Mordell-Weil Torsion in the Mirror of Multi-Sections

Paul-Konstantin Oehlmann

Bethe Center for Theoretical Physics, Universität Bonn Virginia Tech

Based on • arXiv:1408.4808 with: D. Klevers, D. Mayorga, H. Piragua and J. Reuter

- arXiv:1604.00011 with: J. Reuter and T. Schimannek

Regional Meeting 2016, Blacksburg
April 23rd 2016

universitätbonn (bctp) $\sqrt{\square}$ EThe center for

Outline

- F-theory, singular fibers and sections
- Torus Fibers in 2D Ambient Spaces
- Generalizing to 3D Ambient Spaces
- Example: $\operatorname{Nef}(122,0)$
- Conclusion and Outlook

The F-theory picture

F-theory: Take the Tye IIB axio dilaton: $\tau=C_{0}+i g_{s}^{-1}$ with

- Theory invariant under $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$ with $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z})$
- In addition the C_{2} and B_{2} must transform as a doublet:

$$
\binom{C_{2}}{B_{2}} \rightarrow M\binom{C_{2}}{B_{2}}=\binom{a C_{2}+B_{2}}{c C_{2}+d B_{2}}
$$

- We interpret this structure as coming from the geometry of a torus \mathcal{E}
- The full geometry is a torus-fibered n-fold Y_{n}

- In the M-theory dual picture, the F-theory fiber Volume is taken to zero, only the Base B_{n} is physical

F-theory Geometry

- The zero section σ_{0} tracks the varying fiber over every point in the base B_{n}

F-theory Geometry

- The zero section σ_{0} tracks the varying fiber over every point in the base B_{n}

F-theory Geometry

- The zero section σ_{0} tracks the varying fiber over every point in the base B_{n}

F-theory Geometry

- The zero section σ_{0} tracks the varying fiber over every point in the base B_{n} Over certain codimension 1 (or higher) loci the fiber degenerates:
- $\tau \rightarrow \infty$: © D7-brane divisor in the base S
- The whole CY geometry singular resolution in the fiber required

F-theory Geometry

The singularity is of ADE type and can be resolved by gluing in a tree of \mathbb{P}^{1} 's

- The \mathbb{P}^{1} 's introduce
- cycles: Γ_{i} and divisors: D_{i} with $i=1 \ldots n$
- intersecting $\Gamma_{i} \cdot D_{j}=-C_{i j}$
- The zero point σ_{0} identifies the affine Node Γ_{0}
- $C_{i, j}$ the Cartan matrix of an affine Lie-group.

F-theory Geometry

The singularity is of ADE type and can be resolved by gluing in a tree of \mathbb{P}^{1} 's

- The \mathbb{P}^{1} 's introduce
- cycles: Γ_{i} and divisors: D_{i} with $i=1 \ldots n$
- intersecting $\Gamma_{i} \cdot D_{j}=-C_{i j}$
- The zero point σ_{0} identifies the affine Node Γ_{0}
- $C_{i, j}$ the Cartan matrix of an affine Lie-group.

F-theory Geometry

Three sources of Vector-multiplets:

- Cartan-Vector multiplets from the M -theory C_{3}-form reduction:

$$
\int_{\Gamma^{i}} C_{3}=A_{1}^{i}
$$

- M2 branes wrap $\Gamma_{i} \cup \Gamma_{i+. .}$ that become the massless W bosons when we take the F-theory limit.

F-theory Geometry

Three sources of Vector-multiplets:

- Additional rational sections s_{j} generate the free Mordell-Weil group with $s_{j} \cdot \mathcal{E}=1$ give the Shioda map [Vafa Morrison, Morrison Park..]

$$
\sigma_{i}=s_{j}-s_{0}+\pi\left(K_{B}^{-1}\right)+\sum a_{n} D_{n}, \quad C_{3}=\sigma_{j} \wedge A_{1}^{j}
$$

F-theory Geometry

At codimension two, the fiber degenerates further

- Matter curves from codimension two splits of the curve \mathcal{E} :

$$
\Gamma^{s} \rightarrow c_{m}+\hat{c}, \text { with weights: }\left(\lambda_{i}, q_{i}\right)=\left(D_{i}, \sigma_{i}\right) \cdot c_{m} .
$$

Fiber VS. Base

Thanks to the splitting of fiber and base there are two general trends to classify F-theory compactifications:
(1) Classification of fibers \mathcal{E}

- The Kodaira classification of singular fibers [Kodaira]
- Tates algorithm [Tate, Katz, Morison, Schîere-Nameki, Suly,.].]
- Classification of fibers in various ambient spaces [Braun, Grimm,Keitel: Klevers, Pena, Piragua, o.. Reuter]
(2) Classification of bases B_{n}
- Classification of two dimensional bases [Morison, Taylor]
- Classification of non-higgsable clusters [Morison, Tyylor, Grass, Haverson, Shaneson, Taylor]
(0) Bonus ingredient in 4D: Classification of fluxes [Bizet, Klemm, Lopes, A.Braun Watari]

The Fiber description

Canonical choice: Weierstrass Form

The Weierstrass form as vanishing degree six polynomial $P_{(1,3,2)}[6]$ in $[u, v, w]$:

$$
v^{2}-w^{3}-f(b) w u^{4}-g(b) u^{6}=0, \quad \Delta=27 g^{2}+4 f^{3}
$$

- zero section: $\sigma_{0}:[u, v, w]=[0,1,1]$
- Base Dependency in only two sections $f(b), f(b)$
- Discriminant: $\Delta=0 \rightarrow$ singularity directly visible \rightarrow Classification of all codimension $1,2,3$ ideals V_{i} : with $\Delta_{i}=0$ possible

