} - \sum_{a=1}^{\delta} N_a^{(\alpha)} N_a^{(\beta)} = \sum_{j=1}^{c} S_j^{(\alpha)} S_j^{(\beta)} - \sum_{i=1}^{d} Q_i^{(\alpha)} Q_i^{(\beta)} \qquad (1)$$

for all $\alpha, \beta = 1, ..., r$.

Put the above data in a table



GLSM is defined via a superpotential:

$$S = \int d^2 z d\theta \left[\sum_j \Gamma^j G_j(x_i) + \sum_{l,a} P_l \Lambda^a F_a^l(x_i) \right]$$
(3)

 G_j and F_a^l are quasi-homogeneous polynomials with multi-degrees:

 F_a^l satisfies transversality condition: all $F_a^l(x)=0$ only when all $x_i=0$ F-term potential:

$$V_F = \sum_{j} |G_j(x_i)|^2 + \sum_{a} |\sum_{l} p_l F_a^l(x_i)|^2$$
(5)

D-term potential:

$$V_D = \sum_{\alpha=1}^r \left(\sum_{i=1}^d Q_i^{(\alpha)} |x_i|^2 - \sum_{l=1}^\gamma M_l^{(\alpha)} |p_l|^2 - \xi^{(\alpha)} \right)^2 \tag{6}$$

He Feng (Virginia Tech)

New Evidence for (0, 2) Target Space Duality

Fayet-Iliopoulos (FI) parameter controls the phase, consider a single U(1):

For $\xi > 0$, not all x_i are zero thus not all F_a are zero, $G_j(x_i) = 0$ and $\langle p \rangle = 0 \Rightarrow$ "geometric" phase

(X, V) where X is a CY and V is a bundle, $V = \frac{ker(F_a^l)}{im(E_a^i)}$ in the monad:

$$0 \to \mathcal{O}_{\mathcal{M}}^{\oplus r_{\mathcal{V}}} \xrightarrow{\otimes E_i^a} \bigoplus_{a=1}^{\delta} \mathcal{O}_{\mathcal{M}}(N_a) \xrightarrow{\otimes F_a^l} \bigoplus_{l=1}^{\gamma} \mathcal{O}_{\mathcal{M}}(M_l) \to 0$$
(7)

For $\xi < 0, \langle p \rangle \neq 0$ thus all $\langle x_i \rangle = 0 \Rightarrow$ "nongeometric" phase Landau-Ginzburg orbifold with a superpotential:

$$\mathcal{W}(x_i, \Lambda^a, \Gamma^i) = \sum_j \Gamma^j G_j(x_i) + \sum_a \Lambda^a F_a(x_i)$$
(8)

For multiple U(1)'s, hybrid phase

For Landau-Ginzburg orbifold with a superpotential:

$$\mathcal{W}(x_i, \Lambda^a, \Gamma^i) = \sum_j \Gamma^j G_j(x_i) + \sum_a \Lambda^a F_a(x_i)$$
(9)

Observation (Distler, Kachru): An exchange/relabeling of the functions G_j and F_a will not affect the Landau-Ginzburg model, as long as anomaly cancellation conditions are satisfied.

Procedure:

Geometric to nongeometric phase: find phase with one $\langle p_l \rangle \neq 0$ for some l, say l = 1.

Rescale: $\tilde{\Lambda}^{a_i} := \frac{\Gamma^{j_i}}{\langle p_1 \rangle}, \tilde{\Gamma}^{j_i} := \langle p_1 \rangle \Lambda^{a_i} \text{ s.t. } \sum_i ||G_{j_i}|| = \sum_i ||F_{a_i}||.$ Move to a region where Λ^{a_i} appear only with P_1 , i.e. choose $F_{a_i}^l = 0 \ \forall l \neq 1$, $i = 1, \ldots k$.

Leave non-geometric phase: $||\tilde{\Lambda}^{a_i}|| = ||\Gamma^{j_i}|| - ||P_1||$ and $||\tilde{\Gamma}^{j_i}|| = ||\Lambda^{a_i}|| + ||P_1||$, return to a generic pt. and get new (\tilde{X}, \tilde{V}) .

Example

			x_i				Γ^{j}		Λ	a		p_l
0	0	0	1	1	1	1	-2 -2	1	0	0	2	-3
1	1	1	2	2	2	0	-4 -5	0	1	1	6	-8

• Here
$$||G_1|| = (2,4), ||G_2|| = (2,5),$$

 $||F_1^1|| = (2,8), ||F_2^1|| = (3,7), ||F_3^1|| = (3,7), ||F_4^1|| = (1,2).$

• Sum of third and fourth F equals sum of two G's.

