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Global Symmetry in QFT

• Global symmetry acts on operators and it leaves all correlation 
functions invariant. Global symmetry can have an ’t Hooft anomaly: in 
the presence of the background gauge field the partition function 
transforms by an overall phase.

• Anomaly is invariant under the RG flow. Global symmetry and its 
anomaly provide non-perturbative tools to study the low energy 
quantum dynamics, which is often strongly coupled. 

• Applications to dualities and topological phases of matter.

• Important to understand the complete global symmetry and its 
anomaly. Continuous and discrete symmetries, higher-form 
symmetries, two-group symmetry…
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Outline

• Review 0-form and 1-form symmetries in terms of symmetry defects.

• 2-group symmetry.

• Anomaly of 2-group symmetry.

• Consistency condition on RG flow.
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Ordinary 0-Form Global Symmetry

• Generated by codimension-1 defects that obey group-law fusion

• Local operators are in representation of the symmetry group.

• The correlation functions of the symmetry defects are topological.

• For continuous symmetry described by currents, the symmetry defect is 
𝑈𝐠 = exp 𝑖 ⋆ׯ 𝑗. Topological property = current conservation 𝑑 ⋆ 𝑗 = 0.

• 1-form gauge field coupled to codimension-1 symmetry generator.
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1-Form Global Symmetry

• Generated by codimension-2 defects that obey group-law fusion. 
Symmetry group must be Abelian.

• Line operators transform by some charges under the symmetry group.

• The correlation functions of the symmetry defects are topological.

• 2-form gauge field coupled to codimension-2 symmetry generator.

• Example: 4d Maxwell theory has 𝑈 1 × 𝑈(1) 1-form symmetry
𝑗2
𝐸 = 𝐹, 𝑗2

𝑀 =⋆ 𝐹, 𝑑 ⋆ 𝑗2
𝐸 = 𝑑 ⋆ 𝑗2

𝑀 = 0 .

• Example: 𝑆𝑈(𝑁) gauge theory. The Z𝑁 center of gauge group assigns 
Z𝑁 1-form charges to the Wilson lines. Gauging the Z𝑁 1-form 
symmetry modifies the bundle to be the Z𝑁 quotient 𝑆𝑈(𝑁)/Z𝑁.
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2-Group Global Symmetry: Mixes 0-Form and 
1-Form Symmetries
• 0-form symmetry 𝐺. 1-form symmetry 𝐴.

• 0-form symmetry acts on 1-form symmetry
𝜌: 𝐺 → Aut 𝐴 .

• Postnikov class 𝛽 ∈ 𝐻𝜌
3 𝐺, 𝐴 : 𝐺 × 𝐺 × 𝐺 → 𝐴

New 4-junction for symmetry defects.

Non-associativity of 0-form symmetry defects.
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2-Group Background Gauge Field

• Denote background 𝑋 for 0-form symmetry 𝐺, and background 𝐵2 for 
1-form symmetry 𝐴. 𝑋 is an 1-cocycle, 𝐵2 is a 2-cochain that satisfies

𝛿𝜌𝐵2 = 𝑋∗𝛽 .

Only 𝛽 ∈ 𝐻𝜌
3(𝐵𝐺, 𝐴) is meaningful: 𝛽 → 𝛽 + 𝛿𝜌𝜆2, 𝐵2 → 𝐵2 + 𝑋∗𝜆2.

• Non-trivial 𝛽 : cannot gauge only the 0-form symmetry.

• A 0-form gauge transform also produces a background for 1-form 
symmetry i.e. inserts a 1-form symmetry defect. 

• Can gauge only the 1-form symmetry, with 𝑋 = 0.

• If 𝛽 = 0 the 2-group symmetry factorizes into 0- and 1-form 
symmetries. 
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[Baez,Lauda],[Baez,Schreiber],[Kapustin,Thorngren],[Sharpe],[Córdova,
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2-Group Background Gauge Field

• If we turn off the background gauge field, then the 2-group symmetry 
means the correlation functions are invariant under 0-form and 1-
form symmetry separately.

• If we consider correlation functions with symmetry defects, then the 
2-group symmetry implies a particular rule for fusing the 0-form 
symmetry defects.
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2-Group Symmetry from Gauging a Subgroup 
in Mixed Anomaly (Green-Schwarz)
• Two massless Dirac fermions in 4d, 𝑈 1 𝑋 × 𝑈 1 𝑌 0-form symmetry:

where 𝑘 is an integer.