The Kodaira Classification

ord(f)	ord(g)	ord(Δ)	Fiber Type	Singularity Type	group
≥ 0	≥ 0	0	smooth	none	-
0	0	n	I_{n}	A_{n-1}	$S U(n)$
≥ 1	1	2	$I I$	none	-
1	≥ 2	3	$I I I$	A_{1}	$\operatorname{SU}(2)$
≥ 2	2	4	$I V$	A_{2}	$\operatorname{SU}(3)$
2	≥ 3	$n+6$	I_{n}^{*}	$D_{n}+4$	$S O(2 n+8)$
≥ 2	3	$n+6$	I_{n}^{*}	$D_{n}+4$	$S O(2 n+8)$
≥ 3	4	8	$I V^{*}$	E_{6}	E_{6}
3	≥ 5	9	$I I^{*}$	E_{7}	E_{7}
≥ 4	5	10	$I I^{*}$	E_{8}	E_{8}
			I_{1}	none	$U(1)^{n} ?$
			I_{1}	none	$Z_{n_{j}} ?$
			I_{1}	none	$1 / Z_{n_{j}} ?$

$$
v^{2}-w^{3}-f(b) w u^{4}-f(b) u^{6}=0, \quad \Delta=27 g^{2}+4 f^{3}
$$

- What about $U(1)$, discrete and quotient symmetries?

The Zoo of Sections

Rational Sections

Rational sections intersect the fiber once $s_{i} \cdot \mathcal{E}=1$. They form the Mordell-Weil group und geometric addition with the zero-section as neutral element

The Zoo of Sections

Rational Sections

Rational sections intersect the fiber once $s_{i} \cdot \mathcal{E}=1$. They form the Mordell-Weil group und geometric addition with the zero-section as neutral element
(1) free part $\mathbb{Z}^{r}: U(1)^{r}$ symmetries are obtained from the Shioda map, a vertical divisor obtained from the section [Morison, Park]

$$
\sigma_{i}=s_{j}-s_{0}+\pi\left(K_{B}^{-1}\right)+\sum a_{n} D_{n}
$$

The Zoo of Sections

Rational Sections

Rational sections intersect the fiber once $s_{i} \cdot \mathcal{E}=1$. They form the Mordell-Weil group und geometric addition with the zero-section as neutral element
(1) free part $\mathbb{Z}^{r}: U(1)^{r}$ symmetries are obtained from the Shioda map, a vertical divisor obtained from the section [Morison, Park]

$$
\sigma_{i}=s_{j}-s_{0}+\pi\left(K_{B}^{-1}\right)+\sum a_{n} D_{n},
$$

(2) torsion \mathbb{Z}_{n} if sections $n \cdot s_{i} \sim s_{0}$. Generator of \mathbb{Z}_{n} quotient symmetries $G=G^{\prime} / \mathbb{Z}_{n}$.
Torsion Shioda map $\sigma_{T}^{(n)}$ that is a trivial \mathbb{Q}-divisor $n \cdot \sigma_{T}^{(n)} \sim 0$
Matter curves must have charge $\sigma_{T}^{(n)} \cdot{ }_{m}=0 \bmod n$ [Mayhhover,Morison,Till,Weigand]

The Zoo of Sections

Rational Sections

Rational sections intersect the fiber once $s_{i} \cdot \mathcal{E}=1$. They form the Mordell-Weil group und geometric addition with the zero-section as neutral element
(1) free part $\mathbb{Z}^{r}: U(1)^{r}$ symmetries are obtained from the Shioda map, a vertical divisor obtained from the section [Morison, Park]

$$
\sigma_{i}=s_{j}-s_{0}+\pi\left(K_{B}^{-1}\right)+\sum a_{n} D_{n},
$$

(2) torsion \mathbb{Z}_{n} if sections $n \cdot s_{i} \sim s_{0}$. Generator of \mathbb{Z}_{n} quotient symmetries $G=G^{\prime} / \mathbb{Z}_{n}$.
Torsion Shioda map $\sigma_{T}^{(n)}$ that is a trivial \mathbb{Q}-divisor $n \cdot \sigma_{T}^{(n)} \sim 0$
Matter curves must have charge $\sigma_{T}^{(n)} \cdot m=0 \bmod n$ [Mayhhover,Morison,Till,Weigand]

The Zoo of Sections

Multi-Sections

- A section with $s_{i}^{(n)} \cdot \mathcal{E}=n>1$ is an n-section. If the torus admits only multi-sections it is a genus-one curve.

The Zoo of Sections

Multi-Sections

- A section with $s_{i}^{(n)} \cdot \mathcal{E}=n>1$ is an n-section. If the torus admits only multi-sections it is a genus-one curve.
- The Tate-Shafarevich group is a collection of isogenies of genus-one curves to an elliptic fibration (together with an action) with the same τ i.e. the same F-theory physics [v.Braun, Morrison]

The Zoo of Sections

Multi-Sections

- A section with $s_{i}^{(n)} \cdot \mathcal{E}=n>1$ is an n-section. If the torus admits only multi-sections it is a genus-one curve.
- The Tate-Shafarevich group is a collection of isogenies of genus-one curves to an elliptic fibration (together with an action) with the same τ i.e. the same F-theory physics [v.Braun, Morison]
- The n-section generates a discrete \mathbb{Z}_{n} symmetry in the effective field theory