• Redefine: $\tilde{\Gamma}^1 = \langle p_1 \rangle \Lambda^3$, $\tilde{\Gamma}^2 = \langle p_1 \rangle \Lambda^4$, $\tilde{\Lambda}^3 = \frac{\Gamma^1}{\langle p_1 \rangle}$, $\tilde{\Lambda}^4 = \frac{\Gamma^2}{\langle p_1 \rangle}$, $\tilde{G} = F_3^1$, $\tilde{G}_2 = F_4^1$, $\tilde{F}_3^1 = G_1$, $\tilde{F}_4^1 = G_2$

• then the new geometry is given by: $||\tilde{G}_1|| = (3,7), ||\tilde{G}_2|| = (1,2), ||\tilde{F}_3^1|| = (2,4), ||F_4^1|| = (2,5)$

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Γ^{j}	Λ^a	p_l
0	0	0	1	1	1	1	-3 -1	$1 \ 0 \ 1 \ 1$	-3
1	1	1	2	2	2	0	-7 -2	$0 \ 1 \ 4 \ 3$	-8

(11)

(10)

Compare degree of freedom:

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Γ^{j}		Λ	a		p_l
0	0	0	1	1	1	1	-2 -2	1	0	0	2	-3
1	1	1	2	2	2	0	-4 -5	0	1	1	6	-8

(10)

 $dim(\mathcal{M}_0) = h^{1,1}(X) + h^{2,1}(X) + h^1(End_0(V)) = 2 + 68 + 322 = 392,$ $h^*(V) = (0, 120, 0, 0)$

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Γ^{j}		Λ	a		p_l
0	0	0	1	1	1	1	-3 -1	1	0	1	1	-3
1	1	1	2	2	2	0	-7 -2	0	1	4	3	-8

 $dim(\widetilde{\mathcal{M}}_0) = h^{1,1}(\widetilde{X}) + h^{2,1}(\widetilde{X}) + h^1(End_0(\widetilde{V})) = 2 + 95 + 295 = 392,$ $h^*(\widetilde{V}) = (0, 120, 0, 0)$

Landscape scan by Blumenhagen + Rahn, agreement in nearly all $\sim 80,000$ examples.

TS duality with extra U(1)

Add a new coord y_1 with multi-degree B and a hypersurface of degree B. Perform previous procedure (e.g. $||B|| = ||F_1^1|| + ||F_2^1|| - S_1$) Resolve singularities (Distler, Greene, Morrison) by formally adding a \mathbb{P}^1 (another coord y_2)

Set constraint $G^B = y_1 = 0$ to eliminate y_1 . Use additional U(1) and D-term to fix y_2 to a real constant. $\leftrightarrow X \times$ a single pt.

	x_1		x_d	y_1	y_2	Γ^1		Γ^{c}	Γ^B
Г	0		0	1	1	0		0	-1
	Q_1		Q_d	B	0	$-S_1$		$-S_c$	-B
Γ	Λ^1	Λ^2		Λ^{δ}		1	p_2		p_{γ}
ſ	0	0		0		-1	0		0
	N_1	N_2		N_{δ}	-1	M_1	$-M_2$		$-M_{\gamma}$

End up with new geometry:

x_1		x_d	y_1	y_2		$\tilde{\Gamma}^1$		Γ^{c}	$\tilde{\Gamma}^{E}$	}
0		0	1	1		-1		0	-1	L
Q_1		Q_d	B	0	$-(M_{\rm I})$	$(1 - N_1)$		$-S_c$	$-(M_1 -$	$-N_2$)
	$\tilde{\Lambda}^1$	Ã	2		Λ^{δ}	p_1	p_2		p_{γ}	
	1	C)		0	-1	0		0	
	0	M_2	-B		N_{δ}	$-M_1$	$-M_2$		$-M_{\gamma}$	

More TS Duality with Redundant Entry

We consider $V = ker(F_a^l)$ defined by a short exact sequence

$$0 \to V \to \bigoplus_{a=1}^{\delta} \mathcal{O}_{\mathcal{M}}(N_a) \xrightarrow{F_a^l} \bigoplus_{l=1}^{\gamma} \mathcal{O}_{\mathcal{M}}(M_l) \to 0$$
(12)

Adding a redundant entry can lead to non trivial results after TS duality

$$0 \to V \to B \xrightarrow{F} C \to 0$$

$$0 \to V' \to B \oplus L \xrightarrow{F'} C \oplus L \to 0$$
(13)

where the new defining map F' is given by

$$F' = \begin{pmatrix} F & \alpha \\ \beta & \mathbb{C} \end{pmatrix}$$
(14)

This repeated L is bounded, because of well-defined map F_a^l ; Too many L's won't enroll in the transformation so keep redundant.

