
Evidence for 
(Infinitely Diverse) 

Non-Convex Mirrors
Tristan Hübsch 

@ Southeastern Regional Mathematical String Theory Meeting  
V-Tech University, Blacksburg VA;  2017.10.07 

Departments of Physics & Astronomy  and  Mathematics, Howard University, Washington DC 
Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia 

Department of Physics, University of Central Florida, Orlando FL



gCI

Geometry: 
AAGGL 2015 

BH 2016/06 
GvG 2017

Toric

Geometry:  
Textbooks†… 

(C)NLSM

  Prehistory   
     1980s 

— a mindmap

Diffeo-Data 
☛ H*(X,ℤ) 
☛ Chern classes 
☛ Chern numbers 
☛ Yukawa  κ[ωA,ωB,ωC] 
☛ p1[ωA]

Holo-Data 
☛ H*(X) 
☛ H*(X,T) 
☛ H*(X, EndT) 
☛ Yukawa  κ[ϕa,ϕb,ϕc]

Quantum Data 
☛ A-discriminants  
☛ B-discriminants  
☛ Yukawas 
☛ Instantons, GW

Semiclassical Data 
☛ phases  
☛ phase-boundaries

GLSM

Analysis 

☛ W 1993 
☛ MP 1995 
 …

BH 2016/11 
BH 2017/10?

Avoid the poles of Laurent polynomials

…✌"
#

Today!



M
ath Ph

ysi
cs

Ph
ys
ics

Non-Convex Mirror-Models

Prehistory

The Big Picture

Laurent GLSModels

Phases & Discriminants
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“It doesn’t matter what it’s called, 
…if… it has substance.”  

S.-T. Yau



Pre-History 
(Where are We Coming From?)



Classical Constructions

Pre-History
Complete Intersections 

Ex.: (x–x1)2+(y–y1)2+(z–z1)2 = R12 
   (x–x2)2+(y–y2)2+(z–z2)2 = R22 

Algebraic (constraint) equations 
…in a well-understood “ambient” (A)

Work over complex numbers 
…& incl. “infinity” (e.g., ℂℙn’s)

For hypersurfaces: X={p(x) = 0} ⊂ A 
Functions: [f(x)]X = [f(x) ≃ f(x) + &·p(x)]A 
Differentials:  [dx]X = [dx ≃ dx + &·dp(x)]A 
Homogeneity: ℂℙn = U(n+1)/[U(1)×U(n)] 

Differential r-forms on ℂℙn are all U(n+1)-tensors
5

Just like gauge  
transformations

…with tensors
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The Big Picture 
(What are We Doing?)



Big Picture
Gauged Linear Sigma Model (GLSM) — on the world-sheet 

Several “matter” fields + several “gauge” fields 
Several coordinate functions – equivalence relations 

“Kinetic” part (∥[∂ + qX A]X∥2): KE + gauge-matter coupling 
“Potential” part (W(X)): PE (gauge-invariant), “F-terms” 
“Gauge” part (∥∂∧A∥2 + τ·(∂∧A)): “D-terms” & “F.-I. terms”

World-sheet matter & gauge symmetries are both complex 
E.g.: (x1, x2, x3) ≃ (λq1 x1, λq2 x2, λq3 x3),  λ ∈ ℂ*:  ℙ2

(q1:q2:q3) 
…makes sense if the fixed-point set is excised (forbidden) from (x1, x2, x3) ∈ ℂ3 
…or considered as an alternate (separate) location.

Gauge symmetry “stratifies” the X-field-space 
& |vacuum⟩ determined by min[W(X)]: hypersurface

8

⇒ spacetime }

Superstrings = Framework for Models

Aμ ≃ Aμ + (∇μ λ)



Consider S2 ≃ ℙ1:

Need at least two 
(complex) coordinates:

Match (the exponents) near the equator: (+1)N = (–1)S

Symmetry: ξ→λ+1ξ and η→λ–1η, with λ ∈ ℂ* = (ℂ ∖ {0})
Explicitly: λ = ei(α+iβ) = e–β ·eiα = (real) rescaling · phase-change

Toric Geometry
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More complicated examples: S2 ⨯ S2 
An entire 2nd sphere at every point of 1st 
Orthogonal ↔ linearly independent 
Top-dim cones ↔ coord. patches 
2-dim (enveloping) polytope ↔ (ℂ) 2-dim. geometry

More complicated yet: “twisted” product 
Twisted torus S1 ⨳ S1 (S1 “twists” about S1) 
(≃ crystal w/oblique lattice $).

Now ⨯ℂ: Hirzebruch (ℂ) surface, F1.$ 
“Slanting” (0,–1) → (–m,–1) the bottom  
vertex (& two cones) encodes the “twist” 
… Fm = m-twisted ℙ1-bundle over ℙ1. 
…and so on: 4 textbooks worth!
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Polytope Encoding

Toric Geometry
The polytope encodes the space
…but also its symmetries:

Assign each vertex a (Cox) coordinate
Read off cancelling relations

Defines two independent (gauge) symmetries
a GLSM w/gauge-invariant Lagrangian
and | ground state ⟩ where KE = 0 = PE
& (quantum) Hilbert space on it
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Laurent GLSModels
(and their Toric Geometry)

A Generalized Construction of 
Calabi-Yau Models and Mirror Symmetry 

arXiv:1611.10300

BH



2-torus in the Hirzebruch surface Fm:
“Anticanonical” (Calabi-Yau, Ricci-flat) hypersurface in Fm

Toric description

13

spanning polytope

The star-triangulation of the spanning polytope 
defines the fan of the underlying toric variety

BH
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1

�ê
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non-convex  
for m>2

(…also, non-Fano for m>2)
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Figure 2. Candidates for the Newton polytope of F3: the (
e:pDStde:pDStd
3.10)-polar of �?