The Zoo of Sections

Multi-Sections

- The n-section generates a discrete \mathbb{Z}_{n} symmetry in the effective field theory
- The n-section can be obtained by $n+1$ collapsing rational sections via a conifold transitions:
In the effective field theory this is a higgsing: $U(1)^{n} \rightarrow \mathbb{Z}_{n}$ [V. Braun, Morison: Anderson,
Garca-Etxebarria,Grimm,Keitel;]

The Zoo of Sections

Multi-Sections

- The n-section generates a discrete \mathbb{Z}_{n} symmetry in the effective field theory
- The n-section can be obtained by $n+1$ collapsing rational sections via a conifold transitions:
In the effective field theory this is a higgsing: $U(1)^{n} \rightarrow \mathbb{Z}_{n}$ [V. Braun, Morison: Anderson,
Garca-Etxebarria,Grimm,Keitel;]
- Why not write down a discrete Shioda map: [Klevers, Priagua, Pena, o.. Reuter]

$$
\sigma_{D}^{(n)}=s_{i}^{(n)}+\text { Base }+\sum_{i} a_{i} D_{i}
$$

- Matter charges $c_{m} \cdot \sigma_{D}^{(n)}=k \bmod n$

Example: $U(1)^{3} \rightarrow \mathbb{Z}_{3}$

- Consider a polytope Δ and its polar-dual Δ°

$$
P_{\Delta}=\sum_{m \in \Delta^{\circ}} \prod_{i=1}^{n} s_{m} z_{i}^{\left\langle m, \rho_{i}\right\rangle+1}=0
$$

Example: $U(1)^{3} \rightarrow \mathbb{Z}_{3}$

- Consider a polytope Δ and its polar-dual Δ°

$$
P_{\Delta}=\sum_{m \in \Delta^{\circ}} \prod_{i=1}^{n} s_{m} z_{i}^{\left\langle m, \rho_{i}\right\rangle+1}=0
$$

- Start from other ambient spaces such as dP_{3} :

$$
\begin{aligned}
p_{d P_{3}}= & s_{2} e_{1} e_{3}^{2} u^{2} v+s_{3} e_{2} e_{3}^{2} u v^{2}+s_{5} e_{1}^{2} e_{3} u^{2} w+s_{6} e_{1} e_{2} e_{3} u v w+s_{7} e_{2}^{2} e_{3} v^{2} w \\
& +s_{8} e_{1}^{2} e_{2} u w^{2}+s_{9} e_{1} e_{2}^{2} w^{2} v
\end{aligned}
$$

with zero-section $u \cup p_{d P_{3}}=0$ and three sections $e_{i} \cup p_{d P_{3}}=0$

$$
U(1)^{3} \text { theory }
$$

Example: $U(1)^{3} \rightarrow \mathbb{Z}_{3}$

- Consider a polytope Δ and its polar-dual Δ°

$$
P_{\Delta}=\sum_{m \in \Delta^{\circ}} \prod_{i=1}^{n} s_{m} z_{i}^{\left\langle m, \rho_{i}\right\rangle+1}=0
$$

- Collapsing the sections to dP_{2}

$$
\begin{aligned}
p_{d P_{2}}= & s_{1} e_{2}^{2} e_{1}^{2} u^{3}+s_{2} e_{2}^{2} e_{1} u^{2} v+s_{3} e_{2}^{2} u v^{2}+s_{5} e_{2} e_{1}^{2} u^{2} w+s_{6} e_{2} e_{1} u v w \\
& +s_{7} e_{2} v^{2} w+s_{8} e_{1}^{2} u w^{2}+s_{9} e_{1} v w^{2}
\end{aligned}
$$

with zero-section $u \cup p_{d P_{2}}=0$ and two sections $e_{i} \cup p_{d P_{2}}=0$

$$
U(1)^{2} \text { theory }
$$

Example: $U(1)^{3} \rightarrow \mathbb{Z}_{3}$

- Consider a polytope Δ and its polar-dual Δ°

$$
P_{\Delta}=\sum_{m \in \Delta^{\circ}} \prod_{i=1}^{n} s_{m} z_{i}^{\left\langle m, \rho_{i}\right\rangle+1}=0
$$

- Collapsing the sections to dP_{1}

$$
\begin{aligned}
p_{P^{2}}= & s_{1} u^{3} e_{1}^{2}+s_{2} u^{2} v e_{1}^{2}+s_{3} u v^{2} e_{1}^{2}+s_{4} v^{3} e_{1}^{2}+ \\
& s_{5} u^{2} w e_{1}+s_{6} u v w e_{1}+s_{7} v^{2} w e_{1}+s_{8} u w^{2}+s_{9} v w^{2}
\end{aligned}
$$

with zero-section $e_{1} \cup p_{d P_{3}}=0$ and non-toric section

$$
U(1)^{1} \text { theory }
$$

Example: $U(1)^{3} \rightarrow \mathbb{Z}_{3}$

- Consider a polytope Δ and its polar-dual Δ°

$$
P_{\Delta}=\sum_{m \in \Delta^{\circ}} \prod_{i=1}^{n} s_{m} z_{i}^{\left\langle m, \rho_{i}\right\rangle+1}=0
$$

