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Generalities

Suppose that we can partition a system into V and its complement, and
the Hilbert space decomposes into HV ⊗HV complement.

Starting with some state in H (which can be pure, or mixed) and tracing
over the degrees of freedom in the complement of V yields a reduced
density matrix ρV .
This will be used to compute correlation functions of operators defined in
V only 〈O〉V = Tr(ρVO).

(von Neumann) Entanglement entropy SV = −Tr(ρV ln ρV ) is a measure
of entanglement for bi-partite pure states. It is non-zero if the original
(pure) state was entangled/non-separable.
A more refined measure of entanglement is the entanglement
Hamiltonian: ρV = N e−HV .



What are we after

What is the effect of the boundary conditions on entanglement?

What is the effect of zero-modes on entanglement?

We will consider a simple, yet interesting enough system to address these
questions: 1+1 dimensional chiral fermions.

The spatial direction is a circle.



Entanglement Hamiltonians for Free Fermions
Consider a system of spinless free fermions on a lattice: {ψi , ψj} = δij .
Then, given the correlation function

Gij ≡ 〈ψiψ
†
j 〉

all higher order correlators (by Wick’s theorem) can be expressed in terms
of Gij , e.g.

〈ψiψjψ
†
kψ
†
l 〉 = GjkGil − GikGjl .

Then on a subset of lattice sites, labelled V = {m, n, . . . }, the correlator
is computed with the help of the density matrix

G̃mn = Tr(ρVψmψ
†
n)

and, more generally, for any operator in V

〈O〉V = Tr(ρVOV )

To satisfy the factorization,

ρV ≡ N exp(−Hv ) = N exp(−
∑
m,n

hmnψ
†
mψn)

where Hv is the entanglement Hamiltonian.



The entanglement Hamiltonian may be diagonalized by some fermion
transformation ψi =

∑
k φk(i)ak with {ak , a†l } = δkl :

HV =
∑
k

εka
†
kak

which means that

hmn =
∑
k

εkφk(m)φ∗k(n)

Then N is determined from the normalization condition Tr(ρV ) = 1 and

G̃mn =
∑
k

1

exp(εk) + 1
φ∗k(m)φk(n).

Given the relationship between the e-vales of hV and the correlator C̃
then (Peschel, 2003)

hV = ln(G̃−1 − 1).



The kernel of the entanglement Hamiltonian can be expressed in integral
form as Casini, Huerta 2009

hV = −
∫ ∞

1
2

dβ

(
L(β) + L(−β)

)
where L(β) is the resolvent

L(β) = (G̃ + β − 1
2 )−1

More precisely, the correlation G̃ can be written in terms of the
un-projected correlator G as

G̃ = PVGPV

and where PV is a spatial projector on V .
To find the entanglement Hamiltonian we then have to compute the
resolvent L(β)

L(β) = (PVGPV + β − 1/2)−1



Green’s functions as projectors
Here we are addressing 1+1 dimensional chiral fermions, Majorana and
Dirac, on a spatial circle x ∼ x + 2πR.
For Majorana fermions, the Lagrangian is

L = i
2ψ(∂t + ∂x)ψ

and we have two possible boundary conditions:

I Neveu-Schwarz/anti-periodic: ψ(x + 2πR) = −ψ(x) which dictates
the mode expansion

ψ(t, x) =
1

2πR

∑
k

bk exp(−ik(t − x)/R), k ∈ Z + 1
2 , b−k = b†k ,

bk |Ω〉 = 0, for k > 0.

I Ramond/periodic: ψ(x + 2πR) = ψ(x) which dictates the mode
expansion

ψ(t, x) =
1

2πR

∑
k

bk exp(−ik(t − x)/R), k ∈ Z, b−k = b†k ,

bk |Ω〉 = 0, for k > 0.