F3
(mid-left) and its

integral hull (far left), the (
e:pDStde:pDStd
3.10)-polar thereof (bottom right) and its di↵erence from �?

F3
(top-right). f:MF3std

1. turns the non-convex vertex ⌫3 2 �?

F
3

into a second interior N -integral point;

2. happens to be the spanning polytope �?

P2

(1:1:3)

rather than �?

F
3

;

3. contains the additional simplex [(0, 1), (�3,�1), (�1, 0)] 6⇢ �?

F
3

.

This then defines a “defect” of (
e:pDStde:pDStd
3.10):

[(0, 1), (�3,�1), (�1, 0)] :=
��

�?

F
3

���� r�?

F
3

, (3.13) e:nonInv

as depicted on the right-hand side of Figure
f:MF3stdf:MF3std
2. This “defect” is a direct consequence of the

strong foundational reliance/dependence on convexity in toric geometry [10–15], which we

must refine to adequately address non-compact polytopes such as �?

F
3

.

3.2.1 Refinement
s:ref

To be precise, we seek a twin definition of a class of VEX 8 polytopes (including all convex

polytopes and more), and a trans-polar operation9, such that:

A. For every convex polytope P , the trans-polar equals the polar: PO = P �. To avoid

confusion, “PO” will denote the trans-polar of P , while “P �” remains its standard polar,

as defined and computed with either version of (
e:pDStde:pDStd
3.10) [10–15].

B. The trans-polar of every VEX polytope is also a VEX polytope.

C. For every VEX polytope P , (PO)O = P .

To extend the “ordinary” operation of polar (
e:pDStde:pDStd
3.10), we define the trans-polar operation by

the following (iterative-recursive) cone-by-cone procedure:

8“VEX” is left over from lopping [con] o↵ of convex ; it also stands for: (Flippancy alert!): VEX=Vexing,

Elemental, Xenogamic (fertilizing a flower by pollen of a genetically di↵erent plant)—yes, it is self-referential,

having “vex” in the explanation of itself. Alternatives: STEM=Star-Triangulable, Elemental & Mirroring;

STEN=Star-Triangulable, Elemental & Nominal;
9The phrase trans-polar sounds as beyond polar , and it is indeed more widely applicable than (

e:pDStde:pDStd
3.10)-polar;

alternatives: rec-polar or r-polar , for “recursive-polar”? Or, FW-polar for “face-wise polar”? Or, i-polar for

“iteratively polar”? The only other term I can think of that alludes to being opposite (as in polar opposites)

is “antipodal,” but the “antipodal map” is already a standard and widely known term.

– 10 –

The Newton polytope (polar of spanning polytope):
The “standard”  
polar polytope 
is non-integral
The “standard”  
polar of the 
polar is not 
the spanning 
polytope that 
we started with
Is no good  
for mirror  
symmetry
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(Δ★)°:={u: ⟨u,v⟩≥ –1, v ∈ Δ★}

Laurent GLSMs
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Figure 27. Two non-VEX examples: a star-simplex (over a face) contains an integral point in its
interior (left), inside a 0-vertex edge (right); both induce the trans-polar to have non-integral vertices f:2more

integral point in its interior — although there is no integral point in the interior of the

polytope. Consequently, the degree of this star-simplex is not a unit (it equals 3); this

renders one of the vertices in the trans-polar polytope (far left in Figure
f:2moref:2more
27) non-integral and

so not a VEX polytope. The polytope on the mid-right of Figure
f:2moref:2more
27 has both (1) a facet that

is collinear with the origin, so the cone over it is collapsed, and (2) an integral point in the

relative interior of a face of a cone; this also causes one of the vertices of the trans-polar to

be non-integral.

Generalizing from these and similar examples (most not shown herein) produced the list

of requirements given in Claim
c:listc:list
3.1, page

c:listc:list
12.

B.5 The trans-polar construction

The trans-polar Construction
C:tPC:tP
3.1 (p.

C:tPC:tP
11) has not been exhibited in use, as it is generally

more detailed and laborious than the use of the cone-shift vectors (
e:vShe:vSh
3.15). Indeed, given

the position of the vertices of the trans-polar polytope and the placement and orientation

of the so-translated dual cones — which then form the (inner/outer for positive/negative)

opening cones of PO; as per Claim
C:vShC:vSh
3.2, this seems to su�ce to completely reconstruct PO.

For illustration, we show however the direct results of Construction
C:tPC:tP
3.1 for F3 in Figure

f:F3cstf:F3cst
28.

Note that polar to each vertex ⌫
⇢

2 �? by itself is not a facet ✓ ⇢ (�?)O, but the (n�1)-plane
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Figure 28. A direct application of Construction
C:tPC:tP
3.1 to �?

F3
; (�?