- Collapsing the sections to P^{2}

$$
\begin{aligned}
p_{d P_{1}}= & s_{1} u^{3}+s_{2} u^{2} v+s_{3} u v^{2}+s_{4} v^{3}+s_{5} u^{2} w+s_{6} u v w \\
& +s_{7} v^{2} w+s_{8} u w^{2}+s_{9} v w^{2}+s_{10} w^{3}
\end{aligned}
$$

with three-sections only $(u, v, w) \cup p_{P^{2}}=3$

$$
\mathbb{Z}_{3} \text { theory }
$$

Take Home Message

- Multi-Sections in genus one curves can be though of as collapsed rational sections generating a free Mordell-Weil group
- Rational Sections can be obtained by non ADE blow-ups of the fiber ambient space
- If you look for sections, go search in other fiber ambient spaces

Take Home Message

- Multi-Sections in genus one curves can be though of as collapsed rational sections generating a free Mordell-Weil group
- Rational Sections can be obtained by non ADE blow-ups of the fiber ambient space
- If you look for sections, go search in other fiber ambient spaces
[Kreutzer, Skarke]
- In two dimension there are only 16 of them!
- In three dimensions there are only 3145 of them!

Outline

- F-theory, singular fibers and sections
- Torus Fibers in 2D Ambient Spaces
- Generalizing to 3D Ambient Spaces
- Example: $\operatorname{Nef}(122,0)$
- Conclusion and Outlook

The two dimensional Case

The two dimensional Network

Torsion

- $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ torsion in the upper theories

Multi Sections

- Genus one curves with two-and three-sections

The two dimensional Network

Torsion

- $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ torsion in the upper theories

Multi Sections

- Genus one curves with two-and three-sections

The two dimensional Network

Torsion

- $\mathbb{Z}_{2}, \mathbb{Z}_{3}$ torsion in the upper theories

Mirror Duality

- $\operatorname{MW}\left(P_{\Delta}\right)=\operatorname{MW}\left(P_{\Delta^{\circ}}\right)$
- TorMW $\leftrightarrow \mathrm{n}$-Sections

Multi Sections

- Genus one curves with two-and three-sections

Understanding the Duality

- Can we relate the appearance of torsion directly from properties of the ambien polytope?
- Can we relate the appearance of (only) multi-sections directly from properties of the ambien polytope?
- Are they connected by $\Delta \leftrightarrow \Delta^{\circ}$?
- Does this generalize?

Torsion and Multi-Sections from lattice refinement

- Remember: Lattice points $\rho_{i} \in \Delta$ correspond to divisors D_{i}. From a dual lattice point m we can obtain linear equivalence relations betwen divisors D_{i}

$$
\sum_{i}\left\langle\rho_{i}, m\right\rangle D_{i} \sim 0 .
$$

Torsion and Multi-Sections from lattice refinement

- Remember: Lattice points $\rho_{i} \in \Delta$ correspond to divisors D_{i}. From a dual lattice point m we can obtain linear equivalence relations betwen divisors D_{i}

$$
\sum_{i}\left\langle\rho_{i}, m\right\rangle D_{i} \sim 0 .
$$

- The torsion Shioda map is a k-trivial divisor:
[Mayrhover, Till,Morrison,Weigand]

$$
k \cdot \sigma_{T}^{(k)} \sim 0
$$

Torsion and Multi-Sections from lattice refinement

- Remember: Lattice points $\rho_{i} \in \Delta$ correspond to divisors D_{i}. From a dual lattice point m we can obtain linear equivalence relations betwen divisors D_{i}

$$
\sum_{i}\left\langle\rho_{i}, m\right\rangle D_{i} \sim 0
$$

- The torsion Shioda map is a k -trivial divisor:
[Mayrhover, Till,Morrison, Weigand]

$$
k \cdot \sigma_{T}^{(k)} \sim 0
$$

- We demand for the vertices and edge points $\rho_{i}^{(\text {ver })}, \rho_{j}^{(\text {edg })} \in \Delta$

$$
\left\langle\rho_{i}^{\text {ver }}, m\right\rangle=k \mathbb{Z}, \quad\left\langle\rho_{j}^{(e d g)}, m\right\rangle \neq k \mathbb{Z}, \forall m \in M
$$

Torsion and Multi-Sections from lattice refinement

- Remember: Lattice points $\rho_{i} \in \Delta$ correspond to divisors D_{i}. From a dual lattice point m we can obtain linear equivalence relations betwen divisors D_{i}

$$
\sum_{i}\left\langle\rho_{i}, m\right\rangle D_{i} \sim 0
$$

- The torsion Shioda map is a k-trivial divisor:
[Mayrhover, Till,Morrison, Weigand]

$$
k \cdot \sigma_{T}^{(k)} \sim 0
$$

- We demand for the vertices and edge points $\rho_{i}^{(\text {ver })}, \rho_{j}^{(\text {edg })} \in \Delta$

$$
\left\langle\rho_{i}^{v e r}, m\right\rangle=k \mathbb{Z}, \quad\left\langle\rho_{j}^{(e d g)}, m\right\rangle \neq k \mathbb{Z}, \forall m \in M
$$

- The vertices $\rho_{i}^{\text {ver }}$ span a lattice of finite index k in Δ

Torsion and Multi-Sections from lattice refinement

- Remember: Lattice points $\rho_{i} \in \Delta$ correspond to divisors D_{i}. From a dual lattice point m we can obtain linear equivalence relations betwen divisors D_{i}

$$
\sum_{i}\left\langle\rho_{i}, m\right\rangle D_{i} \sim 0
$$

- The torsion Shioda map is a k -trivial divisor:
[Mayrhover, Till,Morrison, Weigand]

$$
k \cdot \sigma_{T}^{(k)} \sim 0
$$

- We demand for the vertices and edge points $\rho_{i}^{(\text {ver })}, \rho_{j}^{(\text {edg })} \in \Delta$

$$
\left\langle\rho_{i}^{\text {ver }}, m\right\rangle=k \mathbb{Z}, \quad\left\langle\rho_{j}^{(e d g)}, m\right\rangle \neq k \mathbb{Z}, \forall m \in M
$$

