Triality of Two-dimensional (0,2) Theories

Jirui Guo

J.Guo, B.Jia, E.Sharpe, arXiv:1501.00987

April 11, 2015

Outline

1 2d N = (0,2) Gauge Theories

2 Triality

- Proposal
- Checks
- Low Energy Description

3 Chiral Rings

- Chiral Rings in (0,2) Theories
- Bott-Borel-Weil Theorem

4 Examples

2d N = (0,2) Gauge Theories Triality Chiral Rings Examples

2d N = (0,2) Gauge Theories

• Two fermionic coordinates: $\theta_+, \overline{\theta}_+$

- Two fermionic coordinates: $\theta_+, \overline{\theta}_+$
- Chiral Multiplet $\Phi: \overline{\mathcal{D}}_+ \Phi = 0$

$$\Phi = \phi + \sqrt{2}\theta^+\psi_+ - i\theta^+\overline{\theta}^+\partial_+\phi$$

- Two fermionic coordinates: $\theta_+, \overline{\theta}_+$
- Chiral Multiplet $\Phi: \overline{\mathcal{D}}_+ \Phi = 0$ $\Phi = \phi + \sqrt{2}\theta^+ \psi_+ - i\theta^+ \overline{\theta}^+ \partial_+ \phi$
- Fermi Multiplet Ψ : $\overline{D}_+\Psi = \sqrt{2}E(\Phi)$ $\Psi = \psi_- - \sqrt{2}\theta^+G - i\theta^+\overline{\theta}^+\partial_+\psi_- - \sqrt{2}\overline{\theta}^+E$

- Two fermionic coordinates: $\theta_+, \overline{\theta}_+$
- Chiral Multiplet $\Phi: \overline{\mathcal{D}}_+ \Phi = 0$ $\Phi = \phi + \sqrt{2}\theta^+ \psi_+ - i\theta^+ \overline{\theta}^+ \partial_+ \phi$
- Fermi Multiplet Ψ : $\overline{\mathcal{D}}_+ \Psi = \sqrt{2}E(\Phi)$ $\Psi = \psi_- - \sqrt{2}\theta^+ G - i\theta^+ \overline{\theta}^+ \partial_+ \psi_- - \sqrt{2}\overline{\theta}^+ E$
- Vector Multiplet: $V = v 2i\theta^+\lambda_- 2i\overline{\theta}^+\overline{\lambda}_- + 2\theta^+\overline{\theta}^+D$

2d N = (0,2) Gauge Theories Triality Chiral Rings Examples

2d N = (0,2) Gauge Theories

• J-term: $\int d\theta^+ \Psi_i J^i(\Phi) \big|_{\overline{\theta}^+=0}$

- J-term: $\int d\theta^+ \Psi_i J^i(\Phi) \big|_{\overline{\theta}^+=0}$
- Fayet-Illiopoulos term: $\frac{t}{4} \int d\theta^+ \Lambda|_{\overline{\theta}^+=0}$, where $t = ir + \frac{\theta}{2\pi}$

- J-term: $\int d\theta^+ \Psi_i J^i(\Phi) \big|_{\overline{\theta}^+=0}$
- Fayet-Illiopoulos term: $\frac{t}{4} \int d\theta^+ \Lambda|_{\overline{\theta}^+=0}$, where $t = ir + \frac{\theta}{2\pi}$
- Potential for the scalars:

$$V = \frac{e^2}{2}D^a D^a + \sum_a |E_i(\phi)|^2 + \sum_a |J_i(\phi)|^2$$

• Triality: IR equivalence of three 2d (0,2) gauge theories [Gadde,Gukov,Putrov 1310.0818]

- Triality: IR equivalence of three 2d (0,2) gauge theories [Gadde,Gukov,Putrov 1310.0818]
- Matter Content

- Triality: IR equivalence of three 2d (0,2) gauge theories [Gadde,Gukov,Putrov 1310.0818]
- Matter Content

