Evidence for

(Infinitely Diverse)

 Non-Convex Mirrors

 Non-Convex Mirrors}
Tristan Hübsch

@ Southeastern Regional Mathematical String Theory Meeting V-Tech University, Blacksburg VA; 2017.10.07

Departments of Physics \& Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia Department of Physics, University of Central Florida, Orlando FL

Non-Convex Mirror-Models

Prehistory

The Big Picture

Laurent GLSModels
Phases \& Discriminants
...and in the Mirror
"It doesn't matter what it's called, ...if... it has substance."
S.-T. Yau

Pre-History
Where are We Coming Fromef

Pre-History

Classical Constructions

Q Complete Intersections
9 Ex.: $\left.\begin{array}{rl}\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\left(z-z_{1}\right)^{2} & =R_{1}{ }^{2} \\ \left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}+\left(z-z_{2}\right)^{2} & =R_{2}{ }^{2}\end{array}\right\}$
QAlgebraic (constraint) equations
Q...in a well-understood "ambient" (A)

QWork over complex numbers
Q...\& incl. "infinity" (e.g., $\mathbb{C P}^{n " s}$)

QFor hypersurfaces: $X=\{p(x)=0\} \subset A$
QFunctions: $[f(x)]_{X}=[f(x) \simeq f(x)+\lambda \cdot p(x)]_{A}$
Q Differentials: $[\mathrm{d} x]_{X}=[\mathrm{d} x \simeq \mathrm{~d} x+\lambda \cdot \mathrm{d} p(x)]_{A}$

Just like gauge transformations

QHomogeneity: $\mathbb{C P}^{n}=U(n+1) /[U(1) \times U(n)]$
$@$ Differential r-forms on $\mathbb{C P}^{n}$ are all $U(n+1)$-tensors

Big Picture

Superstrings = Framework for Models

Gauged Linear Sigma Model (GLSM) - on the world-sheet
QSeveral "matter" fields + several "gauge" fields

$$
A_{\mu} \simeq A_{\mu}+\left(\nabla_{\mu} \lambda\right)
$$

"Kinetic" part (\|[$\left.\left[\partial+q_{x} A\right] X \|^{2}\right)$: KE + gauge-matter coupling
Q"Potential" part ($W(X)$): PE (gauge-invariant), "F-terms"
Q"Gauge" part ($\left.\|\partial \wedge A\|^{2}+\tau \cdot(\partial \wedge A)\right)$:

```
"D-terms" & "F-I. terms"
```

QWorld-sheet matter \& gauge symmetries are both complex

$$
\text { ©.g.: }:\left(x_{1}, x_{2}, x_{3}\right) \simeq\left(\lambda^{q_{1}} x_{1}, \lambda^{q_{2}} x_{2}, \lambda^{q_{3}} x_{3}\right), \quad \lambda \in \mathbb{C}^{*}: \mathbb{P}_{\left(q_{1} \cdot q_{2}: q_{3}\right)}^{2}
$$

Q...makes sense if the fixed-point set is excised (forbidden) from $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{C}^{3}$
Q...or considered as an alternate (separate) location.
© Gauge symmetry "stratifies" the X-field-space
Q\& |vacuum \rangle determined by $\min [W(X)]$: hypersurface $\} \Rightarrow$ spacetime

Big Picture

Toric Geometry

Big Picture

Toric Geometry

QMore complicated examples: $S^{2} \times S^{2}$
$@$ An entire $2^{\text {nd }}$ sphere at every point of $1^{\text {st }}$ QOrthogonal \leftrightarrow linearly independent QTop-dim cones \leftrightarrow coord. patches Q2-dim (enveloping) polytope $\leftrightarrow(\mathbb{C})$ 2-dim. geometry

Toric Geometry

Polytope Encoding

QThe polytope encodes the space
Q...but also its symmetries:

QAssign each vertex a (Cox) coordinate

Q Defines two independent (gauge) symmetries
Qa GLSM w/gauge-invariant Lagrangian
Qand \mid ground state \rangle where $\mathrm{KE}=0=\mathrm{PE}$
Q\& (quantum) Hilbert space on it

Laurent GLSModels (and their Toric Geometry)

A Generalized Construction of
Calabi-Yau Models and Mirror Symmetry arXiv:1611.10300

Laurent GLSMs

\& Non-Convex Mirrors

Q2-torus in the Hirzebruch surface \mathfrak{F}_{m} :
Q"Anticanonical" (Calabi-Yau, Ricci-flat) hypersurface in \mathfrak{F}_{m}
QToric description
$(0,1)$

The star-triangulation of the spanning polytope defines the fan of the underlying toric variety