I NS Green’s function as a projector:

GNS(x , y) = 〈Ω|ψ(x + i0+)ψ(y)|Ω〉 = exp(i(x − y)/(2R))n(x , y)

n(x , y) ≡ 〈x |n|y〉 = 1/(2πR)
∞∑
k=0

exp(ik(x − y + i0+)/R)

=
1

2πR

1

1− exp(i(x − y + i0+)/R)

Then, acting on the space of single-particle states spanned by the
momentum eigenstates |k〉, with

〈x |k〉 = (1/
√

2πR) exp(ikx/R),

n is a projector onto non-negative (k ≥ 0) momentum modes.
With Uα a unitary operator which induces a shift of momenta

Uα|k〉 = |k + 1
2 〉

the NS Green’s function GNS(x , y) = 〈x |GNS |y〉 can be written as

GNS = Uα=−1/2 n U
−1
α=−1/2



Upshot: (somewhat sketchily, we’ll come back to this).
To find the entanglement Hamiltonian in the NS sector we begin by
finding the resolvent

N(β) ≡ (PV nPV + β − 1/2)−1

From N(β) we get the resolvent in the NS sector by using the gauge
transform/spectral flow

L(β) = Uα=1/2NU
−1
α=1/2

and lastly we perform the β integral
∫
dβ(L(β) + L(−β)) to obtain the

EH.



What about the Ramond sector? There is a zero-energy mode which
complicates the story.

We’ll come back to this...

For now, there is another low-hanging fruit, chiral Dirac fermions.



Dirac fermions and their Green’s functions
For the Dirac fermions, with Lagrangian

L = i
2 Ψ†(∂t + ∂x)Ψ,

we find that we can impose more general BC

Ψ(x + 2πR, t) = e i2παΨ(x , t), α ∈ [0, 1).

The mode expansion of the chiral (right-movers) Dirac fermions is

Ψ(t, x) =
1√

2πR

∑
k

bk exp(−ik(t − x)/R)), k ∈ Z + α

and the ground state |Ω〉 is defined by

bk |Ω〉 = 0, for k > 0,

b†−k |Ω〉 = 0 for k > 0,

As long as α 6= 0, the Green’s function takes the same form as discussed
before, with a more general α:

Gα
Ψ (x , y) ≡ 〈Ω|Ψ(x + i0+)Ψ†(y)|Ω = exp(iα(x − y)/R)n(x , y)

So, we can write as before

GΨ = UαnU
−1
α .



What if α = 0?

If α = 0, then there is a zero mode |k〉 = 0 and the ground state is
degenerate:

b0|empty〉 = 0, b0|occupied〉 = |empty〉
b†0|empty〉 = |occupied〉, b†0|occupied〉 = 0

We will consider the case of a statistical mixture

ρ = 1
2 |occupied〉〈occupied + 1

2 |empty〉〈empty|

which would arise if we start from a finite-temperature Fermi Dirac
distribution and lower the temperature to zero.
Then, the Green’s function on this mixture (where all |k〉 states for k < 0
are occupied and there is 50% probability that the zero mode is
occupied) is

Gα=0
Ψ = n − 1

2 |0〉〈0|



The Ramond sector of chiral Majorana fermions
We come back now to the Majorana fermions ψ† = ψ.
In the R sector there is a zero-mode b0, with

{b0, b0} = 1.

The minimal non-trivial Hilbert space rep of the Clifford algebra is
2-dimensional. The ground state is again degenerate.
Our main assumption (following Peschel) is that the Green’s function
determines all subsequent correlators and we can obtain the
entanglement Hamiltonian from the Green’s function by computing the
appropriate resolvent.
However, the Green’s function in the R sector is the same

GR(x , y) =
1

2πR

[
− 1

2 +
∞∑
k=0

exp(ik(x − y + i0+)/R)

]
GR(x , y) = n(x , y)− 1

4πR
,

regardless on which linear combination of the two ground states we
evaluate it on, or whether we start with a mixture.
The EH we compute are for states which preserve parity (have a
vanishing vev for an odd number of Majorana operators, e.g. 〈b0〉 = 0).



Entanglement Hamiltonian for chiral Dirac fermions

Using the results of Peschel, and Casini-Huerta, the reduced density
matrix in the subset V of S1 defines the EH

ρV = N e−HV = N exp

(
−
∫
V

dxdyhV (x , y)Ψ(x)†Ψ(y)

)
If α 6= 0, the kernel of the EH is in terms determined from the resolvent

Lα(β) = UαNU
−1
α , α 6= 0

N(β) = (PV nPV + β − 1/2)−1

U−1
α hVUα = − ln((PV nPV )−1 − 1) = −

∫ ∞
1/2

dβ

(
N(β) + N(−β)

)
So, we must endeavor to find the resolvent N(β). Then we’ll sort out
α = 0.