J-te

$$\begin{split} & \Phi \quad \Psi \quad P \quad \Gamma \quad \Omega \\ \hline U(N_c) & \Box \quad \overline{\Box} \quad \overline{\Box} \quad \mathbf{1} \quad \det \\ & \mathsf{SU}(N_1) & \mathbf{1} \quad \mathbf{1} \quad \Box \quad \overline{\Box} \quad \mathbf{1} \\ & \mathsf{SU}(N_2) & \overline{\Box} \quad \mathbf{1} \quad \mathbf{1} \quad \Box \quad \mathbf{1} \\ & \mathsf{SU}(N_3) \\ & \mathsf{SU}(2) & \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \\ & \mathsf{SU}(2) & \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{1} \\ & \mathsf{N}_c = (N_1 + N_2 - N_3)/2 \\ \\ \mathsf{rm:} \quad \mathcal{L}_J = \int d\theta^+ Tr(\Gamma \Phi P) \big|_{\overline{\theta}^+ = 0} \end{split}$$

- Triality: IR equivalence of three 2d (0,2) gauge theories [Gadde,Gukov,Putrov 1310.0818]
- Matter Content

- J-term: $\mathcal{L}_J = \int d\theta^+ Tr(\Gamma \Phi P) \Big|_{\overline{\theta}^+ = 0}$
- Triality under permutation of N₁, N₂, N₃

Proposal Checks Low Energy Description

Quiver Diagram

Checks

• Non-abelian Flavor Anomalies:

$$k_{SU(N_1)} = -\frac{1}{4}(-N_1 + N_2 + N_3)$$

$$k_{SU(N_2)} = -\frac{1}{4}(+N_1 - N_2 + N_3)$$

$$k_{SU(N_3)} = -\frac{1}{4}(+N_1 + N_2 - N_3)$$

Invariant under cyclic permutations of N_1, N_2, N_3

Checks

Central Charge:

$$c_{R} = \frac{3}{4} \frac{(-N_{1} + N_{2} + N_{3})(N_{1} - N_{2} + N_{3})(N_{1} + N_{2} - N_{3})}{N_{1} + N_{2} + N_{3}}$$

$$c_{L} = c_{R} - \frac{1}{4}(N_{1}^{2} + N_{2}^{2} + N_{3}^{2} - 2N_{1}N_{2} - 2N_{2}N_{3} - 2N_{3}N_{1}) + 2$$

Both are invariant under the permutations of N_1, N_2, N_3

Central Charge:

$$c_{R} = \frac{3}{4} \frac{(-N_{1} + N_{2} + N_{3})(N_{1} - N_{2} + N_{3})(N_{1} + N_{2} - N_{3})}{N_{1} + N_{2} + N_{3}}$$

$$c_{L} = c_{R} - \frac{1}{4}(N_{1}^{2} + N_{2}^{2} + N_{3}^{2} - 2N_{1}N_{2} - 2N_{2}N_{3} - 2N_{3}N_{1}) + 2$$

Both are invariant under the permutations of N_1, N_2, N_3

• Elliptic Genus is also invariant under the permutations.

General Quiver Gauge Theories

The triality transformation can be applied to any gauge node in a general quiver gauge theory

[Gadde,Gukov,Putrov 1310.0818]

Geometry of the Triality

$$N = \frac{N_1 + N_2 + N_3}{2}, n_i = N - N_i$$

 At the fixed point, the simple global symmetry G is enhanced to the affine symmetry G_{2|kG|}

- At the fixed point, the simple global symmetry *G* is enhanced to the affine symmetry *G*_{2|*k*_G|}
- Chirality of the affine algebra is determined by the sign of *k*_G

- At the fixed point, the simple global symmetry *G* is enhanced to the affine symmetry *G*_{2|*k*_G|}
- Chirality of the affine algebra is determined by the sign of *k*_G
- Left-moving affine algebra is: $\mathcal{R} = \prod_{i=1}^{3} SU(N_i)_{n_i} \times U(1)_{NN_i}$