Bundle stability/holomorphy and D/F-term

N=1 Supersymmetry in $4D \Rightarrow$ Hermitian-Yang Mills Eqns

$$F_{ab} = F_{\overline{a}\overline{b}} = g^{a\overline{b}}F_{\overline{b}a} = 0 \tag{15}$$

 $g^{a\overline{b}}F_{\overline{b}a} = 0 \Leftrightarrow \text{Donaldson-Uhlenbeck-Yau Thm: } V \text{ is stable (poly-stable).}$ $F_{ab} = F_{\overline{a}\overline{b}} = 0 \Leftrightarrow V \text{ is holomorphic.}$

> Stability $\Leftrightarrow 4D$ D-terms Holomorphy $\Leftrightarrow 4D$ F-terms

Our work:

Test TS duality with bundles not stable/holomorphic everywhere See if the stability/holomorphy properties (etc.) carry through

D-term and stability

Thanks to recent progress (Sharpe, Anderson, Gray, Lukas, Ovrut) The slope, $\mu(V)$, of a vector bundle is

$$\mu(V) \equiv \frac{1}{\operatorname{rk}(V)} \int_{X} c_1(V) \wedge \omega \wedge \omega \tag{16}$$

where $\omega = t^k \omega_k$ is the Kahler form on X (ω_k a basis for $H^{1,1}(X)$).

V is Stable if for every sub-sheaf $\mathcal{F} \subset V$ s.t. $\mu(\mathcal{F}) < \mu(V)$ V is Poly-stable if $V = \bigoplus_i V_i$, where V_i stable s.t. $\mu(V) = \mu(V_i) \forall i$. Problem: hard to find all sub-sheaves.

V is stable if \forall sub-line bundles \mathcal{L} , $\mu(\mathcal{L}) < \mu(\wedge^k V) = 0$, where 0 < k < n.

If there is a sub-bundle $\mathcal{L} = \mathcal{O}(a, b)$, where ab < 0, then V is stable in the region

$$\mu(\mathcal{L}) = \frac{1}{rk(\mathcal{L})} d_{ijk} c_1^i(\mathcal{L}) t^j t^k = \frac{1}{rk(\mathcal{L})} s_i c_1^i(\mathcal{F}) = s_1 a + s_2 b < 0$$
(17)

Consider the following rank 5 bundle V on a CICY: $\begin{bmatrix} \mathbb{P}^1 & 2 \\ \mathbb{P}^3 & 4 \end{bmatrix}$, anomaly cancellation condition: $c_1(TX) = c_1(V) = 0$, $c_2(TX) = c_2(V)$

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Γ^{j}				Λ^{a}	ı			Į Į	\mathcal{P}_l]	
1	1	0	0	0	0	-2	0	0	0	0	1	1	1	-1	-2	1
0	0	1	1	1	1	-4	1	1	1	2	-1	1	2	-4	-3	
																(18)

The bundle V is given by SES:

$$0 \to V \to \mathcal{O}(0,1)^{\oplus 3} \oplus \mathcal{O}(0,2) \oplus \mathcal{O}(1,-1) \oplus \mathcal{O}(1,1) \oplus \mathcal{O}(1,2) \oplus \mathcal{O}(3,2) \to \mathcal{O}(3,2) \oplus \mathcal{O}(1,4) \oplus \mathcal{O}(2,3) \to 0$$
(19)

The "maximally destabilizing" sub-bundle is a rank 4 bundle Q_4 with $c_1(Q_4) = -J_1 + J_2$, so that

$$0 \to Q_4 \to V \to \mathcal{L} \to 0 \tag{20}$$

where

$$\mathcal{L} = \mathcal{O}(1, -1) \tag{21}$$

V is stable in region $s_2 < s_1$.

On the stability wall $(s_2 = s_1)$, V is poly-stable and can break into a sum of two pieces: $V = Q_4 \oplus \mathcal{L}$. The structure group of an SU(5) will become $S[U(4) \times U(1)] \simeq SU(4) \times SU(1) \times U(1)$.

