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The F-theory picture

F-theory: Take the Tye IIB axio dilaton: τ = C0 + ig−1
s with

Theory invariant under τ → aτ+b
cτ+d with M =

(
a b
c d

)
∈ SL(2,Z)

In addition the C2 and B2 must transform as a doublet:(
C2

B2

)
→ M

(
C2

B2

)
=

(
aC2 + B2

cC2 + dB2

)
,

We interpret this structure as coming from the geometry of a torus E
The full geometry is a torus-fibered n-fold Yn

E → Yn+1

↓
Bn

In the M-theory dual picture, the F-theory fiber Volume is taken to zero, only
the Base Bn is physical
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F-theory Geometry

σ0

Yn+1



E

Bn

S

The zero section σ0 tracks the varying fiber over every point in the base Bn
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F-theory Geometry

Yn+1



E

Bn

σ0

S

The zero section σ0 tracks the varying fiber over every point in the base Bn

Over certain codimension 1 (or higher) loci the fiber degenerates:

τ →∞ : @ D7-brane divisor in the base S

The whole CY geometry singular resolution in the fiber required
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F-theory Geometry

Yn+1



E

Bn

σ0

Γ0 Γi

S

The singularity is of ADE type and can be resolved by gluing in a tree of P1’s

The P1’s introduce

cycles: Γi and divisors: Di with i = 1...n
intersecting Γi · Dj = −Cij

The zero point σ0 identifies the affine Node Γ0

Ci,j the Cartan matrix of an affine Lie-group.
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F-theory Geometry

Yn+1



E

Bn

σ0

Γ0 Γi ŜU(3)

S

Three sources of Vector-multiplets:

Cartan-Vector multiplets from the M-theory C3-form reduction:∫
Γi

C3 = Ai
1

M2 branes wrap Γi ∪ Γi+.. that become the massless W bosons when we take
the F-theory limit.
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F-theory Geometry

Yn+1



E

Bn

U(1)2

S

Three sources of Vector-multiplets:

Additional rational sections sj generate the free Mordell-Weil group with
sj · E = 1 give the Shioda map [Vafa Morrison, Morrison Park...]

σi = sj − s0 + π(K−1
B ) +

∑
anDn , C3 = σj ∧ Aj

1
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F-theory Geometry

Yn+1



E

Bn

Γs cm
ĉ

ŜU(4)

S

At codimension two, the fiber degenerates further

Matter curves from codimension two splits of the curve E :

Γs → cm + ĉ , with weights: (λi , qi ) = (Di , σi ) · cm .
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Fiber VS. Base

Thanks to the splitting of fiber and base there are two general trends to classify
F-theory compactifications:

1 Classification of fibers E
The Kodaira classification of singular fibers [Kodaira]

Tates algorithm [Tate, Katz, Morrison, Schäfer-Nameki, Sully...]

Classification of fibers in various ambient spaces [Braun,Grimm,Keitel; Klevers, Pena, Piragua, O.,

Reuter]

2 Classification of bases Bn

Classification of two dimensional bases [Morrison, Taylor]

Classification of non-higgsable clusters [Morrison, Taylor; Grassi, Halverson, Shaneson, Taylor]

3 Bonus ingredient in 4D: Classification of fluxes [Bizet, Klemm, Lopes; A.Braun Watari ]
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The Fiber description

Canonical choice: Weierstrass Form

The Weierstrass form as vanishing degree six polynomial P(1,3,2)[6] in [u, v ,w ]:

v2 − w3 − f (b)wu4 − g(b)u6 = 0, ∆ = 27g2 + 4f 3

zero section: σ0: [u, v ,w ] = [0, 1, 1]

Base Dependency in only two sections f (b), f (b)

Discriminant: ∆ = 0→ singularity directly visible
→ Classification of all codimension 1,2,3 ideals Vi : with ∆i = 0 possible
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The Kodaira Classification

ord(f) ord(g) ord(∆) Fiber Type Singularity Type group

≥ 0 ≥ 0 0 smooth none -

0 0 n In An−1 SU(n)

≥ 1 1 2 II none -

1 ≥ 2 3 III A1 SU(2)

≥ 2 2 4 IV A2 SU(3)

2 ≥ 3 n + 6 I ∗n Dn + 4 SO(2n + 8)

≥ 2 3 n + 6 I ∗n Dn + 4 SO(2n + 8)

≥ 3 4 8 IV ∗ E6 E6

3 ≥ 5 9 III ∗ E7 E7

≥ 4 5 10 II ∗ E8 E8

I1 none U(1)n ?