F3
)O is plotted at half its size f:F3cst

– 73 –

The oriented Newton polytope (trans-polar of spanning polytope):
Construction (trans-polar)

Decompose Δ⭑ into 
convex faces θi;
Find the (standard) polar  
(θi)° for each (convex) face
(Re)assemble parts dually 
to (θi ∩ θj)° = [(θi)°, (θj)°] 
with “neighbors”

Agrees with standard (if obscure?) constructions…
15
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The oriented Newton polytope:
specifies allowed monomials

The so-defined 2-tori 
are all singular @(0,0,1)

…as each monomial has 
at least an x1 factor, so 
f(x) = x1·g(x)
The extension 
corresponds to 
Laurent monomials:

16
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�ê
1

=(�1,0)

�3ê
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1

—Proof-of-Concept—

The oriented Newton polytope:
is star-triangulable → a toric variety
differs from its convex hull by “flip-folded” simplices

Associating coordinates to corners:
SP: x1=(–1,0), x2=(1,0), x3=(0,1), x4=(–3,–1)
NP: y1=(–1,4), y2=(–1,–1), y3=(1,–1), y4=(1,–2)

Expressing each as a monomial in the others:
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K3 in Hirzebruch 3-folds, “cornerstone” mirrors:

The Hilbert space & interactions restricted by the symmetries
Analysis: classical, semi-classical, quantum corrections…
…in spite of the manifest singularity in the (super)potential
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and two of {y1, · · · , y6} need to be set to 1, corresponding vertices removed from �?
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To swap the geometric and quantum symmetry, we should consider
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To swap the geometric and quantum symmetry, we should consider
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Indeed, the same holds also for (�F
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symmetries in (3.48) is 2, and equals the ratio of degrees of the Newton and the spanning

polytopes (3.48d). Both in the 2-dimensional and in the 3-dimensional computation, it was

crucial for this equality that the Newton polytope contains negative-degree parts.
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ü
b
sc
h
[t
hu

b
sc
h
@
m
ac
.c
om

]
w
it
h
an

y
co
m
m
en
ts
/
su
gg
es
ti
on

s
/
co
rr
ec
ti
on

s;
th
an

k
yo
u
!
—

D
R
A
F
T

– 45 –

BH
K

Laurent GLSMs

'



Discriminants 
(How Small Can We Go?)



BH

The Phase-Space

20

Phases & Discriminants
The (super)potential:

The possible vevs

concluding comments, while computational details are collected in the appendices. While

this proof-of-concept paper illustrates the various toric geometry techniques by focusing on

Hirzebruch n-folds [5] and their Calabi-Yau hypersurfaces, more general examples and further

details may be found in the companion paper [23].

2 The gauged linear sigma model

Recent work [1, 5] has shown that there are significant merits to constructing Calabi-Yau

algebraic varieties at least some of the defining equations of which contain Laurent monomials,

and that standard methods of algebraic geometry and cohomological algebra can be adapted

to compute the requisite classical data. For applications in string theory and its M- and

F-theory extensions, it is desirable to find a world-sheet field theory model with such target

spaces.

For well over two decades now, the standard vehicle to this end is Witten’s gauged linear

sigma model (GLSM) [8, 24, 25], where fermionic integration leaves a potential for the scalar

fields of the general form:
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Here �
a

is the scalar field from the ath gauge twisted-chiral superfield, x
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and F
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are respec-

tively the scalar and auxiliary component fields from the ith “matter” chiral superfield X
i

,

Qa

i

is the charge of the ith chiral superfield with respect to the ath U(1) gauge interaction,

and the r
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are the contributions from the Fayet-Iliopoulos terms. In supersymmetric theories

and especially when acting on chiral superfields, gauge groups are typically complexified and

the GLSM naturally has U(1,C) ' C⇤ actions — which are the “torus actions” in the toric

geometry of the space of ground-states in the GLSM.

2.1 Laurent superpotentials

For illustration, consider the GLSM models with the superpotential3
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· f(X), (2.2a)
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where m,n > 1 are integers and X
0

is the chiral superfield that in some ways serves as a

Lagrange multiplier; we focus on n = 2, 3, 4, but generalizations are straightforward. Such

superpotentials are strictly invariant with respect to the U
1

(1)⇥U
2

(1) gauge symmetry with

3This is not the most generic superpotential but the natural generalization of Fermat-like potentials for the

current class of models we are considering; see below.
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The subsystem (1.5a)–(1.5c) defines the base-locus of the superpotential function (1.3), while

the constraint (1.5d) is known as the “moment map.” The last constraint (1.5e) restricts the
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Figure 1. The phase diagram of the GLSM with the Calabi-Yau n-fold ⇢ F (n)
m “geometric” phase;

the “⇤” entries are generally nonzero and are outside the Stanley-Reisner ideal.

Thus, there are four di↵erent phases, as depicted in Figure 1. We now analyze them in

turn, using that a ground state solution must also satisfy the F -term constraints (2.5).

Phase I: r
1

, r
2

> 0. The F -term constraints are solved by having x
0

= 0 and f(x) = 0.

From the D-term analysis above, the excluded region in the field-space

I
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= {x
1

= . . . = x
n

= 0} [ {x
n+1

= x
n+2

= 0} (2.7)

is exactly the Stanley-Reisner (or irrelevant [18]) ideal for the Hirzebruch n-fold F (n)

m

(m-

twisted Pn�1-bundle over P1). Since the x
n+j

cannot both vanish (2.5e) implies that �
2

= 0.