• Next we promote 𝑌 to be dynamical 𝑦. Emergent 𝑈(1) 1-form 
symmetry generated by exp 𝑖ׯ 𝑑𝑦 . New background 𝐵2 couples as 
4𝑑𝐵2𝑑𝑦/2𝜋. Impose constraint on 𝐵2׬ to maintain gauge invariance:

𝑘න
5𝑑

𝑋
𝑑𝑋

2𝜋

𝑑𝑦

2𝜋
+ න

5𝑑

𝑑𝐵2
𝑑𝑦

2𝜋
= 0 ⇒ 𝑑𝐵2 + 𝑘𝑋

𝑑𝑋

2𝜋
= 0 .
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[Tachikawa],[Córdova, 
Dumitrescu,Intriligator]

Weyl 𝜓1 𝜓2 𝜓3 𝜓4

𝑈 1 𝑋 1 -1 0 0

𝑈 1 𝑌 k k -k -k

Mixed anomaly: 𝑘 5𝑑𝑋׬
𝑑𝑋

2𝜋

𝑑𝑌

2𝜋
,



2-Group Symmetry from Gauging a Subgroup 
in Mixed Anomaly (Green-Schwarz)
• Gauging 𝑈 1 𝑌 extends 𝑈 1 𝑋 by the emergent 1-form symmetry to 

become a 2-group symmetry: 𝐺 = 𝑈 1 𝑋, 𝐴 = 𝑈(1), 𝜌 = 1, and the 
Postnikov class 𝛽 represented by −

𝑘

2𝜋
𝑋𝑑𝑋.

• Analogous to Green-Schwarz mechanism.

• The condition 𝑑𝐵2 + 𝑘𝑋
𝑑𝑋

2𝜋
= 0 modifies the gauge transformations

𝑋 → 𝑋 + 𝑑𝜆0

𝐵2 → 𝐵2 + 𝑑𝜆1 − 𝑘𝜆0
𝑑𝑋

2𝜋
.

Non-trivial background 𝑋 for 0-form symmetry also enforces a 
background 𝐵2 for the 1-form symmetry.
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2-Group Symmetry is Not An Anomaly for 0-
Form Symmetry
• Require the action ׬𝐵2 ⋆ 𝑗2 + 𝑋 ⋆ 𝑗1 +⋯ to be invariant under the 2-

group gauge transformation implies the conservation of 0-form 
symmetry current 𝑗1 is violated by a non-trivial operator 𝑗2, the 1-
form symmetry current:

𝑑 ⋆ 𝑗1 = 𝑗2
𝑘𝑑𝑋

2𝜋
, 𝑑 ⋆ 𝑗2 = 0.

• Partition function transforms under a 0-form gauge transformation by 
an operator insertion instead of a phase.

• Not an ’t Hooft anomaly of the 0-form symmetry. 2-group symmetry 
cannot be ``canceled’’ by inflow.
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Example: QED3 with 2 Fermions of Charge 2

• Wilson line of charge 1 is unbreakable and transforms under 𝐴 = Z2
1-form symmetry corresponds to the Z2 center in the gauge group.

• Two free fermions have at least 𝑈 2 0-form symmetry, neglecting 
charge conjugation. After gauging 𝑈 1 , the basic monopole operator 
is dressed with 2 fermion zero modes, and thus the central Z2 ⊂ 𝑈(2)
symmetry that flips the sign of the two fermions does not act on any 
local operators. 

• Faithful 0-form symmetry 𝐺 = 𝑈(2)/Z2 ≅ 𝑆𝑂 3 × 𝑈(1). The 𝑈 1
is identified with the magnetic symmetry.
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Example: QED3 with 2 Fermions of Charge 2

• Background 𝑋 for 𝐺 that is not a background for 𝑈(2): non-trivial 𝑋∗𝑤2(𝐺)
𝑤2 𝐺 = 𝑤2 𝑆𝑂 3 + 𝑤2(𝑈(1))

is the Z2 obstruction to lifting the bundle to a 𝑈(2) bundle.

• The Z2: 𝜓 → −𝜓 in the quotient 𝐺 = 𝑈(2)/Z2 can be identified with a Z4
gauge rotation, since the fermions have charge 2. Backgrounds with non-
trivial 𝑤2(𝐺) modifies the gauge bundle by a Z4 quotient. 

