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What is a Black Hole?

Image of Sgr A* by EHT Collaboration

A region of spacetime in which gravity is so strong that light
cannot escape.
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What is a Black Hole?

A few such regions in Minkowski space...

Something more is needed. A black hole must also be “small” in
some appropriate sense.
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The Standard Approach

Require spacetime to be asymptotically flat.

asymptotically empty and simple

(M̃, g̃)
φ
↪−→ (M̂, ĝ)

↪→ ψ

weakly asymptotically empty and simple (U, g) ⊂ (M, g)
↓

future asymptotically predictable J + ⊂ D+(S )

Bc ⊂M is then the complement of

J−1(J +) := J−
(

(φ ◦ ψ)−1
(
Ĵ−1(J +)

))
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Ĵ−1(J +)

))

5 / 22



Extant Generalizations

Largely centered around trapped surfaces.

Fruitful for numerical and thermodynamic
concerns.

Arguably fall short of capturing the black
hole concept.
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A New Approach

We would like to capture “smallness” without referencing J +.

IIV

II

III

Key observation: compactness only fails due to singular limits.
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Salvaging Compactness

Suppose we are gifted the family U of singular neighborhoods.

IIV

II

III

We now define a closed set A ⊂M to be singularly compact if
A\U is compact for every U ∈ U .
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A Dual Perspective

Definition
Let F be the family of singularly compact future sets. The
Black Region B is given by

B :=
⋃
A∈F

A.

Rather than the points from which one can’t reach infinity, we iden-
tify B as the points from which one must approach a singularity.

Lemma
p ∈ B ⇐⇒ J+(p) is singularly compact.
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Examples: Schwarzschild
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Examples: deSitter Schwarzschild
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Examples: Kerr
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Strong Cosmic Censorship indicates this should not be an issue.
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Locating Singularities

Must confront the identification of U .

What do we mean by a physical “singularity”?

How can we characterize being “close” to a singularity?
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Boundary Constructions

Idea: construct topological space M comprised of M together with
“boundary points”.

Several approaches in ’70s:

• c-boundary

• g-boundary

• b-boundary

Topological defects (Geroch, Can-Bin, & Wald - 1982).
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Abstract Boundary

Proposed in 1994 (Scott and Szekeres); topology in 2014 (Barry
and Scott).

Motivation: generalize coordinate chart intuition.

Here, B covers B′, written B . B′.
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Abstract Boundary

Equivalence relation: B ∼ B′ ⇐⇒ B . B′ and B′ . B.

The abstract boundary is then

B(M) :=
{

[p]
∣∣ p ∈ ∂(φ(M)) for some φ : M → M̂

}

M = R example. B(M) contains three points.
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Singular Neighborhoods

How should one characterize a neighborhood in M of an abstract
boundary set [B]?

Here, B is strongly attached to U .
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Singular Neighborhoods

This yields a natural topology on M := M ∪ B(M), with basis

{U ∪ BU
∣∣ U ⊂M open}

The metric may now be invoked to classify certain abstract
boundary points as singularities.

The singular neighborhoods of M may finally be identified as open
sets in M containing all singularities.
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Characterizing B

With our framework fully specified, we may prove results towards
the structure of B.

Theorem
Let (M, g) be strongly causal. If p ∈ B, then every sequence along
the end of an inextendible, future-directed causal curve through p
has a pure singularity as an accumulation point in M .

This formalizes the intuition that one must approach a singularity
from B.
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Characterizing B

Theorem
If there exists an envelopment φ : M → M̂ under which φ(I+(p))

is compact and every boundary point in M̂ attached to I+(p) is a
pure singularity, then p ∈ B.

This formalizes our prior procedure for identifying B in examples.
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Framing Cosmic Censorship

Heuristically, the weak cosmic censorship conjecture states that
singularities must be hidden behind black holes.

In our framework,

Conjecture (Global Weak Cosmic Censorship)

In a generic, maximal, physically admissible spacetime (M, g)
which admits a complete space-like hypersurface Σ, there exists a
singular neighborhood U ∈ U such that U ∩D+(Σ) ⊂ B.
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Contributions

• Provided a general program for identifying black holes in any
spacetime, squarely grounded in their intuitive description.

• Demonstrated this program to enjoy intuitive and desirable
features.

• Used this framework to provide a more general alternative
rigorous formulation of an important open problem in general
relativity.

Further detail can be found in preprint, On the Definition of Black
Holes: Bridging the Gap Between Black Holes and Singularities
(2022).
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