- The vertices $\rho_{i}^{\text {ver }}$ span a lattice of finite index k in Δ
- As Δ is of index k, the dual lattice M can be refined by a factor of k.
- The torsion Shioda map is the divisor obtained from the refined dual lattice points

Example: Torsion from F_{13}

Obtaining the Torsion Shioda map

- The F_{13} fiber has a generic $S U(4) \times S U(2)^{2} / \mathbb{Z}_{2}$ gauge symmetry that are resolved by the e_{i} divisors

Example: Torsion from F_{13}

Obtaining the Torsion Shioda map

- The F_{13} fiber has a generic $S U(4) \times S U(2)^{2} / \mathbb{Z}_{2}$ gauge symmetry that are resolved by the e_{i} divisors
- The vertices z_{1}, z_{2}, z_{3} span a lattice of index 2: i.e. we can shift and shrink the polytope: $\Delta_{F_{13}} \rightarrow \Delta^{\prime}=\frac{1}{2}\left(\Delta_{F_{13}}-z_{3}\right) \in N$.

Example: Torsion from F_{13}

Obtaining the Torsion Shioda map

- The F_{13} fiber has a generic $S U(4) \times S U(2)^{2} / \mathbb{Z}_{2}$ gauge symmetry that are resolved by the e_{i} divisors
- The vertices z_{1}, z_{2}, z_{3} span a lattice of index 2: i.e. we can shift and shrink the polytope: $\Delta_{F_{13}} \rightarrow \Delta^{\prime}=\frac{1}{2}\left(\Delta_{F_{13}}-z_{3}\right) \in N$.
- There exists a refined dual lattice $M \rightarrow M^{\prime}$ with i.e. $m^{\prime}=\left(\frac{1}{2}, 0\right)$
- Construct the torsion Shioda map from refined lattice point

$$
\sum_{i}\left\langle m^{\prime}, \rho_{i}\right\rangle D_{i}=\sigma_{t}^{(2)}=\left[z_{2}\right]-\left[z_{1}\right]+\frac{1}{2}\left(-\left[e_{1}\right]+\left[e_{3}\right]+\left[e_{4}\right]-\left[e_{5}\right]\right)
$$

Torsion and Multi-Sections from lattice refinement

Discrete Shioda map from lattice refinement

Now we reverse the argument: We have assumed the vertices of $\rho_{i}^{(\text {ver })}$ of Δ span a lattice of index k in N

- Now $\Delta \rightarrow \Delta^{\circ}$ is a lattice polytope of index k in M that corresponds to a divisor i.e. the anticanonical divisor
- The divisor class constructed from polytope Δ° is shift invariant $\left[D_{\Delta^{\circ}+v}\right]=\left[D_{\Delta^{\circ}}\right]$
- Scaling a polytope Δ° scales the divisor class $\left[D_{k \Delta^{\circ}}\right]=\left[k D_{\Delta^{\circ}}\right]$
- However the divisor $D_{\Delta^{\circ}}$ corresponds a divisor in the anticannonical class of the ambient space.
- Hence the anti-cannonical class is a k -multiple of an integral class because by assumption is spans a lattice of index k
- Intersections with the class of the vertices in Δ are therefore a k-multiple only

Example: Multi-Sections from F_{4}

Obtaining the Torsion Shioda map

We have already seen that we can shrink the dual polytope to $\Delta_{F_{13}} \rightarrow \Delta^{\prime}=\frac{1}{2}(\Delta-w)$

- Within F_{4}, F_{13} describes exactly the anticanonical divisor in

$$
-K=\left[v_{1}\right]+\left[v_{2}\right]+\left[v_{3}\right]+[e] \sim 2 \underbrace{\left(2\left[v_{1}\right]+e\right)}_{D_{\Delta^{\prime}}}
$$

- The fiber in F_{4} is a genus one curve only with 2 -sections i.e. a theory with $S U(2) \times \mathbb{Z}_{2}$ gauge symmetry

The mirror Conjecture

- This procedure holds true for all 16 fibers constructed from 2D ambient spaces:

Conjecture 1. Given a genus-one fiber \mathcal{C} for which the Mordell-Weil group of the Jacobian contains torsion, the mirror dual is a genus-one fiber \mathcal{C}^{\prime} without a section and vice versa.

The mirror Conjecture

Is this phenomenon restricted to fibers in 2D ambient spaces?

Specialities in 2D

- Vertices have positive intersection with the elliptic curve
- Divisors are also curves
- Singularities are torically resolved
- $\operatorname{Vol}(\Delta)+\operatorname{Vol}\left(\Delta^{\circ}\right)=$ const
- $\# \operatorname{Points}(\Delta)+\# \operatorname{Points}\left(\Delta^{\circ}\right)=12$
- Is there any reason why this should hold in general?
- In complete intersection fibers, the above constraints do not hold!