• The Z4 quotient requires background 𝐵2 for Z2 1-form symmetry
𝛿𝐵2 = Bock 𝑋∗𝑤2 𝐺 = 𝑋∗Bock 𝑤2 𝐺 .

• 2-group symmetry with Postnikov class 

𝛽 = Bock 𝑤2 𝐺 = Bock 𝑤2 𝑆𝑂 3 .

13

[Benini,PH,Seiberg]



Enhanced 2-Group Symmetry at Low Energy

• QED3 with 2 fermions of charge 2 can be obtained from the theory 
with charge 1 by gauging the Z2 subgroup magnetic symmetry.

• In the theory with charge 1, the 𝑈(1) magnetic symmetry is 
conjectured to enhance to 𝑆𝑈(2) at low energies, and the UV 0-form 
symmetry 𝑈(2) is conjectured to enhance to 𝑂(4).

• In the theory with charge 2, the same conjecture implies there is an 
enhanced 2-group symmetry at low energies with 𝐺IR = 𝑂 4 /Z2 0-
form symmetry, Z2 1-form symmetry and the Postnikov class 

𝛽IR = Bock 𝑤2 𝐺IR = Bock 𝑤2 𝑃𝑂 4 .
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[Xu,You], [PH,Seiberg],[Benini,PH,Seiberg],[Wang,Nahum,Metlitski,Xu,Senthil],[Córdova,PH,Seiberg]



Anomaly for 2-Group Symmetry in the UV

• QED3 with two fermions of charge 2 has action σ𝑗 𝑖 ത𝜓𝑗𝛾𝐷2𝑎𝜓𝑗 +
4

4𝜋
𝑎𝑑𝑎, 

where we regularized the massless fermions. The theory is parity invariant.

• For non-trivial 2-group background, the gauge bundle has a Z4 quotient

ׯ
𝑑𝑎

2𝜋
=
1

4
ׯ 𝑌2 mod Z , 𝑌2 = 2෪𝐵2 −

෫𝑋∗𝑤2 𝐺 ∈ 𝑍2 𝑀, Z4 ,

where tildes denote a lift to Z4 cochains. The 2-group constraint implies 
𝛿𝑌2 = 0 and lift-independence.

• The theory is not well-defined but has an anomaly for 2-group symmetry 

න
4𝑑

4

4𝜋
𝑑𝑎𝑑𝑎 =

𝜋

4
න
4𝑑

𝑌2𝑌2 .
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Mass deformation

• Give large positive masses to charge-2 fermions. The theory flows to 𝑈 1 4 .

• The microscopic Z2 1-form symmetry is enhanced to Z4. 

• The IR theory 𝑈 1 4 couples to the UV 2-group background using the 
background for the emergent Z4 1-form symmetry in the IR:

𝑌2 = 2෪𝐵2 −
෫𝑋∗𝑤2 𝐺 .

• The Z4 1-form symmetry has an ’t Hooft anomaly, 
𝜋

4
න
4𝑑

𝑌2
2 = න

4𝑑

𝜋

4
𝑋∗𝑤2 𝐺 2 − 𝜋𝐵2 𝑋∗𝑤2 𝐺 + 𝜋 𝐵2

2 ,

where we omit tildes and use the continuous notation. Matches the anomaly 
in the UV.
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[Kapustin,Seiberg],[Gaiotto,
Kapustin,Seiberg,Willett]



Anomaly of 2-Group Symmetry

• The anomaly of 2-group symmetry in 3𝑑 has the structure

න
4𝑑

𝑋∗𝜔 − 𝑋∗𝜆, 𝐵2 + 𝑞(P 𝐵2) , 𝜔 ∈ 𝐶4 𝐵𝐺, 𝑈 1 , 𝜆 ∈ 𝐶2 𝐵𝐺, መ𝐴 .

• The anomaly must be a well-defined 4𝑑 bulk term. This means it is 
independent of the 5𝑑 extension and therefore closed:

𝛿𝜔 = 𝜆, 𝛽 , 𝛿𝜌𝜆 = 𝛽,⋆ + 𝑞(P1𝛽) .

• Anomaly is defined up to an additional 3𝑑 local counterterm:

𝑆3𝑑 = න
3𝑑

− 𝑋∗𝜂, 𝐵2 + 𝑋∗𝜈 , 𝜂 ∈ 𝐶1 𝐵𝐺, መ𝐴 , 𝜈 ∈ 𝐶3 𝐵𝐺, 𝑈 1 .