- At the fixed point, the simple global symmetry *G* is enhanced to the affine symmetry *G*_{2|*k*_G|}
- Chirality of the affine algebra is determined by the sign of *k*_G
- Left-moving affine algebra is: $\mathcal{R} = \prod_{i=1}^{3} SU(N_i)_{n_i} \times U(1)_{NN_i}$
- Sugawara central charge for \mathcal{R} is $c_{\mathcal{R}} = \sum_{i=1}^{3} \left(\frac{n_i(N_i^2-1)}{n_i+N_i} + 1 \right)$

- At the fixed point, the simple global symmetry *G* is enhanced to the affine symmetry *G*_{2|*k*_G|}
- Chirality of the affine algebra is determined by the sign of *k*_G
- Left-moving affine algebra is: $\mathcal{R} = \prod_{i=1}^{3} SU(N_i)_{n_i} \times U(1)_{NN_i}$
- Sugawara central charge for \mathcal{R} is $c_{\mathcal{R}} = \sum_{i=1}^{3} \left(\frac{n_i(N_i^2 1)}{n_i + N_i} + 1 \right)$
- The full spectrum H = ⊕_λ H^λ_L ⊗ H^λ_R, λ runs over all integrable representations of R

• The partition function $Z(\tau, \xi_i; \overline{\tau}, \overline{\eta}) = \sum_{\lambda} \chi_{\lambda}(\tau, \xi_i) K_{\lambda}(\overline{\tau}, \overline{\eta})$

- The partition function $Z(\tau, \xi_i; \overline{\tau}, \overline{\eta}) = \sum_{\lambda} \chi_{\lambda}(\tau, \xi_i) K_{\lambda}(\overline{\tau}, \overline{\eta})$
- K_{λ} transforms as a character of holomorphic \mathcal{R}^{t} symmetry under modular transformation, where $\mathcal{R}^{t} = \prod_{i=1}^{3} SU(n_{i})_{N_{i}} \times U(1)_{N_{i}}$

- The partition function $Z(\tau, \xi_i; \overline{\tau}, \overline{\eta}) = \sum_{\lambda} \chi_{\lambda}(\tau, \xi_i) K_{\lambda}(\overline{\tau}, \overline{\eta})$
- K_{λ} transforms as a character of holomorphic \mathcal{R}^{t} symmetry under modular transformation, where $\mathcal{R}^{t} = \prod_{i=1}^{3} SU(n_{i})_{N_{i}} \times U(1)_{Nn_{i}}$
- Right-moving sector = Supersymmetric Kazama-Suzuki coset model *G*/*R^t*

- The partition function $Z(\tau, \xi_i; \overline{\tau}, \overline{\eta}) = \sum_{\lambda} \chi_{\lambda}(\tau, \xi_i) K_{\lambda}(\overline{\tau}, \overline{\eta})$
- K_{λ} transforms as a character of holomorphic \mathcal{R}^{t} symmetry under modular transformation, where $\mathcal{R}^{t} = \prod_{i=1}^{3} SU(n_{i})_{N_{i}} \times U(1)_{Nn_{i}}$

Right-moving sector = Supersymmetric Kazama-Suzuki coset model *G*/*R*^t

• By comparing the right-moving central charge, $\mathcal{G} = U(N)_N$

- The partition function $Z(\tau, \xi_i; \overline{\tau}, \overline{\eta}) = \sum_{\lambda} \chi_{\lambda}(\tau, \xi_i) K_{\lambda}(\overline{\tau}, \overline{\eta})$
- K_{λ} transforms as a character of holomorphic \mathcal{R}^{t} symmetry under modular transformation, where $\mathcal{R}^{t} = \prod_{i=1}^{3} SU(n_{i})_{N_{i}} \times U(1)_{N_{n_{i}}}$
- Right-moving sector = Supersymmetric Kazama-Suzuki coset model *G*/*R*^t
- By comparing the right-moving central charge, $G = U(N)_N$

$$\mathcal{H} = \bigoplus_{\lambda,\lambda'} L_{\lambda,\lambda'} \mathcal{H}_{L,WZW}^{\lambda} \bigotimes \mathcal{H}_{R,KS}^{\lambda'}$$