To explore 4D vacuum space through D-term potential (Sharpe, Lukas, Stelle, Blumenhagen, Weigand, Honecker, ...):

$$D^{U(1)} \sim \frac{\mu(\mathcal{F})}{Vol(X)} - \frac{1}{2} \sum_{i} Q_i G_{L\bar{M}} C_i^L \bar{C}_i^{\bar{M}}$$
(22)

In this case, the D-term looks like:

$$D^{U(1)} \sim \frac{\mu(Q_4)}{Vol(X)} - \frac{1}{2}q_1 G_{L\bar{M}} C_1^L C_1^{\bar{M}} + \frac{1}{2}q_2 G_{L\bar{M}} C_2^L C_2^{\bar{M}}$$
(23)

with

$$C_1 \in H^1(X, \mathcal{L} \otimes Q_4^*) \quad C_2 \in H^1(X, Q_4 \otimes \mathcal{L}^*)$$
(24)

In region V stable, $\langle C_1 \rangle = 0, \langle C_2 \rangle \neq 0.$

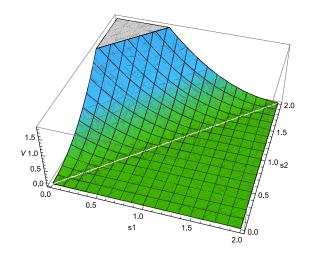


Figure: D-term potential for bundle V, stable in region $s_2 < s_1$

Start from the wall, take infinitesimal fluctuation to leave the wall, and take TS duals, is this fluctuation preserved?

$$\begin{array}{cccc} V_1 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_1 \\ \langle C \rangle & \downarrow & \downarrow & \langle \tilde{C} \rangle ?? \\ V_2 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_2 \end{array}$$

Deform V_1 to get V_2 , and take duals, is \tilde{V}_2 the same deformation of \tilde{V}_1 ? How to build the geometry?

Example

Start from an example which is only stable on a line, where $c_2(V) = c_2(TX) = \{24, 44\}$

		а	c_i			Γ^{j}				Λ^a						p_l	
1	1	0	0	0	0	-2	1	-1	0	0	2	1	1	2	-3	-1	-2
0	0	1	1	1	1	-4	-1	1	1	1	1	2	2	2	-2	-4	-3
																	(25)

$$dim(\mathcal{M}_0) = h^{1,1}(X) + h^{2,1}(X) + h^1(X, End_0(V)) = 2 + 86 + 340 = 428$$

$$dim(\mathcal{M}_1) = dim(\mathcal{M}_0) - 1 = 427 \quad \text{(restricted on the wall)}$$
(26)

the stability condition writes:

$$0 \to Q_4 \to V \to \mathcal{O}(1, -1) \to 0$$

$$0 \to \tilde{Q}_4 \to V \to \mathcal{O}(-1, 1) \to 0$$
 (27)

On the stability wall, V breaks into three parts:

$$V \to U_3 \oplus L \oplus L^{\vee}$$
 where $L = \mathcal{O}(1, -1)$ (28)

Structure group: seems like SU(5) bundle \Rightarrow SU(5) 4d effective theory Non-Abelian Enhancement: $S[U(1) \times U(1)] \times SU(3) \subset E_8 \Rightarrow SU(6) \times U(1)$, with U(1) symmetry visible in 4d theory.

Field	Cohom.	Multiplicity	Field	Cohom.	Multiplicity
1_{+2}	$H^1(L \otimes L)$	0	1_{-2}	$H^1(L^{\vee} \otimes L^{\vee})$	10
15_{0}	$H^1(U_3^{\vee})$	0	$\overline{15}_{0}$	$H^{1}(U_{3})$	80
20_{+1}	$H^1(L)$	0	20_{-1}	$H^1(L^{\vee})$	0
6 ₊₁	$H^1(L \otimes U_3)$	72	6_{-1}	$H^1(L^{\vee} \otimes U_3)$	90
$\overline{6}_{+1}$	$H^1(L \otimes U_3^{\vee})$	0	$\overline{6}_{-1}$	$H^1(L^{\vee} \otimes U_3^{\vee})$	2
1_0	$H^1(U_3 \otimes U_3^{\vee})$	166			

Table: Particle content of the $SU(6) \times U(1)$ theory associated to the bundle along its reducible and poly-stable locus $V = \mathcal{O}(-1,1) \oplus \mathcal{O}(1,-1) \oplus U_3$ (i.e. on the stability wall).