I1 none Znj ?

I1 none 1/Znj ?

v2 − w3 − f (b)wu4 − f (b)u6 = 0, ∆ = 27g2 + 4f 3

What about U(1), discrete and quotient symmetries?
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The Zoo of Sections

s0 s1
s2

Rational Sections
Rational sections intersect the fiber once si · E = 1. They form the Mordell-Weil
group und geometric addition with the zero-section as neutral element

1 free part Zr : U(1)r symmetries are obtained from the Shioda map, a
vertical divisor obtained from the section [Morrison, Park]

σi = sj − s0 + π(K−1
B ) +

∑
anDn ,

2 torsion Zn if sections n · si ∼ s0. Generator of Zn quotient symmetries
G = G ′/Zn.

Torsion Shioda map σ
(n)
T that is a trivial Q-divisor n · σ(n)

T ∼ 0

Matter curves must have charge σ
(n)
T ·m = 0 mod n [Mayrhover,Morrison,Till,Weigand]
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The Zoo of Sections

s
(3)
i

Multi-Sections

A section with s
(n)
i · E = n > 1 is an n-section. If the torus admits only

multi-sections it is a genus-one curve.
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The Zoo of Sections

s
(3)
i

Multi-Sections
The n-section generates a discrete Zn symmetry in the effective field theory

The n-section can be obtained by n + 1 collapsing rational sections via a
conifold transitions:
In the effective field theory this is a higgsing: U(1)n → Zn [V. Braun, Morrison; Anderson,

Garca-Etxebarria,Grimm,Keitel;]

Why not write down a discrete Shioda map: [Klevers, Piragua,Pena, O., Reuter]

σ
(n)
D = s

(n)
i + Base +

∑
i

aiDi .

Matter charges cm · σ(n)
D = k mod n
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Example: U(1)3 → Z3

Consider a polytope ∆ and its polar-dual ∆o

P∆ =
∑
m∈∆o

n∏
i=1

smz
〈m, ρi 〉+1
i = 0 ,
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Example: U(1)3 → Z3

Consider a polytope ∆ and its polar-dual ∆o

P∆ =
∑
m∈∆o

n∏
i=1

smz
〈m, ρi 〉+1
i = 0 ,

Start from other ambient spaces such as dP3:

pdP3 =s2e1e
2
3u

2v + s3e2e
2
3uv

2 + s5e
2
1e3u

2w + s6e1e2e3uvw + s7e
2
2e3v

2w

+ s8e
2
1e2uw

2 + s9e1e
2
2w

2v .

with zero-section u ∪ pdP3 = 0 and three sections ei ∪ pdP3 = 0

U(1)3 theory
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Consider a polytope ∆ and its polar-dual ∆o

P∆ =
∑
m∈∆o

n∏
i=1

smz
〈m, ρi 〉+1
i = 0 ,

Collapsing the sections to dP2

pdP2 =s1e
2
2e

2
1u

3 + s2e
2
2e1u

2v + s3e
2
2uv

2 + s5e2e
2
1u

2w + s6e2e1uvw

+ s7e2v
2w + s8e

2
1uw

2 + s9e1vw
2 ,

with zero-section u ∪ pdP2 = 0 and two sections ei ∪ pdP2 = 0

U(1)2 theory
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Example: U(1)3 → Z3

Consider a polytope ∆ and its polar-dual ∆o

P∆ =
∑
m∈∆o

n∏
i=1

smz
〈m, ρi 〉+1
i = 0 ,

Collapsing the sections to dP1

pP2 =s1u
3e2

1 + s2u
2ve2

1 + s3uv
2e2

1 + s4v
3e2

1 +

s5u
2we1 + s6uvwe1 + s7v

2we1 + s8uw
2 + s9vw

2 ,

with zero-section e1 ∪ pdP3 = 0 and non-toric section

U(1)1 theory
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Example: U(1)3 → Z3

Consider a polytope ∆ and its polar-dual ∆o

P∆ =
∑
m∈∆o

n∏
i=1

smz
〈m, ρi 〉+1
i = 0 ,

Collapsing the sections to P2

pdP1 =s1u
3 + s2u

2v + s3uv
2 + s4v

3 + s5u
2w + s6uvw

+ s7v
2w + s8uw

2 + s9vw
2 + s10w

3 ,

with three-sections only (u, v ,w) ∪ pP2 = 3

Z3 theory
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Take Home Message

Multi-Sections in genus one curves can be though of as collapsed rational
sections generating a free Mordell-Weil group

Rational Sections can be obtained by non ADE blow-ups of the fiber ambient
space

If you look for sections, go search in other fiber ambient spaces

[Kreutzer, Skarke]

In two dimension there are only 16 of them!