A Riemann-Hilbert problem

To find the resolvent N(β) = (PV nPV + β − 1/2)−1 we use the fact that
n is a projector.
Start with

K (x , y) = f (x)n(x , y)g(x).

Suppose we want to compute (1 + K )−1.
Then this reduces to a RH problem: For

X (x) ∈ S1, X (x) = 1 + f (x)g(x),

we want to find X+,X− s.t.

X (x) = X−1
− X+(x), X+/X− has only positive/negative k modes

Assuming this is done then

(1 + K )−1 = 1− fX−1
+ nX−g

where f , g act multiplicatively on x-space: 〈x |f |y〉 = f (y)δ(x − y).
For us, f , g are equal to each other f (x) = g(x) = Θv (x) and equal to
the characteristic function of the subset V .



Let’s check!

(1 + K )(1 + K )−1 = (1 + fng)(1− fX−1
+ nX−gX−g)

?
= 1

A bit of algebra:

fng + fX−1
+ nX−g − fn gf X−1

+ nX−g
?
= 0

Substitute gf = X−1
− X+ − 1:

f (n − X−1
+ nX− − nX−1

− n X− + nX−1
+ n X−)g

?
= 0

Use next nX−1
+ n = X−1

+ n and nX−1
− n = nX−1

− .
It works!
So, in our case, all is left to do is find the X−, X+ functions, given that
f (x), g(x) are the equal to the characteristic function on V .



Suppose that we would be looking at the characteristic function on an
interval on the real axis.
Then we can write

ΘV=(a,b)⊂R =
1

2πi

(
ln

x − a− i0−

x − b − i0−
− ln

x − a + i0+

x − b + i0+

)
Since we are after X+/X− s.t. X−1

− X+ = 1−#fg = 1−#ΘV , by taking
the log we find

ln(1−#ΘV ) = ΘV ln(1−#)

and so

− ln(X−) + ln(X+) = ln(1−#)

[
1

2πi

(
ln

x − a− i0−

x − b − i0−
− ln

x − a + i0+

x − b + i0+

)]
Of course, we need to do this for a set of disjoint intervals, and we need
to do it on S1. Easy!



A quick look at X±, for V ∪ (aj , bj) ⊂ S1:

lnX± = ih(β)
∑
j

ln
e

i
R (x±iε) − e iaj

e
i
R (x±iε) − e ibj

≡ ih(β)Z∓

where

h(β) = 1−# = 1− 1

β − 1/2
=
β + 1/2

β − 1/2
.

We still have do the integral over β of

N(β) =
1

β − 1/2

(
1− 1

β − 1/2
fX−1

+ nX−g

)
whose kernel we have just computed:

〈x |N(β)|y〉 =
δ(x − y)

β − 1/2
− 1

β2 − 1/4
e−ih(β)Z+(x)+ih(β)Z+(y)n(x , y)



Dirac α = 0/ Majorana in the Ramond sector
Before we get there, what is the resolvent L(β) if α = 0?
If α = 0, the Green’s function wasn’t equal to some gauge transformed
projector n. Instead,

Gα=0
Ψ = n − 1

2 |0〉〈0|

We can think of this as the zero-mode being responsible for a rank one
perturbation of the problem we already solved.
We can do a Schwinger-Dyson expansion of

Lα=0(β) =
1

PV nPV − β + 1/2− 1
2PV |0〉〈0|PV

Lα=0(β) = N(β)
1

1− 1
2NPV |0〉〈0|PV

and resum!

Lα=0(β) = N(β) +
N(β)PV |0〉〈0|PVN(β)

2− 〈0|PVN(β)PV |0〉



As a bonus, we have just found a way to discuss excited states of the type

Gnew = n + |a〉〈a|

Their resolvent will be

(PVGnewPV + β − 1
2 )−1 = N(β) +

N(β)PV |a〉〈a|PVN(β)

1 + 〈a|PVN(β)PV |a〉

Side comment:
n − |k = 1〉〈k = 1|

is a genuine excited state since n is a projector onto non-negative
momentum modes, but

n + |k = −1〉〈k = −1|

is not.