Outline

- F-theory, singular fibers and sections
- Torus Fibers in 2D Ambient Spaces
- Generalizing to 3D Ambient Spaces
- Example: Nef $(122,0)$
- Conclusion and Outlook

Recap: Fibers in 3D ambient spaces

- A complete intersection Calabi-Yau is described in terms of a nef partition of a polytope a d-dimensional polytope Δ

$$
\begin{array}{ll}
\Delta=\Delta_{1}+\ldots+\Delta_{n}, & \Delta^{\circ}=\left\langle\nabla_{1}, \ldots, \nabla_{n}\right\rangle, \\
\nabla^{\circ}=\left\langle\Delta_{1}, \ldots, \Delta_{n}\right\rangle, & \nabla=\nabla_{1}+\ldots+\nabla_{n}, \tag{1}
\end{array}
$$

- This specifies a codimension n Calabi-Yau in a d-dimensional polytope via the intersections of

$$
P_{\Delta_{i}}=\sum_{m \in \Delta_{i}} \prod_{i=1}^{n} s_{m} z_{i}^{\left\langle m, \rho_{i}\right\rangle+a_{i}} \in \mathbb{P}_{\Delta^{\circ}}
$$

with $a_{i} \geq-1$

- The Mirror CY is cut out by $P_{\nabla_{i}} \in \mathbb{P}_{\nabla^{\circ}}$
- Note: One ambient space can have multiple nef partitions whose mirror dual do not have to live in the same ambient spaces!

How to check it?

The arguments in 2D do not readily apply. The existence of torsion does not imply multisections in the dual geometry anymore!
In [Braun, Grimm, Keitel '15] 3145 codimension two nef partitions in 3D ambient spaces have been considered

- They constructed the toric MW group
- They mapped all curves into their Jacobian Form i.e. into WSF form

A new hope:

- The fiber in \mathbb{P}^{3} only admits four sections
- The dual Nef parition with Palp id $(3145,0)$ has \mathbb{Z}_{4} Mordell-Weil torsion

Conjecture counter: 2/3145

Does it generalize?

- We went through the full list again and obtained all intersections of toric divisors with the elliptic curve
- Combining this information with the Mordell-Weil group, we indeed get a match in

Conjecture counter: 3086/3145

- So what is wrong about the rest?

Reducibility and non-toric sections

Nef partition $(4,0)$

Specified by the nef partition

$$
\nabla_{1}=\left\langle z_{0}, z_{3}, z_{4}, z_{6}\right\rangle, \quad \nabla_{2}=\left\langle z_{1}, z_{2}, z_{5}, z_{8}\right\rangle,
$$

in the $\mathbb{P}^{1} \times \mathbb{P}^{2}$ ambient space:
$\left.\begin{array}{cccc}z_{0} & z_{1} & z_{2} & z_{3} \\ \hline\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) & \left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right) & \left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) & \left.\begin{array}{c}0 \\ 0 \\ 1\end{array}\right)\end{array} \begin{array}{c}0 \\ \hline-1 \\ -1\end{array}\right)$

- Two inequivalent divisor classes: $\left[z_{0}\right] \sim\left[z_{1}\right], \quad\left[z_{2}\right] \sim\left[z_{3}\right] \sim\left[z_{4}\right]$
- Intersections $\mathcal{E} \cdot\left[z_{0}\right]=2$ and $\mathcal{E} \cdot\left[z_{2}\right]=3$.
- The dual nef partition $(3013,1)$ has no torsion.
- This is not a genus one curve: Construct a non-toric zero-section [Bran, Grimm, Keitel 14]

$$
\left[s_{0}\right]=\left[z_{2}\right]-\left[z_{0}\right]+H_{B}
$$

Reducibility and multi-mirrors

- Lets consider the elliptic curve with CICY equation of $(3013,1)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

Reducibility and multi-mirrors

- Lets consider the elliptic curve with CICY equation of $(3013,1)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

- Lets also consider the elliptic curve with CICY equation of $(3013,0)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

Reducibility and multi-mirrors

- Lets consider the elliptic curve with CICY equation of $(3013,1)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

- Lets also consider the elliptic curve with CICY equation of $(3013,0)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

- As they come from the same ambient space, they also have exactly the same Stanley-Reisner ideal: These are equivalent elliptic curves!

Reducibility and multi-mirrors

- Lets consider the elliptic curve with CICY equation of $(3013,1)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

- Lets also consider the elliptic curve with CICY equation of $(3013,0)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

- As they come from the same ambient space, they also have exactly the same Stanley-Reisner ideal: These are equivalent elliptic curves!
- Both curves have a zero-section and no torsion

Reducibility and multi-mirrors

- Lets consider the elliptic curve with CICY equation of $(3013,1)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

- Lets also consider the elliptic curve with CICY equation of $(3013,0)$ in z_{i}

$$
\begin{aligned}
p_{1} & =a_{0} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{15} z_{16}+a_{2} z_{0} z_{3} z_{5}^{2} z_{7}^{2} z_{11} z_{12} z_{13} \\
& +a_{1} z_{1} z_{4} z_{6}^{2} z_{8}^{2} z_{13} z_{15} z_{16}+a_{3} z_{0} z_{1} z_{2} z_{5} z_{6} z_{9} z_{12} z_{16} \\
p_{2} & =a_{5} z_{2} z_{9}^{2} z_{10}^{2} z_{11} z_{12} z_{15} z_{16}+a_{4} z_{3} z_{4} z_{7} z_{8} z_{10} z_{11} z_{13} z_{15}+a_{6} z_{0} z_{1} z_{2} z_{3} z_{4}
\end{aligned}
$$

- As they come from the same ambient space, they also have exactly the same Stanley-Reisner ideal: These are equivalent elliptic curves!
- Both curves have a zero-section and no torsion
- However, the first has $(4,0)$ as a mirror dual, the second one $(5,1)$. Are those equivalent too?