In three dimensions there are only 3145 of them!
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The two dimensional Case
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The two dimensional Network
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MW(P∆) = MW(P∆o )

TorMW ↔ n-Sections

Multi Sections
Genus one curves with
two-and three-sections
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Understanding the Duality

Can we relate the appearance of torsion directly from properties of the
ambien polytope?

Can we relate the appearance of (only) multi-sections directly from properties
of the ambien polytope?

Are they connected by ∆↔ ∆o ?

Does this generalize?
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Torsion and Multi-Sections from lattice refinement

Remember: Lattice points ρi ∈ ∆ correspond to divisors Di . From a dual
lattice point m we can obtain linear equivalence relations betwen divisors Di∑

i

〈ρi ,m〉Di ∼ 0 .

The torsion Shioda map is a k-trivial divisor: [Mayrhover,Till,Morrison,Weigand]

k · σ(k)
T ∼ 0

We demand for the vertices and edge points ρ
(ver)
i , ρ

(edg)
j ∈ ∆

〈ρveri ,m〉 = kZ , 〈ρ(edg)
j ,m〉 6= kZ ,∀m ∈ M

The vertices ρveri span a lattice of finite index k in ∆

As ∆ is of index k, the dual lattice M can be refined by a factor of k.

The torsion Shioda map is the divisor obtained from the refined dual lattice
points
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Example: Torsion from F13

z2z1 e1 e2 e3

e4 e5

z3

−→
1
2

(∆F13
− z3)

v1 e v2

v3

Obtaining the Torsion Shioda map

The F13 fiber has a generic SU(4)× SU(2)2/Z2 gauge symmetry that are
resolved by the ei divisors

The vertices z1, z2, z3 span a lattice of index 2: i.e. we can shift and shrink
the polytope: ∆F13 → ∆′ = 1

2 (∆F13 − z3) ∈ N .

There exists a refined dual lattice M → M ′ with i.e. m′ = ( 1
2 , 0)

Construct the torsion Shioda map from refined lattice point∑
i

〈m′, ρi 〉Di = σ
(2)
t = [z2]− [z1] +

1

2
(−[e1] + [e3] + [e4]− [e5]) X

[Mayrhover,Till,Morrison,Weigand] 17 / 39
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Torsion and Multi-Sections from lattice refinement

Discrete Shioda map from lattice refinement

Now we reverse the argument: We have assumed the vertices of ρ
(ver)
i of ∆ span a

lattice of index k in N

Now ∆→ ∆o is a lattice polytope of index k in M that corresponds to a
divisor i.e. the anticanonical divisor

The divisor class constructed from polytope ∆o is shift invariant
[D∆o+v ] = [D∆o ]

Scaling a polytope ∆o scales the divisor class [Dk∆o ] = [kD∆o ]

However the divisor D∆o corresponds a divisor in the anticannonical class of
the ambient space.

Hence the anti-cannonical class is a k-multiple of an integral class because by
assumption is spans a lattice of index k

Intersections with the class of the vertices in ∆ are therefore a k-multiple only
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Example: Multi-Sections from F4

v1 e v2

v3

−→
1
2

(∆F13
− z3)

Obtaining the Torsion Shioda map

We have already seen that we can shrink the dual polytope to
∆F13 → ∆′ = 1

2 (∆− w)

Within F4 ,F13 describes exactly the anticanonical divisor in

−K = [v1] + [v2] + [v3] + [e] ∼ 2 (2[v1] + e)︸ ︷︷ ︸
D∆′

The fiber in F4 is a genus one curve only with 2-sections i.e. a theory with
SU(2)× Z2 gauge symmetry
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The mirror Conjecture

This procedure holds true for all 16 fibers constructed from 2D ambient
spaces:

Conjecture 1. Given a genus-one fiber C for which the Mordell-Weil group of the
Jacobian contains torsion, the mirror dual is a genus-one fiber C′ without a section
and vice versa.
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The mirror Conjecture

Is this phenomenon restricted to fibers in 2D ambient spaces?