Back to the Majorana fermions and their EH

Punch line: crucial factor of 1/2 difference :

hMajorana
V =

1

2
ln

(
(PVGPV )−1 − 1

)
Why? Consider the Majorana fermions defined on a lattice {ψi , ψj} = δij .
The reduced density matrix is

ρMajorana
V = N exp(−

∑
m,n

hmnψmψn)

and the entanglement Hamiltonian kernel hmn is an antisymmetric matrix
(no longer hermitian).
The correlation functions in the subset V can be shown to equal

G̃mn = 〈ψ(m)ψ(n)〉 =

(
1

1 + exp(−2hV )

)
mn



So, the EH kernel of the Majoranas is given in terms of the resolvent as

hMajorana
V =

1

2

∫ ∞
1/2

dβ

(
L(β) + L(−β)

)
and where L(β) is the same as for the Dirac fermions

L(β) = (PvG
MajoranaPv + β − 1/2)−1.

Does this make sense? We’ll see that it does - e.g. in computing the
entanglement entropy we expect that the EE for the Dirac fermions be
twice that of the Majoranas (one Dirac= two Majorana fermions).



Entanglement Hamiltonian(s)

Time to compute some integrals!

The easy ones first: α 6= 0 (we can do both generic Dirac BC and
Majorana NS chiral fermions at the same time).
Combining L(β) + L(−β) yields

hDirac
V ,α6=0 = 2π

∫ ∞
−∞

dh e iα(x−y)/R nPV (x , y)e−ih(Z+(x)−Z+(y))

where nPV = n − 1
2 .

We find

hDirac
V ,α 6=0 = 4π2e iα(x−y)/RnPV (x , y)δ(Z+(x)− Z+(y))

Evaluating the solutions yl(x) of Z (x) = Z (y), there will be a trivial
solution y = x which yields a local contribution to the entanglement
Hamiltonian and a set of non-trivial solutions which give rise to non-local
contributions.



HNS
V ,loc. =πi

∫
V

dx
1

Z ′(x)
ψ(x)∂xψ(x),

HDirac
V ,α6=0,loc. =

−2πi

∫
V

dxΨ†(x)(
1

|Z ′|
d

dx
− (1− 2α)

2iR|Z ′|
−
( 1

2|Z ′|

)′
)Ψ(x),

as well as a bi-local contribution with kernel:

hDirac
V bi-loc. =2π

∑
l ;yl (x) 6=x

e iα
(x−y)

R |Z ′(x)|−1

R
(
1− e

i(x−y)
R

) δ(x−yl(x))



Side comment(s): the local terms in the NS and Dirac (α 6= 0 case)
reproduce results derived earlier (Myers et al, Klich, Pand0-Zayas, DV,
Wong 2013) using a path integral approach.
Schematically, the reduced density matrix can be viewed as a propagator
which evolves BC for a field from the upper lip of a cut along V to the
lower lip.
In a CFT and for spherical entangling regions this yieds the EH in terms
of

EH ∼
∫
V

β(x)T00(x)

where β(x) is an entanglement (inverse) temperature.



Why?
ρ ∼ T e−

∫
dsK(s).

For the half-line K is the generator of rotations/boosts, and so it is
s-independent.

s evolution :








Hhalf−line = 2πK = 2π
∫
V
dx xT00 where we evaluated K on the slice

s = 0.

βhalf−line(x) = 2πx



Then, in a CFT we can use conformal transf to map the half-line to an
interval (or a circle).
E.g. z → w−u

w−v is a mapping to the interval, and

βinterval(x) = 2π
(x − u)(x − v)

x − v

s evolution :
1/1 Figures for the paper  (4/4)2013-05-14 12:00:47
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The inverse temperature is the result of the conformal mapping.



The expression for the local term of the Majorana NS EH has precisely
this form:

HNS
V ,local =πi

∫
V

dx
1

Z ′(x)
ψ(x)∂xψ(x),

and β(x) read off from this expression reproduces our previous result
(IK,LPZ, DV, GW, 2013).

T00 ∼ iψ(x)∂xψ(x) and
β(x) ∼ 1

Z ′(x) , more concretely this is the entanglement temperature when

V is an interval of S1:

β(x) = 4πR csc
a− b

2R
sin

a− x

2R
sin

b − x

2R
.