Laurent GLSMs

\& Non-Convex Mirrors

QThe Newton polytope (polar of spanning polytope):
QThe "standard" polar polytope is non-integral
QThe "standard" polar of the polar is not the spanning polytope that we started with
@Is no good for mirror symmetry

Laurent GLSMs

\& Non-Convex Mirrors -Proof-of-Concept-atily
QThe oriented Newton polytope (trans-polar of spanning polytope):
QConstruction (trans-polar)
$@$ Decompose $\Delta \star$ into convex faces θ_{i};
9 Find the (standard) polar $\left(\theta_{i}\right)^{\circ}$ for each (convex) face
$Q($ Re) assemble parts dually to $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\left(\theta_{i}\right)^{\circ},\left(\theta_{j}\right)^{\circ}\right]$ with "neighbors"

QAgrees with standard (if obscure?) constructions...
Q "Normal fan"
$@$ Dual cones \mapsto inside opening vertex-cones

Laurent GLSMs

\& Non-Convex Mirrors

—Proof-of-Concept-ardil:

QThe oriented Newton polytope: Qspecifies allowed monomials

QThe so-defined 2-tori are all singular @ $(0,0,1)$

Q...as each monomial has at least an x_{1} factor, so $f(x)=x_{1} \cdot g(x)$

$$
x_{1} x_{2} x_{3}^{2}
$$

The extension corresponds to Laurent monomials:

$$
(1,-1) \mapsto \frac{x_{2}^{2}}{x_{4}}
$$

QThe extension
corresponds to
Laurent monomials:

$$
x_{1} x_{2} x_{3} x_{4} \quad x_{1}^{2} x_{3} x_{4}^{4}
$$

$$
x_{1} x_{2} x_{4}^{2} \quad x_{1}^{2} x_{4}^{5}
$$

make the 2-tori Δ-regular.
$\left.(1,-2) \mapsto \frac{x_{2}^{2}}{x_{3}}\right\}$
..

Laurent GLSMs

\& Non-Convex Mirrors

QThe oriented Newton polytope:
Qis star-triangulable \rightarrow a toric variety Qdiffers from its convex hull by "flip-folded" simplices

QAssociating coordinates to corners:
$@ S P: x_{1}=(-1,0), x_{2}=(1,0), x_{3}=(0,1), x_{4}=(-3,-1)$
$@ N P: y_{1}=(-1,4), y_{2}=(-1,-1), y_{3}=(1,-1), y_{4}=(1,-2)$
QExpressing each as a monomial in the others:
NP: $x_{1}^{2} x_{3}^{5} \oplus x_{1}^{2} x_{4}^{5} \oplus\left(\frac{x_{2}^{2}}{x_{4}}\right) \not\left(\frac{x_{2}^{2}}{x_{3}}\right)$ vs. $\quad S P: y_{1}^{2} y_{2}^{2} \oplus y_{3}^{2} y_{4}^{2} \oplus\left(\frac{y_{1}^{5}}{y_{4}}\right)\left(\frac{y_{2}^{5}}{y_{3}}\right.$

$$
\left.\mathbb{P}_{(1: 1: 3)}^{2}[5]\left[\begin{array}{rrrr}
2 & 0 & 5 & 0 \\
2 & 0 & 0 & 5 \\
0 & 2 & 0 & -1 \\
0 & 2 & -1 & 0
\end{array}\right] \stackrel{\text { BHK }}{\square} \sqrt{2} \begin{array}{rrrr}
2 & 2 & 0 & 0 \\
0 & 0 & 2 & 2 \\
5 & 0 & 0 & -1 \\
0 & 5 & -1 & 0
\end{array}\right]
$$

Laurent GLSMs

\& Non-Convex Mirrors

QK3 in Hirzebruch 3-folds, "cornerstone" mirrors:

$$
\begin{aligned}
& \begin{array}{l}
a_{1} x_{4}^{8}+a_{2} x_{3}^{8}+a_{3} \frac{x_{1}^{3}}{x_{3}}+a_{5} \frac{x_{2}^{3}}{x_{3}} ; \quad \exp \left\{2 i \pi\left[\begin{array}{cccc}
\frac{1}{3} & \frac{2}{3} & 0 & 0 \\
\frac{1}{24} & \frac{1}{24} & \frac{1}{8} & 0 \\
\frac{3}{3} & 0 & 0 & 8 \\
\frac{3}{8} & \frac{3}{8} & \frac{1}{8} & \frac{1}{8}
\end{array}\right]\right.
\end{array} \mathbb{P}_{(3 \cdot 3 \cdot 1 \cdot 1)}^{3}[8]-\left[\begin{array}{l}
x_{1} \\
0_{1}
\end{array}\right]:\left\{\begin{array}{l}
G=\mathbb{Z}_{3} \times \mathbb{Z}_{24}, \\
Q=\mathbb{Z}_{8} .
\end{array}\right. \\
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 8 & 8 \\
0 & 8 & 0
\end{array} \mathbb{P}_{(3: 3: 1: 1: 1)}^{3}[8] \quad\left[\begin{array}{lll}
1 & {\left[\begin{array}{lll}
1 & 1 & \frac{1}{8} \\
\hline \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\
8
\end{array}\right.}
\end{array}\right]\right)}
\end{aligned}
$$