Specialities in 2D

Vertices have positive intersection with the elliptic curve

Divisors are also curves

Singularities are torically resolved

Vol(∆) + Vol(∆o) = const

#Points(∆) + #Points(∆o) = 12

Is there any reason why this should hold in general?

In complete intersection fibers, the above constraints do not hold!
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Recap: Fibers in 3D ambient spaces

A complete intersection Calabi-Yau is described in terms of a nef partition of
a polytope a d-dimensional polytope ∆

∆ = ∆1 + ...+ ∆n , ∆◦ = 〈∇1, ...,∇n〉 ,
∇◦ = 〈∆1, ...,∆n〉 , ∇ = ∇1 + ...+∇n,

(1)

This specifies a codimension n Calabi-Yau in a d-dimensional polytope via the
intersections of

P∆i =
∑
m∈∆i

n∏
i=1

smz
〈m, ρi 〉+ai
i ∈ P∆o

with ai ≥ −1

The Mirror CY is cut out by P∇i ∈ P∇o

Note: One ambient space can have multiple nef partitions whose mirror dual
do not have to live in the same ambient spaces!
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How to check it?

The arguments in 2D do not readily apply. The existence of torsion does not
imply multisections in the dual geometry anymore!
In [Braun, Grimm, Keitel ‘15] 3145 codimension two nef partitions in 3D ambient spaces
have been considered

They constructed the toric MW group

They mapped all curves into their Jacobian Form i.e. into WSF form

A new hope:

The fiber in P3 only admits four sections

The dual Nef parition with Palp id (3145, 0) has Z4 Mordell-Weil torsion

Conjecture counter: 2/3145
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Does it generalize?

We went through the full list again and obtained all intersections of toric
divisors with the elliptic curve

Combining this information with the Mordell-Weil group, we indeed get a
match in

Conjecture counter: 3086/3145

So what is wrong about the rest?
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Reducibility and non-toric sections

Nef partition (4, 0)

Specified by the nef partition

∇1 = 〈z0, z3, z4, z6〉 , ∇2 = 〈z1, z2, z5, z8〉 ,

in the P1 × P2 ambient space:

z0 z1 z2 z3 z4 1
0
0

  −1
0
0

  0
1
0

  0
0
1

  0
−1
−1


Two inequivalent divisor classes: [z0] ∼ [z1] , [z2] ∼ [z3] ∼ [z4]

Intersections E · [z0] = 2 and E · [z2] = 3.

The dual nef partition (3013, 1) has no torsion.

This is not a genus one curve: Construct a non-toric zero-section [Braun, Grimm, Keitel

14]

[s0] = [z2]− [z0] + HB
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Reducibility and multi-mirrors

Lets consider the elliptic curve with CICY equation of (3013, 1) in zi

p1 =a0z5z6z7z8z9z10z11z12z13z15z16 + a2z0z3z
2
5 z

2
7 z11z12z13

+a1z1z4z
2
6 z

2
8 z13z15z16 + a3z0z1z2z5z6z9z12z16

p2 =a5z2z
2
9 z

2
10z11z12z15z16 + a4z3z4z7z8z10z11z13z15 + a6z0z1z2z3z4

Lets also consider the elliptic curve with CICY equation of (3013,0) in zi

p1 =a0z5z6z7z8z9z10z11z12z13z15z16 + a2z0z3z
2
5 z

2
7 z11z12z13

+a1z1z4z
2
6 z

2
8 z13z15z16 + a3z0z1z2z5z6z9z12z16

p2 =a5z2z
2
9 z

2
10z11z12z15z16 + a4z3z4z7z8z10z11z13z15 + a6z0z1z2z3z4

As they come from the same ambient space, they also have exactly the same
Stanley-Reisner ideal: These are equivalent elliptic curves!