This shifts 𝜆 → 𝜆 + 𝛿𝜌𝜂, 𝜔 → 𝜔 + 𝜂, 𝛽 + 𝛿𝜈. Non-trivial Postnikov class [𝛽]
allows more counterterms to cancel the 0-form symmetry anomaly 𝜔.
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[Kapustin,Thorngren], [Benini,Córdova,PH]



Anomaly of 2-Group Symmetry

• 0-form symmetry anomaly 𝜔 : the 0-form symmetry defect does not 
obey the pentagon identity for the fusion of four 0-form symmetry 
defects, but up to a phase.

• 0-form/1-form mixed anomaly 𝜆 : when the 1-form symmetry defect 
encircles 3-junction of 0-form symmetry defects, it produces a phase.

• 1-form symmetry anomaly 𝑞: when two 0-form symmetry defects 
braid each other once, it produces a phase.

= 𝑒𝑖q(𝑎)

𝑎 𝑎 𝑎 𝑎
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= 𝑒𝑖𝜆𝑎(𝑔,ℎ)

[Benini,Córdova,PH]



2-Group Symmetry and RG Flow

• Consider RG flow starting from the UV theory coupled to background 
for 2-group symmetry (we cancel the anomaly by inflow from a bulk).

• The IR theory should also couple to the same background since the 
partition function is invariant under RG flows.

• The UV background field should be consistent with the IR symmetry. 
Does it give a constraint on the RG flow?

• The anomaly for the UV symmetry should match in the IR since the 
bulk is the same in the UV and in the IR.
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Intrinsic and Extrinsic Symmetries

• Intrinsic symmetry: the true global symmetry that acts on the theory.

• Extrinsic symmetry: symmetry that may not act faithfully.

• Extrinsic symmetry can be the UV symmetry acting on operators that 
decouple along the RG flow, and thus it does not act in IR theory.

• A theory can couple to the background for an extrinsic symmetry 
using the backgrounds for the intrinsic symmetry. 
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Intrinsic and Extrinsic Symmetries

• Example: coupling to 𝑈(1) gauge field 𝑋 by the Z𝑁 1-form symmetry 
background 𝐵2 = 𝛼𝑑𝑋, where 𝛼 ∈ R/Z and we normalize ׯ 𝐵2 ∈

2𝜋

𝑁
Z.

• Example: 𝑈(1) Maxwell theory in 4d has intrinsic 𝑈 1 𝐸 × 𝑈 1 𝑀 1-
form symmetries with the mixed anomaly 

1

2𝜋
׬ 𝐵2

𝐸𝑑𝐵2
𝑀. 

It can couple to the background 𝐵2
𝐸 = 𝐵2

𝑀 = 𝜋𝑤2 where the basic 
electric and magnetic lines are attached with 𝜋׬ 𝑤2 and are fermions: 
‘‘all-fermion electrodynamics’’. Reproduce the gravitional anomaly

1

2𝜋
න
5𝑑

𝐵2
𝐸𝑑𝐵2

𝑀 =
1

2𝜋
න
5𝑑

𝑤2𝑤3 .
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Intrinsic and Extrinsic Symmetries

• 2-group background for 0-form and 1-form extrinsic symmetries 
𝐺′, 𝐴′ coupled through the intrinsic 2-group symmetry 𝐺, 𝐴.

• Homomorphisms 𝑓0: 𝐺
′ → 𝐺, 𝑓1: 𝐴

′ → 𝐴,
𝑋 = 𝑓0 𝑋′ , 𝐵2 = 𝑓1 𝐵2

′ − 𝑋′ ∗𝜂, 𝜂 ∈ 𝐻𝜌
2(𝐺′, 𝐴).

• 𝜌: 𝐺 → Aut(𝐴), 𝜌′: 𝐺′ → Aut(𝐴′) compatible with 𝑓0, 𝑓1.

• Relate the Postnikov classes 𝛽 ∈ 𝐻𝜌
3 𝐺, 𝐴 , 𝛽′ ∈ 𝐻𝜌′

3 𝐺′, 𝐴′ :
𝛿𝜌𝐵2 = 𝑋∗𝛽, 𝛿𝜌′𝐵2

′ = (𝑋′)∗𝛽′.