Target Space Dual

A target space dual with $c_2(\tilde{V}) = c_2(T\tilde{X}) = \{24, 24, 44\}$

x_i	Г	j				Λ^a						p_l]
\mathbb{P}^1	-1	-1	0	0	1	0	0	0	0	0	0	0	-1]
\mathbb{P}^1	-2	0	1	-1	0	0	2	1	1	2	-3	$^{-1}$	-2	
\mathbb{P}^{3}	-2	-2	-1	$ \begin{array}{c} 0 \\ -1 \\ 1 \end{array} $	-1	1	3	2	2	2	-2	-4	-3	
L														

$$dim(\tilde{\mathcal{M}}_0) = h^{1,1}(\tilde{X}) + h^{2,1}(\tilde{X}) + h^1(X, End_0(\tilde{V})) = 3 + 55 + 370 = 428$$

$$dim(\tilde{\mathcal{M}}_1) = dim(\tilde{\mathcal{M}}_0) - 1 = 427 \quad \text{(restricted on the wall)} \tag{30}$$

the stability condition writes:

$$0 \to \tilde{\mathcal{F}}_1 \to \tilde{V} \to \mathcal{O}(0, 1, -1) \to 0 \qquad c_1(\tilde{\mathcal{F}}_1) = (0, -1, 1)$$

$$0 \to \tilde{\mathcal{F}}_2 \to \tilde{V} \to \mathcal{O}(0, -1, 1) \to 0 \qquad c_1(\tilde{\mathcal{F}}_2) = (0, 1, -1) \qquad (31)$$

$$0 \to \tilde{\mathcal{F}}_3 \to \tilde{V} \to \mathcal{O}(1, 0, -1) \to 0 \qquad c_1(\tilde{\mathcal{F}}_3) = (-1, 0, 1)$$

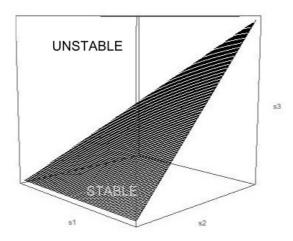


Figure: Stable region for \tilde{V} ($s_3 < s_1$ and $s_2 = s_3$)

V breaks the same way: $\tilde{V} \to \tilde{L} \oplus \tilde{L}^{\vee} \oplus \tilde{U}_3$ Identical Non-Abelian Symmetry Enhancement: $S[U(1) \times U(1)] \times SU(3) \subset E_8$ $\Rightarrow SU(6) \times U(1)$

Field	Cohom.	Multiplicity	Field	Cohom.	Multiplicity
1_{+2}	$H^1(\tilde{L}\otimes \tilde{L})$	0	1_{-2}	$H^1(\tilde{L}^{\vee}\otimes\tilde{L}^{\vee})$	10
15_0	$H^1(\tilde{U}_3^{\vee})$	0	$\overline{15}_0$	$H^1(\tilde{U}_3)$	80
20 ₊₁	$H^1(\tilde{L})$	0	20_{-1}	$H^1(\tilde{L}^{\vee})$	0
6 ₊₁	$H^1(\tilde{L}\otimes \tilde{U}_3)$	72	6 ₋₁	$H^1(\tilde{L}^{\vee}\otimes \tilde{U}_3)$	90
$\overline{6}_{+1}$	$H^1(\tilde{L}\otimes \tilde{U}_3^\vee)$	0	$\overline{6}_{-1}$	$H^1(\tilde{L}^\vee\otimes\tilde{U}_3^\vee)$	2
1_0	$H^1(\tilde{U}_3 \otimes \tilde{U}_3^{\vee})$	196			

Table: Particle content of the $SU(6) \times U(1)$ theory $\leftrightarrow \tilde{V} = \tilde{L} \oplus \tilde{L}^{\vee} \oplus \tilde{U}_3$.

Search for breaking: $SU(6) \rightarrow SU(5)$ stable off the wall, i.e. glue the components together. $(L + L^{\vee} + U_3 \rightarrow V_5)$ But how? Consider D-term potential:

$$D_{GS}^{U(1)} \sim \frac{3}{16} \frac{\epsilon_S \epsilon_R^2 \mu(L^{\vee})}{\kappa_4^2 \mathcal{V}} - \frac{1}{2} \left((-2)|C_{-2,0}|^2 + (+1)|C_{+1,-5}|^2 + (-1)|C_{-1,-5}|^2 + (-1)|C_{-1,+5}|^2 \right)$$
(32)

$$D_{SU(6)}^{U(1)} \sim \frac{1}{2} \left((-5)|C_{+1,-5}|^2 + (-5)|C_{-1,-5}|^2 + (+5)|C_{-1,+5}|^2 \right)$$
(33)

Previous case corresponds to $\langle C \rangle = 0$ so $\mu(\mathcal{F}) = 0$.