Reducibility

- $\operatorname{Nef}(5,1)$ admits a toric section with CICY equation in z_{i}

$$
\begin{aligned}
p_{1} & =a_{8} z_{0} z_{2}^{2}+a_{7} z_{0} z_{2} z_{3}+a_{5} z_{0} z_{3}^{2}+a_{6} z_{0} z_{2} z_{4}+a_{4} z_{0} z_{3} z_{4} \\
& +a_{3} z_{0} z_{4}^{2}+a_{2} z_{1} z_{2}+a_{1} z_{1} z_{3}+a_{0} z_{1} z_{4} \\
p_{2} & =a_{17} z_{0} z_{2}^{2}+a_{16} z_{0} z_{2} z_{3}+a_{14} z_{0} z_{3}^{2}+a_{15} z_{0} z_{2} z_{4} \\
& +a_{13} z_{0} z_{3} z_{4}+a_{12} z_{0} z_{4}^{2}+a_{11} z_{1} z_{2}+a_{10} z_{1} z_{3}+a_{9} z_{1} z_{4}
\end{aligned}
$$

- The CICY equation of $(4,0)$ is very different and has no toric section:

$$
\begin{aligned}
p_{1}= & a_{11} z_{0} z_{2}^{2}+a_{5} z_{1} z_{2}^{2}+a_{10} z_{0} z_{2} z_{3}+a_{4} z_{1} z_{2} z_{3}+a_{8} z_{0} z_{3}^{2}+a_{2} z_{1} z_{3}^{2} \\
& +a_{9} z_{0} z_{2} z_{4}+a_{3} z_{1} z_{2} z_{4}+a_{7} z_{0} z_{3} z_{4}+a_{1} z_{1} z_{3} z_{4}+a_{6} z_{0} z_{4}^{2}+a_{0} z_{1} z_{4}^{2} \\
p_{2}= & a_{17} z_{0} z_{2}+a_{14} z_{1} z_{2}+a_{16} z_{0} z_{3}+a_{13} z_{1} z_{3}+a_{15} z_{0} z_{4}+a_{12} z_{1} z_{4}
\end{aligned}
$$

- Those models share the same Weierstrass models with:

$$
(5,1): f\left(a_{i}\right), g\left(a_{i}\right)=(4,0): f\left(a_{i}\right), g\left(a_{i}\right)
$$

After relabeling the sections a_{i} !

- Hence the curve in $(4,0)$ is equivalent to $(5,1)$

Conjecture counter: 3088/3145

Reducibility of CICY fibers

- By this procedure we find that many fibers have an equivalent (singular) Weierstrass description related by a simple relabeling of the sections
- The 3145 different nef partitions get reduced to 1024 inequivalent fibers
- We find examples where ADE singularities have toric and non-toric resolutions when realized in different ambient spaces

> Conjecture counter: 998/1024

Mirror genus-one curves

26 cases to go

Conjecture counter: 998/1024

- In all cases, the curve and its dual are genus-one curves that only admit multi-sections. \rightarrow No toric Mordell-Weil group. How to test for the torsion?
- We consider the Weiertrass models of those curves (Jacobian) and and show that they are birational equivalent to the Weierstrass from with k-torsion [Aspinwall, Morrison '98]

Mirror genus-one curves

- In all cases, the curve and its dual are genus-one curves that only admit multi-sections. \rightarrow No toric Mordell-Weil group. How to test for the torsion?
- We consider the Weiertrass models of those curves (Jacobian) and and show that they are birational equivalent to the Weierstrass from with k-torsion
[Aspinwall, Morrison '98]
- Those models have torsion sections only in their Jacobian
- In 24 cases the genus one curve has only two-sections and two-torsion, just as their mirrors

\leftarrow mirror dual \rightarrow	\leftarrow mirror dual \rightarrow		
$(152,0)$	$(195,4)$	$(8,0)$	$(609,0)$
$(29,2)$	$(577,0)$	$(34,0)$	$(321,1)$
$(39,0)$	$(335,0)$	$(56,2)$	$(356,2)$
$(78,2)$	$(266,0)$	$(108,0)$	$(161,1)$
$(129,0)$	$(129,1)$	$(150,1)$	$(208,1)$
$(152,1)$ self-mirror	$(122,0)$ self-mirror		

Mirror genus-one curves

- In all cases, the curve and its dual are genus-one curves that only admit multi-sections. \rightarrow No toric Mordell-Weil group. How to test for the torsion?
- We consider the Weiertrass models of those curves (Jacobian) and and show that they are birational equivalent to the Weierstrass from with k-torsion [Aspinwall, Morrison '98]
- in four cases, the degree of the Multi-sections and torsion does not match!
\leftarrow mirror dual \rightarrow

nef $(5,3)$	nef $(2069,0)$
four-sections	\mathbb{Z}_{2} torsion
no torsion	one-sections
nef $(21,1)$	nef $(488,0)$
four-sections	\mathbb{Z}_{2} torsion
\mathbb{Z}_{2} torsion	two-sections

- These theories have non-toric resolution divisors and are connected via a higgsing.
- Apart from the matching of the degree, the conjecture still holds

Mirror genus-one curves

- In all cases, the curve and its dual are genus-one curves that only admit multi-sections. \rightarrow No toric Mordell-Weil group. How to test for the torsion?
- We consider the Weiertrass models of those curves (Jacobian) and and show that they are birational equivalent to the Weierstrass from with k-torsion [Aspinwall, Morrison '98]