[Gadde,Gukov,Putrov 1404.5314]

 The set of all states annihilated by a right-moving supercharge forms a ring

- The set of all states annihilated by a right-moving supercharge forms a ring
- The massless states in the (R,R) sector have the form

$$b_{\overline{\imath}_1,\cdots,\overline{\imath}_n,a_1,\cdots,a_m}\lambda_-^{a_1}\cdots\lambda_-^{a_m}\psi_+^{\overline{\imath}_1}\cdots\psi_+^{\overline{\imath}_n}|0
angle$$

- The set of all states annihilated by a right-moving supercharge forms a ring
- The massless states in the (R,R) sector have the form

$$b_{\overline{\imath}_1,\cdots,\overline{\imath}_n,a_1,\cdots,a_m}\lambda_-^{a_1}\cdots\lambda_-^{a_m}\psi_+^{\overline{\imath}_1}\cdots\psi_+^{\overline{\imath}_n}|0
angle$$

• The Fock vacuum is defined by $\psi^i_+|0\rangle = \lambda^{\bar{a}}_-|0\rangle = 0$, it transforms as a section of

$$(\det \mathcal{E})^{-1/2} \otimes K_X^{+1/2}$$

- The set of all states annihilated by a right-moving supercharge forms a ring
- The massless states in the (R,R) sector have the form

$$b_{\overline{\imath}_1,\cdots,\overline{\imath}_n,a_1,\cdots,a_m}\lambda_-^{a_1}\cdots\lambda_-^{a_m}\psi_+^{\overline{\imath}_1}\cdots\psi_+^{\overline{\imath}_n}|0
angle$$

• The Fock vacuum is defined by $\psi^i_+|0\rangle = \lambda^{\bar{a}}_-|0\rangle = 0$, it transforms as a section of

$$(\det \mathcal{E})^{-1/2} \otimes K_X^{+1/2}$$

 The massless chiral states realize the sheaf cohomology groups

$$H^n\left(X,(\wedge^m\mathcal{E})\otimes(\det\mathcal{E})^{-1/2}\otimes K_X^{+1/2}\right)$$

Bott-Borel-Weil Theorem

Let β and γ be some dominant weights of U(k) and U(n-k) respectively, if there is a way to transfer $\alpha = (\beta, \gamma)$ into a dominant weight $\tilde{\alpha}$ of U(n), then the cohomology

$$H^{\bullet}(G(k,n), K_{\beta}S^* \otimes K_{\gamma}Q^*) = K_{\tilde{\alpha}}V^*\delta^{\bullet, l(\alpha)},$$

where *V* is the fundamental representation of U(n), and $l(\alpha)$ is the number of elementary transformations performed. Otherwise, $H^{\bullet}(G(k, n), K_{\beta}S^* \otimes K_{\gamma}Q^*) = 0$.

• Elementary transformation:

$$(\cdots, a, b, \cdots) \rightarrow (\cdots, b-1, a+1, \cdots)$$

Elementary transformation: (..., a, b, ...) → (..., b - 1, a + 1, ...)
Example 1: Sym²S^{*} ⊗ Sym²Q^{*} over G(2, 4) (2, 0, 2, 0) → (2, 1, 1, 0) H^m(G(2, 4), Sym²S^{*} ⊗ Sym²Q^{*}) = 0 for m ≠ 1 H¹(G(2, 4), Sym²S^{*} ⊗ Sym²Q^{*}) = K_(2,1,1,0)C⁴