To find new branch, choose $\langle C \rangle \neq 0$, take the second D-term potential to 0 and substitute into the first D-term potential, to make it to 0 requires: $\mu(L^{\vee}) < 0$, Observation: $L^{\vee} = \mathcal{O}(-1, 1)$ itself can be written as a monad:

$$0 \to L_{new} \to \mathcal{O}(0,1)^{\oplus 2} \xrightarrow{g} \mathcal{O}(1,1) \to 0$$
(34)

because line bundles on CY 3-folds are classified by their first Chern class (here $c_1(L_{new}) = -J_1 + J_2$).

Replace L^{\vee} with new expression and mix them up:

x_i	Γ^{j}					Λ^a						p	p_l]
\mathbb{P}^1	-2	1	0	0	0	0	2	1	1	2	-1	-3	-1	-2	
\mathbb{P}^3	-4	-1	1	1	1	1	1	2	2	2	-1	-2	-4	-3	
											•				3

Degree of freedom count gives:

$$dim(\mathcal{M}_0) = dim(\mathcal{M}_1) = h^{1,1}(X) + h^{2,1}(X) + h^1(End_0(V)) = 2 + 86 + 338 = 426$$
(36)

compared to 427 of the on-wall branch.

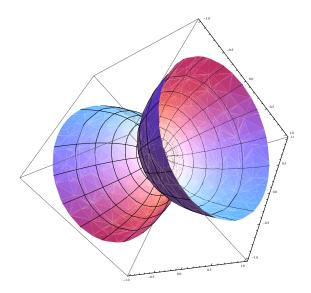


Figure: Two bundle moduli spaces touch

New Branch of the TS dual

Similarly replace $\tilde{L} = \mathcal{O}(0, -1, 1)$ with new expression

$$0 \to \tilde{L}_{new} \to \mathcal{O}(0,0,1)^{\oplus 2} \xrightarrow{\tilde{g}} \mathcal{O}(0,1,1) \to 0$$
(37)

This leads at last to the bundle

x_i	Г	j				Λ	a						p	p_l	
\mathbb{P}^1	-1	-1	0	0	0	1	0	0	0	0	0	0	0	0	-1
\mathbb{P}^1	-2	0	1	0	0	0	0	2	1	1	2	-1	-3	$^{-1}$	-2
\mathbb{P}^{3}	-2	-2	$\begin{array}{c} 0 \\ 1 \\ -1 \end{array}$	1	1	-1	1	3	2	2	2	-1	-2	-4	-3
															(38)

Again degree of freedom count gives:

$$\dim(\mathcal{M}_0) = \dim(\mathcal{M}_1) = 426 \tag{39}$$

Interestingly, the off-wall branch of the TS dual is also a TS dual of the off-wall branch, which gives the commutative diagram:

$$\begin{array}{cccc} V_1 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_1 \\ \langle C \rangle & \downarrow & \downarrow & \langle \tilde{C} \rangle \\ V_2 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_2 \end{array}$$

Compare numbers of TS duals of two manifolds of the same homotopy type: Among all TS duals of the original bundle on the wall, 3 and 5 results on the following two manifolds, respectively: $\begin{array}{c} \mathbb{P}^1 \\ \mathbb{P}^1 \\ \mathbb{P}^3 \end{array} \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 2 & 2 \end{array} \end{bmatrix} \xrightarrow{\mathbb{P}^1} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix} .$

TS duality can result in the same manifold: consider the following dual to our original bundle:

x_i	Г	j				Λ	a						p	p_l	
\mathbb{P}^1	-1	-1	1	0	0	0	0	0	0	0	0	0	0	-1	0
\mathbb{P}^1	-1	-1	0	-1	0	0	2	1	1	2	2	-3	$^{-1}$	-2	-1
\mathbb{P}^{3}	-4	$-1 \\ -1 \\ 0$	-1	1	1	1	1	2	2	2	3	-2	-4	-3	-3
															(40)

base manifold is the same as the $\{2, 4\}$ on $\mathbb{P}^1 \times \mathbb{P}^3$, but bundle is not trivially related to the original V (need some lemma to prove this).