• Postnikov classes 𝛽 ∈ 𝐻𝜌
3 𝐺, 𝐴 , 𝛽′ ∈ 𝐻𝜌′

3 𝐺′, 𝐴′ satisfy

𝑓0
∗ 𝛽 = 𝑓1 𝛽′ .
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Constraint on RG from 2-Group Symmetry

• Consider RG flows that preserve the symmetry. The UV symmetry is 
the extrinsic symmetry, and the IR symmetry is intrinsic:

𝑓0
UV→IR ∗

𝛽IR = 𝑓1
UV→IR 𝛽UV .

• If the UV has non-trivial 2-group symmetry but the IR does not 
𝛽IR = 0, then the IR theory must have an accidental 1-form 

symmetry. (or some line operators decouple.)

• If the IR has non-trivial 2-group symmetry but the UV does not 
𝛽UV = 0, then the IR theory must have an accidental 0-form 

symmetry. (or some local operators decouple.)
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Constraint on RG from 2-Group Symmetry

• When the IR theory is a 3d TQFT, it has trivial 2-group symmetry 
𝛽IR = 0 if

(1) The IR TQFT is Abelian, or

(2) The IR 0-form symmetry does not permute the lines (conjecture).

• In such cases, if the UV has non-trivial 2-group symmetry, then there 
must be an emergent 1-form symmetry in the IR.

(Example: QED3 with 2 fermions of charge 2 flows to 𝑈 1 4)
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[Barkeshli,Bonderson,Cheng,Wang],[Benini,Córdova,PH]



Constraint on UV Completion

• If the theory has trivial 2-group symmetry 𝛽 = 0, then the full 1-
form symmetry cannot be realized in any UV completion that has 
non-trivial 2-group symmetry. 

• If the theory has non-trivial 2-group symmetry 𝛽 ≠ 0, then the full 
0-form symmetry cannot be realized in any UV completion that has 
trivial 2-group symmetry 𝛽UV = 0.
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Constraint on Symmetry Breaking

• The UV symmetry is spontaneously broken to a subgroup in the IR. 

• The extrinsic symmetry is the IR symmetry, and the intrinsic symmetry 
is the UV symmetry:

𝑓0
IR→UV ∗

𝛽UV = 𝑓1
IR→UV 𝛽IR ,

where 𝑓0, 𝑓1, are inclusion maps.

• If the 1-form symmetry is completely broken, then either the UV has 
trivial 2-group symmetry (i.e. trivial [𝛽UV]), or the 0-form symmetry is 
also spontaneously broken to a subgroup.

• In 𝐺UV = 𝑈(1), 𝐴UV = 𝑈(1) it can be shown from Goldstone modes.
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More Examples of 2-group: 
Finite Group Gauge Theory
• Gauging a 0-form finite symmetry 𝐺 in an (untwisted) finite group 𝐻

gauge theory leads to an extension of the gauge group
1 → 𝐻 → 𝐾 → 𝐺 → 1 ,

Where 𝐺 acts on the Wilson lines by 𝜌: 𝐺 → Out 𝐻 .

• The extensions are classified by 𝐻𝜌
2 𝐺, 𝑍 𝐻 : different backgrounds 

for 𝑍(𝐻) 1-form symmetry 𝐵2 → 𝐵2 + 𝑋∗𝜂 for 𝜂 ∈ 𝐻𝜌
2(𝐺, 𝑍(𝐻)).

• Obstruction to the existence of an extension 𝐾 is described by 𝛽 ∈
𝐻𝜌
3(𝐺, 𝑍(𝐻)). 2-group symmetry with Postnikov class 𝛽 .

• Example: D16 or Q16 gauge theory has a Z2 symmetry that combines 
with a Z2 center 1-form symmetry to be 2-group symmetry.
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Conclusion

• 2-group symmetry is a mixture of 0-form and 1-form symmetries, 
where the mixing is described by the Postnikov class.

• If the Postnikov class is non-trivial, one cannot gauge the 0-form 
symmetry without gauging the 1-form symmetry. This is kinematic 
and is not an ’t Hooft anomaly for the 0-form symmetry.

• 2-group symmetry can occur in simple examples such as QED4 and 
QED3 with two Dirac fermions of charge 2, and 3d gapped TQFTs.

• We discuss the structure of the ’t Hooft anomaly for 2-group 
symmetry. And we derive a new consistency condition on the RG 
flows using the 2-group symmetry that constrains the emergent 
symmetries.
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