Both curves have a zero-section and no torsion

However, the first has (4, 0) as a mirror dual, the second one (5, 1).
Are those equivalent too?
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Reducibility

Nef (5, 1) admits a toric section with CICY equation in zi

p1 =a8z0z
2
2 + a7z0z2z3 + a5z0z

2
3 + a6z0z2z4 + a4z0z3z4

+a3z0z
2
4 + a2z1z2 + a1z1z3 + a0z1z4

p2 =a17z0z
2
2 + a16z0z2z3 + a14z0z

2
3 + a15z0z2z4

+a13z0z3z4 + a12z0z
2
4 + a11z1z2 + a10z1z3 + a9z1z4

The CICY equation of (4,0) is very different and has no toric section:

p1 =a11z0z
2
2 + a5z1z

2
2 + a10z0z2z3 + a4z1z2z3 + a8z0z

2
3 + a2z1z

2
3

+ a9z0z2z4 + a3z1z2z4 + a7z0z3z4 + a1z1z3z4 + a6z0z
2
4 + a0z1z

2
4

p2 =a17z0z2 + a14z1z2 + a16z0z3 + a13z1z3 + a15z0z4 + a12z1z4

Those models share the same Weierstrass models with:

(5, 1) : f (ai ), g(ai ) = (4, 0) : f (ai ), g(ai )

After relabeling the sections ai !
Hence the curve in (4, 0) is equivalent to (5,1)

Conjecture counter: 3088/3145
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Reducibility of CICY fibers

By this procedure we find that many fibers have an equivalent (singular)
Weierstrass description related by a simple relabeling of the sections

The 3145 different nef partitions get reduced to 1024 inequivalent fibers

We find examples where ADE singularities have toric and non-toric
resolutions when realized in different ambient spaces

Conjecture counter: 998/1024
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Mirror genus-one curves

26 cases to go

Conjecture counter: 998/1024

In all cases, the curve and its dual are genus-one curves that only admit
multi-sections. → No toric Mordell-Weil group. How to test for the torsion?

We consider the Weiertrass models of those curves (Jacobian) and and show
that they are birational equivalent to the Weierstrass from with k-torsion
[Aspinwall, Morrison ‘98]
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Mirror genus-one curves

In all cases, the curve and its dual are genus-one curves that only admit
multi-sections. → No toric Mordell-Weil group. How to test for the torsion?

We consider the Weiertrass models of those curves (Jacobian) and and show
that they are birational equivalent to the Weierstrass from with k-torsion
[Aspinwall, Morrison ‘98]

Those models have torsion sections only in their Jacobian

In 24 cases the genus one curve has only two-sections and two-torsion, just as
their mirrors X

← mirror dual → ← mirror dual →

(152, 0) (195, 4) (8, 0) (609, 0)

(29, 2) (577, 0) (34, 0) (321, 1)

(39, 0) (335, 0) (56, 2) (356, 2)

(78, 2) (266, 0) (108, 0) (161, 1)

(129, 0) (129, 1) (150, 1) (208, 1)

(152, 1) self-mirror (122, 0) self-mirror
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Mirror genus-one curves

In all cases, the curve and its dual are genus-one curves that only admit
multi-sections. → No toric Mordell-Weil group. How to test for the torsion?

We consider the Weiertrass models of those curves (Jacobian) and and show
that they are birational equivalent to the Weierstrass from with k-torsion
[Aspinwall, Morrison ‘98]

in four cases, the degree of the Multi-sections and torsion does not match!
← mirror dual →

nef (5, 3) nef (2069, 0)
four-sections Z2 torsion

no torsion one-sections

nef (21, 1) nef (488, 0)
four-sections Z2 torsion
Z2 torsion two-sections

These theories have non-toric resolution divisors and are connected via a
higgsing.

Apart from the matching of the degree, the conjecture still holds
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Mirror genus-one curves

In all cases, the curve and its dual are genus-one curves that only admit
multi-sections. → No toric Mordell-Weil group. How to test for the torsion?

We consider the Weiertrass models of those curves (Jacobian) and and show
that they are birational equivalent to the Weierstrass from with k-torsion
[Aspinwall, Morrison ‘98]

Conjecture counter: 1024(4)/1024 X
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Mirror genus-one curves

In all cases, the curve and its dual are genus-one curves that only admit
multi-sections. → No toric Mordell-Weil group. How to test for the torsion?