$$
\begin{aligned}
& b_{1} y_{3}^{3}+b_{2} y_{5}^{3}+b_{3} \frac{y_{2}^{8}}{y_{3} y_{5}}+b_{4} y_{1}^{8}: \quad \exp \left\{2 i \pi\left[\begin{array}{cccc}
\overline{8} & 0 & 0 & \\
0 & 0 & \frac{1}{3} & \frac{2}{3} \\
\frac{3}{24} & \frac{5}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]\right\}\left[\begin{array}{l}
y_{1} \\
\hline y_{1} \\
y_{2} \\
y_{3} \\
y_{5}
\end{array}\right]:\left\{\begin{array}{l}
G^{\nabla}=\mathbb{Z}_{8} \\
Q^{\nabla}=\mathbb{Z}_{24} \times \mathbb{Z}_{3}^{\boxed{2}}
\end{array}\right. \\
& \frac{|G|}{|Q|}=\frac{3 \cdot 24}{8}=9=\frac{d\left(\Delta_{\mathcal{F}_{3}}\right)}{d\left(\Delta_{\mathcal{F}_{3}}^{*}\right)}=\frac{54}{6}
\end{aligned}
$$

© The Hilbert space \& interactions restricted by the symmetries Q Analysis: classical, semi-classical, quantum corrections...
Q...in spite of the manifest singularity in the (super)potential

Discriminants (How Small Can We Go?

Phases \& Discriminants

BH

The Phase-Space
@The (super) potential: $W(X):=X_{0} \cdot f(X)$,

$$
f(X):=\sum_{j=1}^{2}\left(\sum_{i=2}^{n}\left(a_{i j} X_{i}^{n}\right) X_{n+j}^{2-m}+a_{j} X_{1}^{n} X_{n+j}^{(n-1) m+2}\right)
$$

QThe possible vevs

	X_{0}	X_{1}	X_{2}	\cdots	X_{n}	X_{n+1}	X_{n+2}
Q^{1}	$-n$	1	1	\cdots	1	0	0
Q^{2}	$m-2$	$-m$	0	\cdots	0	1	1

	$\left\|x_{0}\right\|$	$\left\|x_{1}\right\|$	$\left\|x_{2}\right\| \cdots\left\|x_{n}\right\|$	$\left\|x_{n+1}\right\|\left\|x_{n+2}\right\|$
i	0	0	\ldots	* *
I	0	*	...	* *
ii	0	0	...	0 0
II	0		* ... *	* *
ii	0	$\sqrt{r_{1}}$	0 ... 0	0 0
III		$\sqrt{\frac{(m-2) r_{1}+n r_{2}}{(n-1) m+2}}$	$0 \times \cdots$	${ }^{0} 0$
v	$\sqrt{-r_{1} / n}$	0	0×1.0	00
IV	$\sqrt{-r_{1} / n}$	0	\cdots	* *

Phases \& Discriminants

The Phase-Space
Q Phase-space:

$@$ I: Calabi-Yau ($n-1$)-fold
(i) hypersurface in F_{m}
QII: Calabi-Yau ($n-1$)-fold hypersurface in F_{m} (flopped)
QIII: Calabi-Yau $\mathbb{Z}_{(n-1) m+2}$ Landau -Ginzburg orbifold
QIV: Calabi-Yau hybrid
0 The $\left\langle x_{i}\left(r_{1}, r_{2}\right)\right\rangle$ change continuously 'round (0,0); boundaries are singular only for special values of θ.