Eq. (2.5e) then simplifies and implies that �
1

= 0 since the x
i

, i = 1, . . . , n cannot all be zero.

Thus, f(x) = 0 defines a Calabi-Yau (n�1)-fold hypersurface in F (n)

m

.

Direct computation shows that the polynomial f(x) is transversal for generic choices of

a
ij

, a
j

, so that its n+2 gradient components @f

@x
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, @f

@x

n+j

vanish simultaneously with f(x) itself

only within the excluded region (2.7), see Appendix A for more details.

Phase II: �mr
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2

< 0. The F -term constraints are still solved by having x
0

= 0 and

f(x) = 0. From the D-term analysis above, the excluded region in the field-space
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= . . . = x
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is the Stanley-Reisner ideal for the weighted projective space Pn
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in terms of the

coordinates (x
2

, . . . , x
n+2

. With x
1

6= 0, (2.5e) implies that �
1

= m�
2

, and since the remaining

x
i

cannot all vanish simultaneously, it follows that �
1

= �
2

= 0. Thus, f(x) = 0 defines (the

MPCP-desingularization of) the Calabi-Yau (n�1)-fold hypersurface Pn

(m:···:m:1:1)

[(n�1)m+2].

Indeed, Eqs. (2.6a) and (2.6b) imply that (recall that r
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which is an integral change of basis.

Since the Kähler class varies within H2(X,Z) \ H1,1(X), the transformation (2.11) induces an iso-

morphism between the classical Kähler cones of the Hirzebruch n-folds F (n)
m

⇡ F (n)
m+nk

, as well as of the
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3Now add “instantons”: 0-energy string configurations 
wrapped around “tunnels” & “holes” in the CY spacetime

Near (r1,r2) ~ (0,0), classical analysis 
of the Kähler (metric) phase-space 
fails [M&P: arXiv:hep-th/9412236]
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Figure 1: The GLSM phase diagram (shown for n=2 andm=3) with the Calabi-Yau n-fold⇢ F (n)
m “geometric”

phase; the “⇤” entries do not all vanish and are outside the Stanley-Reisner ideal of each listed phase [2].

The second equality holds owing to the gauge anomaly cancellations,
P
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= 0, for a = 1, 2. For the

sequence of models (1.2) with charges (1.3), this produces:
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As noted in Ref. [9], the right-hand side of (2.2) is degree-0 homogeneous in �
b

, again because of the

anomaly-cancellations, so that the right-hand sides in the relations (2.2) depend only on the ratio:
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This is a parametric representation of the discriminant, and so also of the “fully corrected phase diagram”

in the sense of Ref. [9]. Owing to the degree-0 homogeneity of the expressions (2.3),

1. the parametrization ⇢ :=�2/�1 loses the explicit factor � n�1
1 in (2.3a) indicating the (1, 0)-directed

asymptote (this explains why Ref. [9] includes it “by hand”), but retains the explicit factor �2
2 7! ⇢2

in (2.3b) indicating the (0, 1)-directed asymptote;

2. the inverse parametrization % :=�1/�2=⇢�1 would have retained the explicit factor � n�1
1 7! %n�1

in (2.3a) indicating the (1, 0)-directed asymptote, but would have lost the explicit factor � 2
2 in (2.3b)

indicating the (0, 1)-directed asymptote.

Hereafter, we plot the ⇢-parametrization, aware that the %= ⇢�1-alternative recovers the (1, 0)-directed

asymptote at the expense of losing the (0, 1)-directed one; the actual discriminant of course contains both.

Real projection plots: Eliminating the (complex) parameter ⇢ so as to express r2 = r2(r1) does not seem

to be possible in closed form for all n> 1 and m > 0. However, the parametric representation (2.4)

lends itself to parametric plotting if we restrict to ⇢ 2 R. Figure 2 displays the n=2, m=0, · · · , 3 plots,

shown underneath the semi-classical results from Figure 1. The semi-classical phase diagrams (upper row in
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The subsystem (1.5a)–(1.5c) defines the base-locus of the superpotential function (1.3), while

the constraint (1.5d) is known as the “moment map.” The last constraint (1.5e) restricts the

hxi to be “Qa

i

-orthogonal” to the h�i, serves as an hxi-dependent mass term for the �

a

’s and

a h�i-dependent mass term for the X’s, as well as an X-� interaction term.

1.1 A Laurent GLSM

In particular, we focus on the m,n > 0 sequence of superpotentials considered in Ref. [6],

which we rewrite as follows:

W (X) := X0 · f(X), (1.6a)

f(X) :=
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which is U(1)⇥U(1)-gauge invariant with the charges
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Upon restricting to the lowest (scalar) component fields X
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| = x

i

, this format makes it clear

that f(x) is an (x
n+1, xn+2) 2 C2-family of Fermat n-tics in (x1, · · · , xn) 2 Cn, where the

di↵ering and x

nm
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-dependent i = 1 term “m-twists” this fibration over the base (x
n+1, xn+2) 2

C2. If (x1, · · · , xn) and (x
n+1, xn+2) are separately projectivized, f(x) = 0 defines an m-

twisted fibration of Pn�1[n] over P1, which indeed describes a “geometric” phases of the GLSM

with the superpotential (1.6). The particular case with m = 2 and n = 4 is the “Example 2”

in Ref. [7], which is then generalized by the GLSM sequence with the superpotentials (1.6).