We consider the Weiertrass models of those curves (Jacobian) and and show
that they are birational equivalent to the Weierstrass from with k-torsion
[Aspinwall, Morrison ‘98]

Conjecture 2. A curve C constructed as a complete intersection in a toric
ambient space such that all the codimension one loci are torically resolved does
exhibit Mordell-Weil torsion of degree k in the Jacobian if and only if the one
dimensional generators of the fan {ρi : Di · C 6= 0} span a sublattice M̃ ⊃ M of
index k. Up to base divisors a point m ∈ M̃\M corresponds to a torsion Shioda

map σ
(k)
t via

σ
(k)
t =

∑
ρi∈Σ(1)

〈m, ρi 〉 · Di .
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Outline

1 F-theory, singular fibers and sections
2 Torus Fibers in 2D Ambient Spaces
3 Generalizing to 3D Ambient Spaces
4 Example: Nef (122, 0)
5 Conclusion and Outlook
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A self-dual genus one-curve

The nef partition is given by:

∇1 = 〈z0, z3, z4, z6〉 , ∇2 = 〈z1, z2, z5, z8〉 ,
in the ambient space

z0 z1 z2 z3 1
0
0

  0
1
0

  0
0
1

  −1
−1
−1


z4 z5 z6 z8 1
−1
−1

  0
2
1

  0
−1
−1

  0
1
1


The CICY equations are given as

p1 = a2z
2
0 z

2
4 z6 + a4z0z1z

2
5 z8 + a1z0z3z4z6 + a3z0z2z5z8 + a0z

2
3 z6 ,

p2 = a9z0z1z
2
4 z6 + a8z

2
1 z

2
5 z8 + a6z1z3z4z6 + a7z1z2z5z8 + a5z

2
2 z8 .

Intersecting the curve: [z0, z1, z2, z3, z4, z5, z6, z8] · E = [0, 0, 2, 2, 2, 2, 0, 0]
We have only-two sections: this is a genus-one curve
The vertices span a lattice of index 2 in Z3
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Gauge symmetry

z0 z1 z2 z3 1
0
0

  0
1
0

  0
0
1

  −1
−1
−1


z4 z5 z6 z8 1
−1
−1

  0
2
1

  0
−1
−1

  0
1
1


The dual lattice is generated by a finer lattice i.e.
m′ = ( 1

2 ,
1
2 , 0),m1 = (0, 1, 0),m2 = (0, 0, 1)

From m′ we construct the torsion Shioda map:

σ
(2)
T = [z5]− [z3] +

1

2
([z0] + [z1]− [z6] + [z8]) .

Indeed: z0, z1, z6, z8 are resolution divisors

The intersection with matter σ
(2)
T · cm ∼ 0 implies for the weights λi

λ1
m + λ2

m − λ3
m + λ4

m = 0 mod 2

Only bifundemantal matter possible
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Consistency of torsion

We can check for the existence of Z2 torsion in the Weierstrass form:

A Weierstrass model with a Z2 torsion points admits the following form of
Weierstrass coefficients: [Aspinwall, Morrison’ 98]

f = A4 −
1

3
A2

2 , g =
1

27
A2(2A2

2 − 9A4) ,

∆ =A2
4(4A4 − A2

2) ,

The (122, 0) Weierstrass coefficients are related by the birational map:

A2 → 4a1a4a5a6 + a2
3a

2
6 − 2a1a3a6a7 + a2

1a
2
7

− 4a0a2a
2
7 − 4a2

1a5a8 + 16a0a2a5a8

− 8a0a4a5a9 + 4a0a3a7a9 ,

A4 → 16a0a5(a2
4a5 − a3a4a7 + a2

3a8)

· (a2a
2
6 − a1a6a9 + a0a

2
9) .

Therefore we have Z2 torsion X

We have four SU(2) singularities in codimension two X
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Discrete Shioda map and gauge locus

The CICY equations are

p1 = a2z
2
0 z

2
4 z6 + a4z0z1z

2
5 z8 + a1z0z3z4z6 + a3z0z2z5z8 + a0z

2
3 z6 ,

p2 = a9z0z1z
2
4 z6 + a8z

2
1 z

2
5 z8 + a6z1z3z4z6 + a7z1z2z5z8 + a5z

2
2 z8 .

We have the following four codimension one, I2 singularities:
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We have the following four codimension one, I2 singularities:

toric locus I2 locus L1 : a0 = 0

p
(1)
1 = p′ · z0 ,
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Discrete Shioda map and gauge locus

The CICY equations are

p1 = a2z
2
0 z

2
4 z6 + a4z0z1z

2
5 z8 + a1z0z3z4z6 + a3z0z2z5z8 + a0z

2
3 z6 ,

p2 = a9z0z1z
2
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1 z

2
5 z8 + a6z1z3z4z6 + a7z1z2z5z8 + a5z

2
2 z8 .