Phases \& Discriminants

The Phase-Space
$@$ Varying m in \mathfrak{F}_{m} :

Phases \& Discriminants

The Phase-Space
$@$ Infinite diversity in the \mathfrak{F}_{m} :

Proof-of-Concept- arx $\left.i{v_{:}}\right]_{\sigma_{1}} l_{10_{3} 0_{0}}$

QThe $[m(\bmod n)]$ diffeomorphism $\quad \mathbb{L}_{k}: \mathscr{F}_{m}^{(n)}\left[c_{1}\right] \rightarrow \mathscr{F}_{m+n k}^{(n)}\left[c_{1}\right]$
$\mathbb{L}_{1}:\{\overbrace{(0,1),(1,-m)}^{\mathscr{W}\left(\mathscr{F}_{m}^{(n)}\left[c_{1}\right]\right)}\} \stackrel{\left[\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right]}{ }\{\overbrace{(0,1),(1,-(m-n))}^{\mathscr{W}\left(\mathscr{F}_{m-n}^{(n)}\left[c_{1}\right]\right)}\}$
$\mathbb{L}_{1}:\{\overbrace{(1,0),(-n, m-2)}^{\mathscr{W}\left(\mathscr{F}_{m}^{(n)}\left[c_{1}\right]\right)}\} \xrightarrow{\cdot\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]}\left\{(1, n),\left(-n, m-2-n^{2}\right)\right\} \neq\{\overbrace{(1,0),(-n,(m-n)-2)}^{\mathscr{W}\left(\mathscr{F}_{m-n}^{(n)}\left[c_{1}\right]\right)}\}$

Phases \& Discriminants

The Discriminant
Q Now add "instantons": 0-energy string configurations wrapped around "tunnels" \& "holes" in the CY spacetime $@$ Near $\left(r_{1}, r_{2}\right) \sim(0,0)$, classical analysis of the Kähler (metric) phase-space fails [M\&P: arXiv:hep-th/9412236]

\uparrow With | X_{0} | X_{1} | X_{2} | \cdots | X_{n} | X_{n+1} | X_{n+2} | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q^{1} | $-n$ | 1 | 1 | \cdots | 1 | 0 | 0 |
| Q^{2} | $m-2$ | $-m$ | 0 | \cdots | 0 | 1 | 1 |

Q the instanton resummation gives:

$$
\begin{aligned}
& r_{1}+\frac{\hat{\theta}_{1}}{2 \pi i}=-\frac{1}{2 \pi} \log \left(\frac{\sigma_{1}^{n-1}\left(\sigma_{1}-m \sigma_{2}\right)}{\left[(m-2) \sigma_{2}-n \sigma_{1}\right]^{n}}\right), \\
& r_{2}+\frac{\hat{\theta}_{2}}{2 \pi i}=-\frac{1}{2 \pi} \log \left(\frac{\sigma_{2}^{2}\left[(m-2) \sigma_{2}-n \sigma_{1}\right]^{m-2}}{\left(\sigma_{1}-m \sigma_{2}\right)^{m}}\right),
\end{aligned}
$$

Phases \& Discriminants

The Discriminant
Q Now compare with the complex structure of the BHK-mirror QRestricted to the "cornerstone" def. poly

$$
\begin{aligned}
& f(x)=a_{0} \prod_{\nu_{i} \in \Delta^{\star}}\left(x_{\nu_{i}}\right)^{\left\langle\nu_{i}, \mu_{0}\right\rangle+1}+\sum_{\mu_{I} \in \Delta} a_{\mu_{I}} \prod_{\nu_{i} \in \Delta^{\star}}\left(x_{\nu_{i}}\right)^{\left\langle\nu_{i}, \mu_{I}\right\rangle+1} \\
& g(y)=b_{0} \prod_{\mu_{I} \in \Delta}\left(y_{\mu_{I}}\right)^{\left\langle\mu_{I}, \nu_{0}\right\rangle+1}+\sum_{\nu_{i} \in \Delta^{\star}} b_{\nu_{i}} \prod_{\mu_{I} \in \Delta}\left(y_{\mu_{I}}\right)^{\left\langle\mu_{I}, \nu_{i}\right\rangle+1}
\end{aligned}
$$

$@$ In particular,

$$
\begin{aligned}
g(y) & =\sum_{i=0}^{n+2} b_{i} \phi_{i}(y)=b_{0} \phi_{0}+b_{1} \phi_{1}+b_{2} \phi_{2}+b_{3} \phi_{3}+b_{4} \phi_{4}, \\
\phi_{0} & :=y_{1} \cdots y_{4}, \quad \phi_{1}:=y_{1}^{2} y_{2}^{2}, \quad \phi_{2}:=y_{3}^{2} y_{4}^{2}, \quad \phi_{3}:=\frac{y_{1}^{m+2}}{y_{3}^{m-2}}, \quad \phi_{4}:=\frac{y_{2}^{m+2}}{y_{4}^{m-2}}, \\
z_{1} & =-\frac{\beta[(m-2) \beta+m]}{m+2}, \quad z_{2}=\frac{(2 \beta+1)^{2}}{(m+2)^{2} \beta^{m}}, \quad \beta:=\left[\frac{b_{1} \phi_{1}}{b_{0} \phi_{0}} /^{A} \mathscr{J}(g)\right],
\end{aligned}
$$