In the Dirac (α 6= 0) case, the local term can be interpreted as

HDirac,α6=0
V ,local = −2πi

∫
V

β(x)(T00 − µ(x)Ψ†(x)Ψ(x))

where

β(x)=2π|Z ′(x)|−1 = 4πR csc
a− b

2R
sin

a− x

2R
sin

b − x

2R
,

µ =
1− 2α

2R

act as a local entanglement (inverse) temperature and chemical potential.
Note: the stress-energy tensor should be taken hermitean

T00 = 〈−iΨ
†(∂xΨ) + i(∂xΨ†)Ψ

2
〉



Zero-mode and entanglement Hamiltonian(s)

To account for the zero-mode contribution we had to sum the rank one
perturbation, from a Schwinger-Dyson series. The result was

Lα=0(β) = N(β) +
N(β)PV |0〉〈0|PVN(β)

2− 〈0|PVN(β)PV |0〉

In position space the zero-mode contribution is

〈x |LRzero-mode(β)|y〉= 1

2πR

∫
V
dzdz ′〈x |N(β)|z〉〈z ′|N(β)|y〉

2− 1
2πR

∫
V
dzdz ′〈z |N(β)|z ′〉

.

Evaluating the integrals yields

〈x |LRzero-mode(β)|y〉= 2 sinh2(πh)e ih(Z(y)−Z(x))

πR(1+e
lv h
R )

,

where lV is the total length of V: lV =
∑

i (bi − ai ).



To get the EH we need to do the β-integral:
∫
dβ∞1/2(L(β) + L(−β).

The zero mode induced contribution for the Majorana (Dirac α = 0 case
has an extra factor of 2) fermion is:

HR
V zero-mode = 1

2R

∞∫
−∞

dh 1

1+e
lv h
R

e ih(Z(y)−Z(x))

=
∑

l
π

2|Z ′(x)|R δ(x − yl(x)) + p.v . πi2lv
1

sinh
(

πR
lv

(Z(y)−Z(x))
)

NOTE: the local contribution for the Dirac fermion cancels the chemical
potential µ = 1/2− (α = 0) = 1/2 shift from the local non-zero mode
piece such that

HDirac
V ,local(α = 0) = HDirac

V ,local(α = 1
2 )

The zero-mode also contributes to non-local terms (even for the
one-interval case).



Entanglement Entropy

What can we say about the EE? SV = −Tr(ρV ln(ρV )).
Using that ρV = N e−HV ,

SV = − lnN + Tr(ρV
∫

Ψ† · h ·Ψ) = − lnN + Tr(PVGΨPV hV )

= ln(Tr(e−HV ) + Tr

(
PVGΨPV ln((PVGΨPV )−1 − 1)

)
= ln(

∏
k(1 + e−εk )) + Tr(G̃ ln(1− G̃ ))− Tr(G̃ ln G̃ )

= Tr(1− G̃ ) ln(1− G̃ )− TrG̃ ln G̃

where the relation between εk and the e-values of G̃ was used
(gk = (1 + εk)−1).
Bottom line: the resolvent can be used again, this time to compute the
entanglement entropy.



An integral form (Casini & Huerta 2009) for the EE:

SV =

∫ ∞
1/2

dβ Tr

[
(β − 1

2 )(L(β)− L(−β))− 2β

β + 1/2

]

The difference between the Majorana/Dirac R and NS chiral fermions EE:

δSMajorana = lV
4R

∫∞
0

dh tanh( lV h
2R )(coth(hπ)− 1).

As an asymptotic expanion in the ratio lV
2πR gives:

δSMajorana ∼ 1
2

∞∑
n=1

l2nV
(2πR)2n

(
22n − 1

)
B2nζ(2n)

2n
.

This result was obtained before by Herzog& Nishioka (2013) who noted
that the sum is not convergent.
NOTE The integral form of δSMajorana is perfectly well defined!
2nd NOTE: For lV = 2πR, δSMajorana = 1/2 ln(2) and δSDirac = ln(2).
Boundary entropy - Affleck &Ludwig (1991).



Future directions

I Excited states

I Non-chiral fermions, non-relativistic fermions, paired states

I Is there a way to account for parity odd states?

I Chiral bosons

I Higher dimensions?