- Elementary transformation: (..., a, b, ...) → (..., b - 1, a + 1, ...)
 Example 1: Sym²S^{*} ⊗ Sym²Q^{*} over G(2, 4) (2, 0, 2, 0) → (2, 1, 1, 0) H^m(G(2, 4), Sym²S^{*} ⊗ Sym²Q^{*}) = 0 for m ≠ 1 H¹(G(2, 4), Sym²S^{*} ⊗ Sym²Q^{*}) = K_(2,1,1,0)C⁴
- Example 2: $H^{\bullet}(G(2,4), \wedge^2 S^* \otimes Sym^2 Q^*) = 0$

First Example

•
$$N_1 = 2, N_2 = 3, N_3 = 3, N_c = 1$$

First Example

- $N_1 = 2, N_2 = 3, N_3 = 3, N_c = 1$
- Positive Phase: $S^{\oplus 3} \bigoplus Q^{*\oplus 2} \bigoplus S^{*\oplus 2} \rightarrow \mathbb{P}^2$ Negative Phase: $S^{*\oplus 3} \bigoplus Q^{*\oplus 3} \bigoplus S^{\oplus 2} \rightarrow \mathbb{P}^1$

First Example

- $N_1 = 2, N_2 = 3, N_3 = 3, N_c = 1$
- Positive Phase: S^{⊕3} ⊕ Q^{*⊕2} ⊕ S^{*⊕2} → P²
 Negative Phase: S^{*⊕3} ⊕ Q^{*⊕3} ⊕ S^{⊕2} → P¹
- Global Symmetry: $SU(2) \times SU(3) \times SU(3) \times SU(2) \times U(1)^3$

States shared between the two phases:

States as representations of	r >> 0		r << 0				
$SU(2) \times SU(3) \times SU(3) \times SU(2)$	$\wedge^{\bullet} \mathcal{E}$	$H^{ullet}(\mathbb{P}^2)$	$\wedge^{\bullet} \mathcal{E}$	$H^{ullet}(\mathbb{P}^1)$	$U(1)^3$ charges		
(1,1,1,1)	0	0	0	0	(+3, 0, -3)		
(1,3,1,2)	1	0	2	1	(+2, -1/2, -3/2)		
(1,3,1,1)	2	1	2	1	(+1, +2, -3)		
(2,1,3,1)	2	1	1	0	(+2,0,-2)		
(2,1,3,1)	7	1	7	1	(-2,0,+2)		
(1,3,1,1)	7	1	6	0	(-1,-2,+3)		
(1,3,1,2)	8	2	6	0	(-2,+1/2,+3/2)		
(1,1,1,1)	9	2	8	1	(-3,0,+3)		

States not shared between the two phases:

States as representations of	r >> 0		r << 0		
$SU(2) \times SU(3) \times SU(3) \times SU(2)$	$\wedge^{\bullet} \mathcal{E}$	$H^{\bullet}(\mathbb{P}^2)$	$\wedge^{\bullet} \mathcal{E}$	$H^{\bullet}(\mathbb{P}^1)$	$U(1)^3$ charges
(1,6,1,1)	2	0	-	-	(+1, -1, 0)
(2,8,1,1)	3	0	-	-	(0, 0, 0)
(1,6,1,1)	4	0	-	-	(-1, +1, 0)
(1,6,1,1)	5	2	-	-	(+1, -1,0)
(2,8,1,1)	6	2	-	-	(0,0,0)
(1,6,1,1)	7	2	-	-	(-1, +1, 0)
(4,1,1,1)	-	-	3	0	(0,0,0)
(4,1,1,1)	-	-	5	1	(0,0,0)

• The massless spectrum is invariant under Serre duality

- The massless spectrum is invariant under Serre duality
- The discrepancy between the two phases may due to nonperturbative corrections [McOrist,Melnikov 1103.1322]

- The massless spectrum is invariant under Serre duality
- The discrepancy between the two phases may due to nonperturbative corrections [McOrist,Melnikov 1103.1322]
- The unshared states do not contribute to elliptic genera and none of them is integrable [Guo,Jia,Sharpe 1501.0098]