We have the following four codimension one, I2 singularities:

toric locus I2 locus L2 : a5 = 0

p2 = p′2 · z1 .
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Discrete Shioda map and gauge locus

The CICY equations are

p1 = a2z
2
0 z

2
4 z6 + a4z0z1z

2
5 z8 + a1z0z3z4z6 + a3z0z2z5z8 + a0z

2
3 z6 ,

p2 = a9z0z1z
2
4 z6 + a8z

2
1 z

2
5 z8 + a6z1z3z4z6 + a7z1z2z5z8 + a5z

2
2 z8 .

We have the following four codimension one, I2 singularities:

non-toric I2 locus L3 : a2
4a5 − a3a4a7 + a2

3a8 = 0 the following combination
factorizes:

a3a4z0z5p2 − (a4a5z2 + a3a8z1z5)p1 = p(2) · z6
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Discrete Shioda map and gauge locus

The CICY equations are
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5 z8 + a6z1z3z4z6 + a7z1z2z5z8 + a5z

2
2 z8 .

We have the following four codimension one, I2 singularities:

non-toric I2 locus L4 : a2a
2
6 − a1a6a9 + a0a

2
9 = 0 the following combination

factorizes:

a6a9z1z4p1 − (a0a9z3 + a2a6z0z4)p2 = p(3) · z8 ,
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Discrete Shioda map and gauge locus

The CICY equations are

p1 = a2z
2
0 z

2
4 z6 + a4z0z1z

2
5 z8 + a1z0z3z4z6 + a3z0z2z5z8 + a0z

2
3 z6 ,

p2 = a9z0z1z
2
4 z6 + a8z

2
1 z

2
5 z8 + a6z1z3z4z6 + a7z1z2z5z8 + a5z

2
2 z8 .

We have the following four codimension one, I2 singularities:

The multisections intersect the fiber and hence we have to orthogonolize the
discrete Shioda map;

σ
(2)
D,4 =[z4] +

1

2
([z1] + [z6])
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The matter spectrum
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The matter spectrum

Locus (f , g ,∆) SU(2)4 × Z2 Rep.

a0 = 0 , a5 = 0 (0, 0, 4) (2,2,1,1) 1
2

a0 = 0 , a6 = 0 (0, 0, 4) (2,1,1,2)1

a0 = 0 ,

a2a6 − a1a9 = 0
(0, 0, 4) (2,1,1,2)′0

a5 = 0 , a3 = 0 (0, 0, 4) (1,2,2,1)0

a5 = 0 ,

a4a7 − a3a8 = 0
(0, 0, 4) (1,2,2,1)′1

a0 = 0 ,

a2
4a5 − a3a4a7 + a2

3a8 = 0
(0, 0, 4) (2,1,2,1)− 1

2

a5 = 0 ,

a2a
2
6 − a1a6a9 + a0a

2
9 = 0

(0, 0, 4) (1,2,1,2) 1
2

a2
4a5 − a3a4a7 + a2

3a8 = 0 ,

a2a
2
6 − a1a6a9 + a0a

2
9 = 0

(0, 0, 4) (1,1,2,2) 1
2
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The matter spectrum

Only bifundamental matter X

All matter curves distinguished by a unique quantum number X

(2, 1, 1, 2)1 , (2, 1, 1, 2)′0
(1, 2, 2, 1)1 , (1, 2, 2, 1)′0

The Z2 also restricts the Yukawa couplings as expected

Y1 : (2, 2, 1, 1) 1
2
· (2, 1, 2, 1)− 1

2
· (1, 2, 2, 1)0 ,

Y2 : (2, 2, 1, 1) 1
2
· (2, 1, 2, 1)− 1

2
· (1, 2, 2, 1)′1 .

Without the Z2 symmetry the geometric different Yukawa couplings would be
the same
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Summary and Outlook

We have given strong evidence, that genus-one curves with multi-sections are
mirror-dual to fibers with Mordell-Weil torsion of the same degree

Combinatorial explanation in 2D toric ambient spaces

We have explicitly checked the conjecture for all 3145 cases of codimension
two curves

The combinatorial explanation does not fully carry over to 3D

We find fibers with new features:
Equivalent realizations of the same elliptic curve
A fiber with a non-toric zero-section
Genus-one fibers with torsion sections in their Jacobian

We have fully analyzed a self-dual genus one curve that admits quotient and
discrete symmetries

Outlook
Can we proof the conjecture in general?

Is there a physical explanation?

Can we classify discrete symmetries in F-theory via their mirror dual torsion?
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