Phases \& Discriminants

The Discriminant
Q So,

Q and

Phases \& Discriminants

The Discriminant
QSo: $\mathscr{W}\left(\mathscr{F}_{m}^{(n)}\left[c_{1}\right]\right) \stackrel{\mathrm{mm}}{\approx} \mathscr{M}\left(\mathscr{F}_{m}^{(n)}\left[c_{1}\right]\right)$
@In fact, also: $\mathscr{W}\left(\nabla_{\mathscr{F}_{m}^{(n)}}\left[c_{1}\right]\right) \stackrel{\operatorname{mm}}{\approx} \mathscr{M}\left(\mathscr{F}_{m}^{(n)}\left[c_{1}\right]\right)$
V...when restricted to no (MPCP) blow-ups \& "cornerstone" polynomial
$@$ Then, $\operatorname{dim} \mathscr{W}\left({ }_{F} \mathscr{F}_{m}^{(n)}\left[c_{1}\right]\right)=n=\operatorname{dim} \mathscr{M}\left(\mathscr{F}_{m}^{(n)}\left[c_{1}\right]\right)$
Q Same method:

$$
\begin{aligned}
e^{2 \pi i \widetilde{\tau}_{\alpha}} & =\prod_{I=0}^{2 n}\left(\sum_{\beta=1}^{2} \widetilde{Q}_{I}^{\beta} \widetilde{\sigma}_{\beta}\right)^{\widetilde{Q}_{I}^{\alpha}} \\
\tilde{z}_{a} & =\prod_{I=0}^{2 n}\left(a_{I} \varphi_{I}(x)\right)^{\widetilde{Q}_{I}^{\alpha}} / A \mathscr{J}
\end{aligned}
$$

${ }_{I}$	$\left(\sum_{\beta} \widetilde{Q}_{I}^{\beta} \widetilde{\sigma}_{\beta}\right)$	$\left(a_{I} \varphi_{I}\right) /{ }^{A} \mathscr{J}_{(210)}(f)$
0	$-2(m+2)\left(\widetilde{\sigma}_{1}+\widetilde{\sigma}_{2}\right)$	$-2\left(\left(a_{3} \varphi_{3}\right)+\left(a_{4} \varphi_{4}\right)\right)$
1	$m \widetilde{\sigma}_{1}+2 \widetilde{\sigma}_{2}$	$\frac{m\left(a_{3} \varphi_{3}\right)+2\left(a_{4} \varphi_{4}\right)}{m+2}$
2	$2 \widetilde{\sigma}_{1}+m \widetilde{\sigma}_{2}$	$\frac{2\left(a_{3} \varphi_{3}\right)+m\left(a_{4} \varphi_{4}\right)}{m+2}$
3	$(m+2) \widetilde{\sigma}_{1}$	$\left(a_{3} \varphi_{3}\right)$
4	$(m+2) \widetilde{\sigma}_{2}$	$\left(a_{4} \varphi_{4}\right)$

Laurent GLSMs

Summary

Laurent GLSMs

Summary

@CY(n-1)-folds in Hirzebruch 4-folds
QEuler characteristic ∇
©Chern class, term-by-term
$@$ Hodge numbers
V
-Cornerstone polynomials \& mirror $\sqrt{ }$
$@$ Phase-space regions \& mirror ∇
$@$ Phase-space discriminant \& mirror ∇ 9 The "other way around" ∇ (limited)
QYukawa couplings ∇
QWorld-sheet instantons

Q Gromov-Witten invariants soon
Q Will there be anything else?

$$
d\left(\theta^{(k)}\right):=k!\operatorname{Vol}\left(\theta^{(k)}\right)[\mathrm{BH}: \text { signed by orientation! }]
$$

- Trans-polar ${ }^{\nabla}$ constr.

9 Newton $\Delta_{X}:=\left(\Delta_{X}^{\star}\right)^{\nabla}$
@ VEX polytopes s.t.: $\left((\Delta)^{\nabla}\right)^{\nabla}=\Delta$

- Star-triangulable w/flip-folded faces
$@$ Polytope extension
\Leftrightarrow Laurent monomials
Textbooks to be (re)written, amended
http://physics1.howard.edu/~thubsch/

Departments of Physics \mathcal{E} Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia

Department of Physics, University of Central Florida, Orlando FL