The vanishing of (1.1) is equivalent to the system of constraints (1.5), which for the

superpotential (1.6) becomes:
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…and in the Mirror 
(Yes, the BHK-mirrors)
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Now compare with the complex structure of the BHK-mirror

Restricted to the “cornerstone” def. poly

In particular,

Jacobian/chiral ring, specifying the complex structure moduli space of the mirror-GLSM, OF (n)
m

[c1]. This

will then be compared with the Kähler structure moduli space of the original GLSM (1.2), F (n)
m

[c1], which

was discussed in Section 2.

To be precise, we rely on the standard non-renormalization theorems and expect the superpoten-

tial (3.2) to not acquire any additional terms, and so restrict the deformations of the superpotential —and

therefore the complex structure of the target space— to only vary the parameters
�
b0, · · · , bn+2

 
. These

form-preserving deformations (modulo the Jacobian ideal of (3.2b) as usual) then define a subring of the

full Jacobian/chiral ring, but this will su�ce for our present purposes; see Appendix A.3.2. For notational

ease, we start with the simplest n=2 case and denote:

�0 := y1 · · · y4, �1 := y 2
1 y 2

2 , �2 := y 2
3 y 2

4 , �3 :=
ym+2
1

ym�2
3

, �4 :=
ym+2
2

ym�2
4

, (3.8)

so that

g(y) =
n+2X

i=0

b
i

�
i

(y) = b0 �0 + b1 �1 + b2 �2 + b3 �3 + b4 �4, (3.9)

is the 5-parameter family of defining functions (3.6) considered. In Appendix A.3.2, we prove that the

correct set of relations for defining the e↵ective variations of the superpotential (3.2) is provided by the

a�ne Jacobian ideal [43, 44]

AJ(g) = Span
⇣
y1
�
@1g(y)

�
, · · · , y2n

�
@2ng(y)

�⌘
, (3.10a)

the n = 2 case of which is given by:

(3.8)
= Span

�
b0 �0 + 2b1 �1 + (2+m)b3 �3, b0 �0 + 2b1 �1 + (2+m)b4 �4,

b0 �0 + 2b2 �2 + (2�m)b3 �3, b0 �0 + 2b2 �2 + (2�m)b4 �4

�
. (3.10b)

We conjecture that the a�ne Jacobian ideal plays the same role for all cornerstone defining polynomials

modeled on the vertices of any trans-polar pair of VEX polytopes, in the manner of (3.5)–(3.6).

Parametric form: In addition to the linear relations (3.10b), the association (3.7) insures that the five

(rational) monomials (3.8) also satisfy two algebraic identities:
Are za the

flat or the

algebraic

coordi-

nates? 1 =
n+2Y

i=0

�
�
i

(y)
�
Q

a
i : 1 = ��2

0 �1 �2 and 1 = �m�2
0 ��m

1 �3 �4, (3.11)

in evident correlation with the Mori charge-vectors Q1 and Q2 (1.3). The corresponding algebraic combi-

nations of the b
i

’s then define the “flat coordinates” in the complex structure moduli space:

z
a

:=
n+2Y

i=0

(b
i

)Q
a
i :

(
z1 := b�2

0 b1 b2
(3.11)
= (b0 �0)�2 (b1 �1) (b2 �2),

z2 := bm�2
0 b�m

1 b3 b4
(3.11)
= (b0 �0)m�2 (b1 �1)�m (b3 �3) (b4 �4),

(3.12)

which must be taken modulo the a�ne Jacobian ideal (3.10b). To explore this locus, we use the vanishing

relations (3.10b) in AJ(g) to express some of the �
i

’s in terms of others. For example, this allows expressing

�2 ! �mb0 �0 + (m�2) b1 �1

(m+2) b2
, �3 ! �b0 �0 + 2b1 �1

(m+2) b3
, �4 ! �b0 �0 + 2b1 �1

(m+2) b4
. (3.13)

The fact that the four vanishing relations (3.10a) are solved by three substitutions shows that the four

generators of the Jacobian ideal AJ(g) are in fact redundant by one.
one = the

max. # of

droppable

(extension)

vertices.
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z1 = �� [(m�2)� +m]

m+2

, z2 =
(2�+1)

2

(m+ 2)

2 �m
, � :=


b1 �1

b0 �0

.
AJ(g)

�
,

References

[1] D. R. Morrison and M. R. Plesser, Summing the instantons: Quantum cohomology and mirror

symmetry in toric varieties, Nucl. Phys. B440 (1995) 279–354, [hep-th/9412236].

1

Identic
al w

ith
 

Kähler m
irro

rBatyrev

f(x) = a0

Y

⌫i2�?

(x⌫i)
h⌫i,µ0i+1

+

X

µI2�
aµI

Y

⌫i2�?

(x⌫i)
h⌫i,µIi+1

g(y) = b0

Y

µI2�
(yµI )

hµI ,⌫0i+1
+

X

⌫i2�?

b⌫i

Y

µI2�
(yµI )

hµI ,⌫ii+1

References

[1] D. R. Morrison and M. R. Plesser, Summing the instantons: Quantum cohomology and mirror

symmetry in toric varieties, Nucl. Phys. B440 (1995) 279–354, [hep-th/9412236].

1

f(x) = a0

Y

⌫i2�?