- The massless spectrum is invariant under Serre duality
- The discrepancy between the two phases may due to nonperturbative corrections [McOrist,Melnikov 1103.1322]
- The unshared states do not contribute to elliptic genera and none of them is integrable [Guo,Jia,Sharpe 1501.0098]
- The third geometry is obtained by switching N₂ and N₃ ⇒ same as the negative phase in this example

Second Example

•
$$N_1 = 4, N_2 = 2, N_3 = 4, N_c = 1$$

Second Example

•
$$N_1 = 4, N_2 = 2, N_3 = 4, N_c = 1$$

Positive Phase: S^{⊕4} ⊕ Q^{*⊕4} ⊕ S^{*⊕2} → P¹
 Negative Phase: S^{*⊕4} ⊕ Q^{*⊕2} ⊕ S^{⊕2} → P³

Second Example

•
$$N_1 = 4, N_2 = 2, N_3 = 4, N_c = 1$$

- Positive Phase: $S^{\oplus 4} \bigoplus Q^{* \oplus 4} \bigoplus S^{* \oplus 2} \to \mathbb{P}^1$ Negative Phase: $S^{* \oplus 4} \bigoplus Q^{* \oplus 2} \bigoplus S^{\oplus 2} \to \mathbb{P}^3$
- Global Symmetry: $SU(4) \times SU(2) \times SU(4) \times SU(2) \times U(1)^3$

States shared between the two phases:

States as representations of	r >> 0		r << 0				
$SU(4) \times SU(2) \times SU(4) \times SU(2)$	$\wedge^{\bullet} \mathcal{E}$	$H^{ullet}(\mathbb{P}^1)$	$\wedge^{\bullet} \mathcal{E}$	$H^{ullet}(\mathbb{P}^3)$	$U(1)^3$ charges		
(1,3,1,1)	0	0	2	2	(+4, 0, -4)		
(1,2,4,1)	1	0	2	1	(+4, -1, -3)		
(4,2,1,1)	1	0	3	2	(+3, +1, -4)		
(1,4,1,2)	1	0	4	3	(+2,0,-2)		
(1,4,1,2)	9	1	8	0	(-2,0,+2)		
(4,2,1,1)	9	1	9	1	(-3,-1,+4)		
(1,2,4,1)	9	1	10	2	(-4,+1,+3)		
(1,3,1,1)	10	1	10	1	(-4,0,+4)		

States not shared between the two phases:

States as representations of	r >> 0		r << 0				
$SU(4) \times SU(2) \times SU(4) \times SU(2)$	$\wedge^{\bullet} \mathcal{E}$	$H^{ullet}(\mathbb{P}^1)$	$\wedge^{\bullet} \mathcal{E}$	$H^{\bullet}(\mathbb{P}^3)$	$U(1)^3$ charges		
(1,5,1,1)	2	0	-	-	(0, 0, 0)		
(1,5,1,1)	8	1	-	-	(0, 0, 0)		
(10,1,1,1)	-	-	4	0	(+2, -2, 0)		
(10,1,1,1)	-	-	8	3	(-2, +2, 0)		
: · · · · · · · · · · · · · · · · · · ·							
(20,1,1,1)	-	-	6	0	(0,0,0)		
(20,1,1,1)	-	-	6	3	(0,0,0)		
(1,20,1,2)	-	-	5	0	(+1,-1,0)		
(1,20,1,2)	-	-	7	3	(-1,+1,0)		

- $N_1 = 2, N_2 = 2, N_3 = 2, N_c = 1$, global symmetry $SU(2) \times SU(2) \times SU(2) \times SU(2)$
- Both Phases: $S^{\oplus 2} \bigoplus Q^{* \oplus 2} \bigoplus S^{* \oplus 2} \rightarrow \mathbb{P}^1$

- N₁ = 2, N₂ = 2, N₃ = 2, N_c = 1, global symmetry SU(2) × SU(2) × SU(2) × SU(2)
- Both Phases: $S^{\oplus 2} \bigoplus Q^{* \oplus 2} \bigoplus S^{* \oplus 2} \rightarrow \mathbb{P}^1$
- Symmetry Enhancement in the Infrared: For N_c = 1, Ψ transforms in the same way as Ω, SU(N₃) and SU(2) combine to form SU(N₃ + 2)