Two seemingly different bundle can be related by an isomorphism, e.g.

		а	c_i			Γ^{j}				Λ^{a}	ı			p p	p_l]
1	1	0	0	0	0	-2	0	0	0	0	1	1	1	-1	-2]
0	0	1	1	1	1	-4	1	1	1	2	$^{-1}$	1	2	-4	-3	
																(4

This bundle shares *identical topology* with the bundle of the off-wall branch,

x_i	Γ^{j}					Λ^a						ŗ	p_l]
\mathbb{P}^1	-2	1	0	0	0	0	2	1	1	2	-1	-3	-1	-2	(35)
\mathbb{P}^3	-4	-1	1	1	1	1	1	2	2	2	-1	$^{-2}$	-4	-3	

because these two bundle share a stability wall and stable in the same region:

$$0 \to Q_4 \to V_5 \to \mathcal{O}(1, -1) \to 0$$

$$0 \to U_4 \to V'_5 \to \mathcal{O}(1, -1) \to 0$$
 (42)

a calculation gives:

$$\dim(\operatorname{Hom}(\mathcal{Q}_4, U_4)) = 1 \tag{43}$$

Corollary: (Morphism Lemma) if $\phi: V_1 \to V_2$ homomorphism, $rk(V_1) = rk(V_2), c_1(V_1) = c_1(V_2), V_1$ or V_2 stable, then ϕ is an isomorphism.

F-term and holomorphy

Next consider 4D F-terms in a supersymmetric Minkowski vacuum

$$F_{C_i} = \frac{\partial W}{\partial C_i} \sim \int_X \frac{\partial \omega^{3YM}}{\partial C_i} \tag{44}$$

where the Gukov-Vafa-Witten superpotential is given by

$$W = \int_X \Omega \wedge H \tag{45}$$

Geometrically this is associated with complex structure.

However consider a holomorphic bundle and vary the complex structure \Rightarrow bundle may not stay holomorphic.

Precisely, complex moduli \neq bundle moduli + complex structure moduli, but rather the mix of the two.

Question: Can we see this property in TS duals? How to engineer non-trivial F-term geometry?

- Def(X): complex structure deformations of X, parameterized by $H^1(TX) = H^{2,1}(X)$.
- Def(V): bundle moduli of V, deformation of V for fixed C.S. moduli, measured by $H^1(End(V)) = H^1(V \otimes V^{\vee})$.
- Def(V, X): Simultaneous holomorphic deformations of V and X. The tangent space is $H^1(X, \mathcal{Q})$ where \mathcal{Q} is defined by Atiyah Sequence:

$$0 \to V \otimes V^{\vee} \to \mathcal{Q} \xrightarrow{\pi} TX \to 0 \tag{46}$$

- $H^1(X, \mathcal{Q})$ are the actual complex moduli of a heterotic theory
- Long exact sequence in cohomology

$$0 \to H^1(V \otimes V^{\vee}) \to H^1(\mathcal{Q}) \xrightarrow{d\pi} H^1(TX) \xrightarrow{\alpha} H^2(V \otimes V^{\vee}) \to \dots$$
(47)

 $H^1(\mathcal{Q}) \xrightarrow{?} H^1(V \otimes V^{\vee}) \oplus H^1(TX)$ decided by Atiyah Class α (48)

(

An explicit way of calculating Atiyah class is to use "jumping" phenomena. Consider line bundle $\mathcal{O}(-2,4)$ on the $\{2,4\}$ hypersurface in $\mathbb{P}^1 \times \mathbb{P}^3$:

 $h^0(X, \mathcal{O}(-2, 4)) = 0$ for generic values of complex structure (49)

As computed in Anderson, Gray, Lukas, Ovrut: arXiv:1107.5076, on a 53-dim sub-locus of the 86-dim CS moduli space, this cohomology can "jump" to

On
$$\mathcal{C}S_{jump}$$
, $h^0(X, \mathcal{O}(-2, 4)) = 1$ (50)

Now consider a bundle V

$$0 \to V \to \mathcal{O}(\mathbf{b}_1) \oplus \dots \mathcal{O}(\mathbf{b}_{n+1}) \xrightarrow{F} \mathcal{O}(\mathbf{c}) \to 0$$
(51)

s.t. a given map element, say $h^0(X, \mathcal{O}(\mathbf{c} - \mathbf{b_1})) = h^0(X, \mathcal{O}(-2, 4))$ then V is reducible in the 33 dimensions: $V \to \mathcal{O}(\mathbf{b_1}) \oplus V'$.