(x⌫i)
h⌫i,µ0i+1

+

X

µI2�
aµI

Y

⌫i2�?

(x⌫i)
h⌫i,µIi+1

g(y) = b0

Y

µI2�
(yµI )

hµI ,⌫0i+1
+

X

⌫i2�?

b⌫i

Y

µI2�
(yµI )

hµI ,⌫ii+1

References

[1] D. R. Morrison and M. R. Plesser, Summing the instantons: Quantum cohomology and mirror

symmetry in toric varieties, Nucl. Phys. B440 (1995) 279–354, [hep-th/9412236].

1



BH

27

arXiv:RealSoon
The Discriminant —Proof-of-Concept—

Phases & Discriminants
So,

and

are identical?!

Better yet: 

Owing to the overall degree-0 homogeneity (and among the b
i

’s separately from that among the �
i

’s),

the substitutions (3.13) reduce the relations (3.12) to:
b1/b0 cor-

responds

to ⌫1�⌫0,
the

MPCP-

desingula-

rizing

vector.

Hmm?

z1 = �� [(m�2)� +m]

m+2
,

z2 =
(2�+1)2

(m+ 2)2 �m

,
� :=


b1 �1

b0 �0

.
AJ(g)

�
, (3.14)

which is a parametric expression of the discriminant in the complex structure moduli space for the mirror

GLSM, OF (2)
m

[c1]. Proceeding in the analogous fashion for higher n, we obtain the general solution:

M (OF (n)
m

[c1]) :

8
>>><

>>>:

z1 = (�1)n�1� [(m�2)� +m]n�1

[(n�1)m+2]n�1
,

z2 =
(1 + n�)2

[(n�1)m+2]2 �m

,

� :=


b1 �1

b0 �0

.
AJ(g)

�
. (3.15)

The discriminants parametrized by (3.15) all exhibit asymptotes specified by the limits (ordered for m> 2):

� :=
b1 �1

b0 �0
! �1, � m

m�2
,

⇣
�
?

:= � m

n(m�2)

⌘
, � 1

n
, 0, +1, (3.16)

which specify four “external” asymptotic directions and �
?

again specifies an “internal” V-shaped spike.

Although the functional expression of (3.15) does not at all resemble that of (2.4), the parametric

plots of � 1
2⇡<[za] for the n=2, 3, 4 and m=0, · · · , 4 cases are identical to those shown in Figure 3, and we

have verified that this identity persists also for higher m. Not only are the resulting star-shaped concavely

curving real projections of the discriminants identical to the Kähler class results in Section 2, but the

various values of =[log(z
a

)] also match the values of ✓̂
a

precisely.

Closed form: As noted also for the Kähler structure discriminant in Section 2.1, it does not seem possible

to eliminate the parameter � from the parametric solution (3.15) for all (n,m) in closed form. However, it

is possible to do so for fixed (n,m): Clearing the denominators, Eqs. (3.15) shows that:

• the equation determining z1 is O(�n) for m 6= 2, but O(�1) for m = 2;

• the equation determining z2 is O(�max[2,m]) for m > 0.

We therefore write the discriminant polynomial in the form

�(z1, z2) =

max[2,m]X

i=0

n

0X

j=0

�
i,j

(z1)
i (z2)

j , n0 =
n n for m 6= 2,

1 for m = 2,
(3.17a)

and require�(z1, z2) to vanish upon substituting (3.15). For example and future convenience, this produces

for n = 4:

m �(z1, z2)

0 (1�28 z1)2 � 24(1+28·3 z1)z2 + 25(3�28 z1)z22 � 28 z23 + 28 z24

1 (1�28 z1)2 � (3�28·19 z1)z2 + (3�26·52·7 z1)z22 � (1+24·54 z1)z23 � 55 z1 z24

2 (1�28 z1)2 � 218 z21 z2
3 (1�28 z1)2 + (34�24·7·373 z1+212·113 z12)z2 + 3(36�2·32·52·7·11 z1+26·5·115 z12)z22

+ 34(35�32·114 z1+117 z12)z23 + 1111 z13 z24

4 (1�28 z1)2 � 24(22·3�5·1231 z1+28·32·73 z12)z2 + 25(27·3�27·72·31 z1+77·29 z12+28·77 z13)z22
� 28(210�28·74 z1+23·77·17 z12�710·19 z13)z23 + 28·714 z14 z24

(3.17b)

and so on.

16

"
b0

b1

#
=

"
�n m�2

1 �m

# "
�1

�2

#

2 2

M (

OF (n)
m ) � P1 ⇡���������! P1 ⇢ W (F (n)

m )
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1

3.3 Mirror Mapping

It is not hard to show by direct substitution that
"
b0

b1

#
=

"
�n m�2
1 �m

#"
�1

�2

#
i.e. � =

b1
b0
7! 1�m ⇢

(m�2) ⇢�n =
�1 �m�2

(m�2)�2�n�1
, (3.18)

perfectly maps the complex structure discriminant (3.15) of the transposed GLSM (3.2) to the Kähler

structure discriminant (2.4) of the original GLSM (1.2). We note that the determinant of the Möbius

transformation (3.18) is (n�1)m+2, which equals the degree of the quantum symmetry group in the LGO
Why is

this true? phase of the original GLSM, F (n)
m

[c1]; see Ref. [2].

