Generalized Fourier-Mukai Transform in Heterotic String Theory/F-theory

Mohsen Karkheiran

Duke University

November 2, 2019

Lara Anderson (Supervisor), Xin Gao (Collaborator)

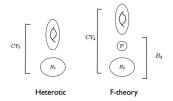
To study the Heterotic string compactifications we should describe gauge fields (vector bundles) over elliptically fibered Calabi-Yau manifolds.

 Most of the toric and CICY Calabi-Yau threefolds are elliptically fibered.
 Huang, Taylor, 2019

.

Anderson, Gao, Gray, Lee, 2017

• The basic duality is between Heterotic on T^2 and F-theory on an elliptically fibered K3.



Spectral cover construction on elliptically fibered Calabi-Yau:

Let $\pi : X \longrightarrow B$ be a Weierstrass elliptic fibration, and V be a stable, degree zero, locally free sheaf (vector bundle) on X,

• The restriction of V on a generic (smooth) fiber of π is S-equivalent to Atiyah, 57

$$V|_{E_b} \sim \bigoplus_{i=1}^n \mathcal{O}_{E_b}(p_i - \sigma).$$
 (1)

p_i's define the spectral cover *S*. *V* can be reconstructed as

$$V = \pi_{1*}(\pi_2^* \mathcal{L} \otimes \mathcal{P}^*), \tag{2}$$

 $\pi_{1,2}: X \times_B X \longrightarrow X, \qquad \mathcal{P} = \mathcal{I}_\Delta \otimes \pi_1^* \mathcal{O}_X(\sigma) \otimes \pi_2^* \mathcal{O}_X(\sigma) \otimes \mathcal{K}_B^*.$

• Formally, one defines a functor,

$$\Phi: D^b(X) \longrightarrow D^b(X), \tag{3}$$

$$\Phi(V) = R\pi_{2*}(\pi_1^* V \otimes \mathcal{P}).$$
(4)

• Since V is (semi)stable, degree zero,

$$\Phi(V) = i_{S*}\mathcal{L}[-1]. \tag{5}$$

• By comparing $Ch(\Phi(V))$ and $Ch(i_{S*}\mathcal{L})$, and making some assumptions about Pic(S), it is possible to derive topological constraints on V. Anderson, Gao, MK, 2019

FMW. 97

Andreas, Curio, Ruiperez, Yau, 2000

• Fourier-Mukai gives a one-to-one correspondence, BBRH, 2008

$$V \leftrightarrow (\mathcal{L}, S),$$
 (6)

and preserves semistability.

 FM transform can be used to derive constraints for small instanton transitions. Specially in 4D, M5 branes that wrap the fiber or a curve in base B, can get absorbed or emitted by the end of the world branes. Using the data (L, S, X) we can find the F-theory dual, in particular in 4D,

$$Def(S) \iff Def(X_F),$$
 (7)

$$H^{1,1}(S) \longleftrightarrow H^{2,2}(X_F),$$
 (8)

$$J(S) \quad \longleftrightarrow \quad IJ(X_F). \tag{9}$$

• In stable degeneration limit, (\mathcal{L}, S) maps to the spectral data (\mathcal{L}_F, S_F) embedded in *P*1 fibration over singular locus corresponding to the Higgs bundle inside the 7 - branes. Donagi, Wijnholt, 2008

Beasley, Heckman, Vafa, 2008

Limitations

The calculations in FMW are based on many assumptions, that limit their validity. S must smooth and generic, divisors on S are induced from the ambient space, and X is given Weierstrass model. However,

• If S is reducible,

Anderson, Gao, MK, 2019

$$S = S_1 \cup_{\Sigma} S_2, \tag{10}$$

and \mathcal{L} a general coherent sheaf on (of rank 1) S, Ch(V) will be inconsistent with what has been derived in FMW. Deformations are obstructed.

• In GLSM's V is defined by a monad,

Anderson, Gao, MK, 2019

$$0 \longrightarrow V \longrightarrow \mathcal{H} \longrightarrow \mathcal{N} \longrightarrow 0, \tag{11}$$

Generally, the spectral sheaf of such bundles are supported over non-reduced schemes. So FMW's analysis is not sufficient for many Heterotic Pheno models.

• By deforming S, NS(S) can jump.

Mohsen Karkheiran (Virginia Tech)

Curio, 2012

Elliptically fibered Calabi-Yau with SU(n) exceptional divisor

• X doesn't need to be Weierstrass model. Assume,

$$E_1, E_2, \dots, E_{n-1} \tag{12}$$

are exceptional divisors corresponding to the SU(n) Cartan.

 Since X has a (holomorphic section) section σ, the "Poincare sheaf" defined as,
 Caldararu, 98

$$\mathcal{P} = \mathcal{I}_{\Delta} \otimes \pi_1^* \mathcal{O}_X(\sigma) \otimes \pi_2^* \mathcal{O}_X(\sigma), \tag{13}$$

The functor Φ defined as before is still Fourier-Mukai. And can be used to find Ch(V). In particular, E_i can induce (-2)-curves inside S (e), and they contribute as (For SU(2) singularity and B = P²)

$$c_1(\mathcal{L}) \to c_1(\mathcal{L}) + \beta e,$$
 (14)

$$c_2(V) \to c_2(V) + \beta^2 f - \beta D \cdot E, \qquad (15)$$

 $c_3(V) \to c_3(V). \tag{16}$

 To find F-theory dual, we need to go to a limit where vol(f) >> vol(E_i · f), i.e. practically we need to blow down E_i,

$$\begin{array}{ccc} X \xrightarrow{\rho} X_{sing} \\ & \downarrow \\ & \downarrow \\ & \chi_F \end{array} \tag{17}$$

But there is no FM functor between $D^b(X)$ and $D^b(X_{sing})$, so it's not correct to define the spectral data (\mathcal{L}, S) in the singular limit.

• There are new possibilities for small instanton transitions, for example if

$$[c_1] = D \cdot (D - E), \tag{18}$$

$$0 \longrightarrow \tilde{V} \longrightarrow V \longrightarrow i_{c_1*}\mathcal{O}_{c_1}(-1) \longrightarrow 0$$
(19)

Corresponds to absorption of an M5 brane wraps on $[c_1]$.

Anderson, Gao, MK, 2019

• Contrary to older analysis, neither gauge or chirality of the effective theory changes.

- Assume $\pi : X \longrightarrow B$ is an elliptically fibered Calabi-Yau, with $rk(MW) \neq 0$. Let σ to be zero section and S_i be the generators.
- If σ is holomorphic, the Poincare sheaf that defined as before will be well defined and Φ will be Fourier-Mukai.
- We get new formulas for *Ch*(*V*), no new contribution in chirality of EFT.
- If σ is rational then the Poincare sheaf is not well defined. We didn't find a canonical way to deal with this problem.

Possible contribution in EFT's chirality

• If we can X admits a birational transformation (a flop in particular),

Then $Rq_*Lp^*: D^b(X) \longrightarrow D^b(X')$ is an equivalence. Bondal, Orlov, 95

- If σ becomes a holomorphic section after the flop, we get can define \mathcal{P} and Φ as before for in X' rather than X.
- We hoped to see extra contribution to the EFT chirality from the (-1)-curves inside σ (in X). We can show (in case S is generic and smooth), Anderson, Gao, MK

$$R\pi_* V = R\pi'_* (\mathcal{L}^{\bullet} \otimes \mathcal{O}_{\sigma'})$$
(21)

From this it's clear that if $\mathcal{L}_0 \neq 0$ we have extra contributions to the index of V, and therefore the chirality in the effective theory.

(20