Example

Consider the following bundle:

			x	c_i			Γ^{j}			Λ^a			1	\mathcal{P}_l]
Γ	1	1	0	0	0	0	-2	2	-1	-1	1	0	0	-1	(52)
	0	0	1	1	1	1	-4	0	2	2	0	2	-4	-2	

the map F takes the form:

$$F_a^l = \begin{pmatrix} f_{(-2,4)} & f_{(1,2)} & f_{(1,2)} & f_{(-1,4)} & f_{(0,2)} \\ 0 & f_{(1,0)} & f_{(1,0)}' & f_{(0,2)} & f_{(1,0)} \end{pmatrix}$$
(53)

where $h^0(X, \mathcal{O}(-2, 4)) = 1$ fixes 33 CS moduli:

$$dim(\mathcal{M}_0) = h^{1,1} + h^{2,1} + h^1(X, End_0(V)) = 2 + 86 + 92 = 180$$
$$dim(\mathcal{M}_1) = dim(\mathcal{M}_0) - 33 = 147$$
(54)

to complete degree of freedom count

$$h^{1}(X, V) = 41$$
 (no. of **27**)
 $h^{1}(X, V^{\vee}) = 1$ (no. of **27**) (55)

TS duality

Construct the TS dual for the bundle above:

			x	c_i				Γ	∖j		-	Λ^a			p p	21
0	0	0	0	0	0	1	1	-1	-1	0	1	0	0	0	-1	0
1	1	0	0	0	0	0	0	-1	-1	2	-2	0	1	0	0	-1
0	0	1	1	1	1	0	0	-2	-2	0	0	4	0	2	$ \begin{array}{c c} -1 \\ 0 \\ -4 \end{array} $	-2
								1							1	(56

where

$$\dim(\mathcal{M}_0) = 3 + 55 + 122 = 180 \tag{57}$$

In this case there are two jumping map components: $h^0(\widetilde{X}, \mathcal{O}(0, -2, 4)) = 1$ fixes 15 CS moduli, $h^0(\widetilde{X}, \mathcal{O}(1, -2, 4)) = 1$ fixes 18 CS moduli

$$\dim(\mathcal{M}_1) = \dim(\mathcal{M}_0) - 33 = 147 \tag{58}$$

degree of freedom count

$$h^{1}(X, V) = 41$$
 (no. of **27**)
 $h^{1}(X, V^{\vee}) = 1$ (no. of **27**) (59)

(2,2) Locus Preserved

To study the (2,2) locus of a (0,2) theory, consider tangent bundle:

		x	i			Γ^{j}			Λ	<i>a</i>			p_l
1	1	0	0	0	0	-2	1	1	0	0	0	0	-2
0	0	1	1	1	1	-4	0	0	1	1	1	1	-4

(60)

TS duality gives the following:

			x	i_i				Г	∙j				Λ^a				p	l
0	0	0	0	0	0	1	1	-1	-1	1	0	0	0	0	0	0	-1	0
1	1	0	0	0	0	0	0	-1	-1	0	1	0	0	0	0	2	-2	$^{-1}$
0	0	1	1	1	1	0	0	-4	0	0	0	1	1	1	1	4	-4	-4
																		(61)

this manifold is unchanged. Known that $\mathcal{O}(a, b, c)$ on the second manifold the same as $\mathcal{O}(a+b, c)$ on the first manifold, rewrite the dual theory:

		а	c_i			Γ^{j}				Λ^a				l I	\mathcal{P}_l]
1	1	0	0	0	0	-2	1	1	0	0	0	0	2	-3	$^{-1}$	(62)
0	0	1	1	1		-4							4	-4	-4	

thus can prove the two configuration are the same:

$$\dim(Hom(V,\tilde{V})) = h^0(X, V \otimes \tilde{V}^{\vee}) = 1$$
(63)

He Feng (Virginia Tech)

- In our non-trivial D/F term examples, TS duality preserves not only the matter spectrum, but also the effective potentials and vacuum spaces.
- Beginning at given points in moduli space infinitesimal fluctuations are preserved, which gives the commutative diagram.
- Loci of enhanced symmetry stability walls, and (2,2) loci are preserved.
- TS duality may indicate a true (0, 2) string duality
- Future work: Study the behavior in non-geometric phases
- Understand TS duality in Het/F-theory duality (Blumenhagen)