There is however a much more direct verification of the isomorphism between (2.4) and (3.15).

The particular functional expression (3.15) depends on the particular choice of monomials �
i

that

were eliminated by (3.13). That is to say, the remaining monomials, �0,�1, represent two di↵erent AJ(g)-

equivalence classes. One can also solve the vanishing of AJ(g) by expressing instead

�0 ! �2b2 �2 � (m�2)b3 �3

b0
, �1 ! b2 �2 �mb3 �3

b1
, �4 ! b3 �3

b4
, (3.19)

whereupon we obtain
b3/b2 cor-

responds

to ⌫3�⌫2,
the span

between

the fibre-

and the

base-P1
sub-fan.

Hmm?

z1 =
1�m �

[(m�2)� � 2]2
,

z2 =
�2 [(m�2)� � 2]m�2

(1�m �)m
,

� :=


b3 �3

b2 �2

.
AJ(g)

�
, (3.20)

instead of (3.14). This choice of the equivalence class representatives provides a perfect match (upon

identifying the a�ne parameters � $ ⇢) for the n=2 case of (2.4).

The analogous calculations for the n=3 and n=4 cases yield perfectly analogous results, and the com-

plex structure discriminants are again found to be identical to the respective Kähler structure discriminants

found in Section 2.

Mirror isomorphism generation: The parametric representation of the complex structure discriminant (3.15)

has been obtained by evaluating the definitions (3.12)

z
a

:=


n+2Y

i=0

�
b
i

�
i

(y)
�
Q

a
i

.
AJ

�
g(y)

��
, (3.21)

in terms of AJ
�
g(y)

�
-equivalence classes. Comparing the formulae (3.21) and (2.2), the mirror map thus

reduces to the isomorphism

n+2Y

i=0

✓ 2X

b=1

Qb

i

�
b

◆
Q

a
i ⇡ ��!

mm


n+2Y

i=0

⇣
b
i

�
i

(y)
⌘
Q

a
i
.

AJ
�
g(y)

��
, a = 1, 2, (3.22)

between the multinomial in the lowest component fields �
a

of the twisted-chiral superfields associated with

the gauge symmetries of the original GLSM and the AJ(g)-equivalence class of like-formed multinomials

in the parametrized (rational) monomials of the lowest component fields yI of the chiral superfields from

the (�0-augmented) defining function of the mirror GLSM. As noticed in Ref. [10], the so-called “Horn

uniformization” [30] and [8, Section 9.3.C] guarantees that the right-hand side expressions (3.22) may be

written in the left-hand side form, with (�1,�2) being identified with homogeneous coordinates of a P1.

This precisely matches the identifications made in (2.9) and (2.3)–(2.4) above.
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W (F (n)
m ) :

8
>><

>>:

e�2⇡r1+i✓̂1
=

1�m ⇢

[(m�2)⇢� n]n
,

e�2⇡r2+i✓̂2
=

⇢2 [(m�2)⇢� n]m�2

(1�m ⇢)m
;

⇢ :=

�2
�1

.
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So:
In fact, also:

…when restricted to no (MPCP) blow-ups & “cornerstone” polynomial

Then,
Same method:

Carrying out the perfectly analogous calculations for n=3 and n=4 verifies that the mirror map

identification (3.24) induces the corresponding isomorphism between the Kähler structure discriminants

(and so also the “fully corrected” phase diagrams) of the F (n)
m

[c1] GLSMs and the complex structure space

discriminants of the mirror OF (n)
m

[c1] GLSMs for all n=2, 3, 4. While we have neither an inductive proof

nor have done so explicitly for n> 4, we conjecture that in fact

W (F (n)
m

[c1])
mm⇡ M (OF (n)

m

[c1]), n > 2, m > 0, (1.1a0)

where W (F (n)
m

[c1]) and M (OF (n)
m

[c1]) are, respectively, the fully corrected Kähler structure moduli spaces

of the original F (n)
m

[c1] GLSMs (1.2b), and the exact complex structure moduli space of the transposition-

mirror (3.2b), OF (n)
m

[c1].

4 The Other Half of the Mirror Mapping

The preceding discussion covers the mirror relation (1.1a), W (F (n)
m

[c1])
mm⇡ M (OF (n)

m

[c1]). We now turn to

the “other half”12 of the mirror relations (1.1b), and show that W (OF (n)
m

[c1])
mm⇡ M (F (n)

m

[c1]).

To this end, we use the maximal U(1)n gauge symmetry of the superpotential (3.2b) generated by

the mirror-charges eQ↵ (3.4). This rank-n gauge symmetry group of the mirror GLSMs (3.2b) implies an

n-dimensional Kähler phase diagram. Whereas the isomorphism between the discriminants (2.3)–(2.4)

and (3.15), and so also the respective 2-dimensional moduli spaces was easy to see graphically, we now

seek to establish W (OF (n)
m

[c1])
mm⇡ M (F (n)

m

[c1]) analytically, akin to (3.2b).

We hasten to note that the dimension of the full Kähler moduli space of W (OF (n)
m

[c1]) and the full

complex structure moduli space of M (F (n)
m

[c1]) is bigger than n: it is 18 for n=3 and 86 for n=4.