- N₁ = 2, N₂ = 2, N₃ = 2, N_c = 1, global symmetry SU(2) × SU(2) × SU(2) × SU(2)
- Both Phases: $S^{\oplus 2} \bigoplus Q^{* \oplus 2} \bigoplus S^{* \oplus 2} \rightarrow \mathbb{P}^1$
- Symmetry Enhancement in the Infrared: For $N_c = 1$, Ψ transforms in the same way as Ω , $SU(N_3)$ and SU(2) combine to form $SU(N_3 + 2)$
- For $N_1 = 2, N_2 = 2, N_3 = 2, N_c = 1$, the flavor symmetry is enhanced to E_6 at level 1 in the infrared

• Under the $(SU(2)^4)/\mathbb{Z}_2$ subgroup of E_6 , 27 = (2, 2, 1, 1) + (2, 1, 2, 1) + (2, 1, 1, 2)+(1, 2, 2, 1) + (1, 2, 1, 2) + (1, 1, 2, 2) + 3(1, 1, 1, 1)

- Under the $(SU(2)^4)/\mathbb{Z}_2$ subgroup of E_6 , 27 = (2, 2, 1, 1) + (2, 1, 2, 1) + (2, 1, 1, 2)+(1, 2, 2, 1) + (1, 2, 1, 2) + (1, 1, 2, 2) + 3(1, 1, 1, 1)
- There are 54 states shared between the two phases and they form two copies of the decomposition above [Guo,Jia,Sharpe 1501.0098]

• Triality: IR equivalence of three 2d (0,2) gauge theories

- Triality: IR equivalence of three 2d (0,2) gauge theories
- It can be described at the level of GLSM and NLSM

- Triality: IR equivalence of three 2d (0,2) gauge theories
- It can be described at the level of GLSM and NLSM
- The IR fixed point can be deduced by symmetry and properties of the elliptic genera

- Triality: IR equivalence of three 2d (0,2) gauge theories
- It can be described at the level of GLSM and NLSM
- The IR fixed point can be deduced by symmetry and properties of the elliptic genera
- Massless chiral states realize the sheaf cohomology groups of vector bundles over the target space

- Triality: IR equivalence of three 2d (0,2) gauge theories
- It can be described at the level of GLSM and NLSM
- The IR fixed point can be deduced by symmetry and properties of the elliptic genera
- Massless chiral states realize the sheaf cohomology groups of vector bundles over the target space
- Bott-Borel-Weil theorem is an effective tool for computing sheaf cohomology groups

- Triality: IR equivalence of three 2d (0,2) gauge theories
- It can be described at the level of GLSM and NLSM
- The IR fixed point can be deduced by symmetry and properties of the elliptic genera
- Massless chiral states realize the sheaf cohomology groups of vector bundles over the target space
- Bott-Borel-Weil theorem is an effective tool for computing sheaf cohomology groups
- Examples agree with the triality proposal

- Triality: IR equivalence of three 2d (0,2) gauge theories
- It can be described at the level of GLSM and NLSM
- The IR fixed point can be deduced by symmetry and properties of the elliptic genera
- Massless chiral states realize the sheaf cohomology groups of vector bundles over the target space
- Bott-Borel-Weil theorem is an effective tool for computing sheaf cohomology groups
- Examples agree with the triality proposal
- The mismatched states become massive along RG flow

- Triality: IR equivalence of three 2d (0,2) gauge theories
- It can be described at the level of GLSM and NLSM
- The IR fixed point can be deduced by symmetry and properties of the elliptic genera
- Massless chiral states realize the sheaf cohomology groups of vector bundles over the target space
- Bott-Borel-Weil theorem is an effective tool for computing sheaf cohomology groups
- Examples agree with the triality proposal
- The mismatched states become massive along RG flow
- Enhanced IR global symmetry