However, the transposition construction (and in particular, the prescription of swapping the “geometric”

and “quantum” symmetries [11]) restricts to the particular forms (1.2) and (3.2), which Appendix A.3.2

shows are preserved by the a�ne Jacobian ideal. This permits us to focus on the so-parametrized subspace

of M (F (n)
m

[c1]). Correspondingly, although the mirror of F (n)
m

[c1] involves a desingularization of a specific

finite quotient of OF (n)
m

[c1], we ignore these desingularizations and focus on the subspace of W (OF (n)
m

[c1])

inherited from OF (n)
m

[c1] itself and probed by the Fayet-Iliopoulos parameters.

Remarkably, the so-restricted moduli spaces are also perfectly mirror-isomorphic. While we conjecture

that this isomorphism extends throughout the full respective moduli spaces, we do not address herein this

technically much more demanding question.

4.1 The n = 2 Case

The Kähler structure: Just as the (semi-classical) phase-boundary directions may be read o↵ the vertical

2-component vectors comprising the Mori charge-vectors (1.3), so can we then also read (right-to-left) the

phase-boundary directions from (3.4):
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. (4.1)

All but the last of these directions (left-most in (3.4)) lie within the 1st quadrant or in its boundary, whereas

the last one balances them, extending into the third quadrant. Also, the collection of vectors (4.1) clearly

exhibits the eQ1 $ eQ2 symmetry of the choice of the eQ↵ in (3.4), resulting in the reflection symmetry about

the 45�-direction in the plane spanned by the first two coordinates seen in Figure 6, below.

12In fact, there is also the sector of moduli of the Calabi-Yau n-fold X locally represented by H1(X,EndT ) as well as the

“mixed couplings” between the three sectors [33], but this is outside our present scope.
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dimW (

OF (n)
m [c1]) = n = dimM (F (n)

m [c1])
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To explore this locus, we solve the vanishing of AJ(f) by expressing some of the '
i

’s in terms of

others. Among other choices, this allows expressing

'0 ! �2(a3 '3 + a4 '4)

a0
, '1 ! ma3 '3 + 2a4 '4

(m+2) a1
, '2 ! 2a3 '3 +ma4 '4

a2(m+ 2)
. (4.12)

Denoting again by AJ(I···K)(f) the reduction modulo the Jacobian ideal of f(x) by means of eliminating

'I(x), · · · ,'
K

(x), we compare the so-obtained representatives with those in (4.2a):

I

�P
�

eQ�

I e�
�

�
(aI 'I)/AJ(210)(f)

0 �2(m+2)(e�1 + e�2) �2
�
(a3 '3) + (a4 '4)

�

1 m e�1 + 2 e�2 m (a3 '3)+2 (a4 '4)
m+2

2 2 e�1 +m e�2 2 (a3 '3)+m (a4 '4)
m+2

3 (m+2) e�1 (a3 '3)

4 (m+2) e�2 (a4 '4)

(4.13a)

This consequence of the choice (4.12) is thus shown to exhibit a perfect match of the respective generators

e�1 7! (a3 '3)/(m+2) and e�2 7! (a4 '4)/(m+2), (4.13b)

up to an overall rescaling by (m+2) of the homogeneous variables ('1,'2), which cancels owing to the

degree-0 homogeneity of (4.11) guaranteed by
P

I
eQ↵

I = 0. This manifest mirror map identification of the

generators �X

b

eQ�

I e�
�

� ⇡ ��!
mm

(aI 'I)/
AJ(f), I = 0, · · · , 2n, (4.13c)

then precisely identifies the discriminant (4.3) with

z̃1(�) =
(m+ 2 �)m (2 +m �)2

4m+2 (m+2)m+2 (1 + �)2(m+2)
,

z̃2(�) =
�m+2 (m+ 2 �)2 (m � + 2)m

4m+2 (m+2)m+2 (1 + �)2(m+2)
,

� =


(a4 '4)

(a3 '3)

.
J(210)(f)

�
. (4.14)

This verifies the n=2 case of the “other half” (1.1b) of the mirror map.

4.2 The n = 3 Case

We follow the analysis in Sections 2 and 3, which established the isomorphism between (2.2) and (3.21)

for n=2, 3, 4:
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Q
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i

.
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�
g(y)

��
, (4.15)

as well as the n=2 case of the isomorphism

e2⇡i e⌧↵ =
2nY

I=0

✓ 2X

�=1

eQ�

I e�
�

◆ e
Q

↵
I

⇡ z̃
↵

:=

 2nY

I=0

�
aI 'I(x)

�
Q

↵
I

.
AJ

�
f(x)

��
, (4.16)

established in the first part of this section. The established isomorphism between the algebraic gener-

ators (3.24b), its n=3, 4 analogues, and (4.13c) will then clearly imply the isomorphisms between the

respective discriminants.

23

e

2⇡i e⌧↵
=

2nY

I=0

✓ 2X

�=1

e
Q

�
I e��

◆ eQ↵
I

z̃a =

2nY

I=0

�
aI 'I(x)

� eQ↵
I

.
AJ

References

[1] D. R. Morrison and M. R. Plesser, Summing the instantons: Quantum cohomology and mirror

symmetry in toric varieties, Nucl. Phys. B440 (1995) 279–354, [hep-th/9412236].

1

✅



BH

—Proof-of-Concept—Summary arXiv:1611.10300 + more

Laurent GLSMs
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Euler characteristic
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d(θ (k)) := k! Vol(θ (k))  [BH: signed by orientation!]
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