Conjecture counter: 1024(4)/1024

Mirror genus-one curves

- In all cases, the curve and its dual are genus-one curves that only admit multi-sections. \rightarrow No toric Mordell-Weil group. How to test for the torsion?
- We consider the Weiertrass models of those curves (Jacobian) and and show that they are birational equivalent to the Weierstrass from with k-torsion
[Aspinwall, Morrison '98]
Conjecture 2. A curve \mathcal{C} constructed as a complete intersection in a toric ambient space such that all the codimension one loci are torically resolved does exhibit Mordell-Weil torsion of degree k in the Jacobian if and only if the one dimensional generators of the fan $\left\{\rho_{i}: D_{i} \cdot C \neq 0\right\}$ span a sublattice $\tilde{M} \supset M$ of index k. Up to base divisors a point $m \in \tilde{M} \backslash M$ corresponds to a torsion Shioda $\operatorname{map} \sigma_{t}^{(k)}$ via

$$
\sigma_{t}^{(k)}=\sum_{\rho_{i} \in \Sigma(1)}\left\langle m, \rho_{i}\right\rangle \cdot D_{i} .
$$

Outline

- F-theory, singular fibers and sections
- Torus Fibers in 2D Ambient Spaces
- Generalizing to 3D Ambient Spaces
- Example: $\operatorname{Nef}(122,0)$
- Conclusion and Outlook

A self-dual genus one-curve

- The nef partition is given by:

$$
\nabla_{1}=\left\langle z_{0}, z_{3}, z_{4}, z_{6}\right\rangle, \quad \nabla_{2}=\left\langle z_{1}, z_{2}, z_{5}, z_{8}\right\rangle
$$

- in the ambient space

z_{0}	z_{1}	z_{2}	z_{3}
$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	$\left(\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right)$

z_{4}	z_{5}	z_{6}	z_{8}
$\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$	$\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$	$\left(\begin{array}{c}0 \\ -1 \\ -1\end{array}\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$

- The CICY equations are given as

$$
\begin{aligned}
& p_{1}=a_{2} z_{0}^{2} z_{4}^{2} z_{6}+a_{4} z_{0} z_{1} z_{5}^{2} z_{8}+a_{1} z_{0} z_{3} z_{4} z_{6}+a_{3} z_{0} z_{2} z_{5} z_{8}+a_{0} z_{3}^{2} z_{6} \\
& p_{2}=a_{9} z_{0} z_{1} z_{4}^{2} z_{6}+a_{8} z_{1}^{2} z_{5}^{2} z_{8}+a_{6} z_{1} z_{3} z_{4} z_{6}+a_{7} z_{1} z_{2} z_{5} z_{8}+a_{5} z_{2}^{2} z_{8}
\end{aligned}
$$

- Intersecting the curve: $\left[z_{0}, z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}, z_{8}\right] \cdot \mathcal{E}=[0,0,2,2,2,2,0,0]$
- We have only-two sections: this is a genus-one curve
- The vertices span a lattice of index 2 in \mathbb{Z}^{3}

Gauge symmetry

z_{0}	z_{1}	z_{2}	z_{3}
$\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$	$\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$	

-1

-1\end{array}\right)\)

z_{4}	z_{5}	z_{6}	z_{8}
$\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$	$\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$	$\left(\begin{array}{c}0 \\ -1 \\ -1\end{array}\right)$	$\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$

- The dual lattice is generated by a finer lattice i.e.

$$
m^{\prime}=\left(\frac{1}{2}, \frac{1}{2}, 0\right), m_{1}=(0,1,0), m_{2}=(0,0,1)
$$

- From m^{\prime} we construct the torsion Shioda map:

$$
\sigma_{T}^{(2)}=\left[z_{5}\right]-\left[z_{3}\right]+\frac{1}{2}\left(\left[z_{0}\right]+\left[z_{1}\right]-\left[z_{6}\right]+\left[z_{8}\right]\right)
$$

- Indeed: $z_{0}, z_{1}, z_{6}, z_{8}$ are resolution divisors
- The intersection with matter $\sigma_{T}^{(2)} \cdot c_{m} \sim 0$ implies for the weights λ^{i}

$$
\lambda_{m}^{1}+\lambda_{m}^{2}-\lambda_{m}^{3}+\lambda_{m}^{4}=0 \bmod 2
$$

- Only bifundemantal matter possible

Consistency of torsion

We can check for the existence of \mathbb{Z}_{2} torsion in the Weierstrass form:

- A Weierstrass model with a \mathbb{Z}_{2} torsion points admits the following form of Weierstrass coefficients: [Assinuall, Morison' 98]

$$
\begin{gathered}
f=A_{4}-\frac{1}{3} A_{2}^{2}, \quad g=\frac{1}{27} A_{2}\left(2 A_{2}^{2}-9 A_{4}\right), \\
\Delta=A_{4}^{2}\left(4 A_{4}-A_{2}^{2}\right),
\end{gathered}
$$

- The $(122,0)$ Weierstrass coefficients are related by the birational map:

$$
\begin{aligned}
A_{2} \rightarrow & 4 a_{1} a_{4} a_{5} a_{6}+a_{3}^{2} a_{6}^{2}-2 a_{1} a_{3} a_{6} a_{7}+a_{1}^{2} a_{7}^{2} \\
& -4 a_{0} a_{2} a_{7}^{2}-4 a_{1}^{2} a_{5} a_{8}+16 a_{0} a_{2} a_{5} a_{8} \\
& -8 a_{0} a_{4} a_{5} a_{9}+4 a_{0} a_{3} a_{7} a_{9}, \\
A_{4} \rightarrow & 16 a_{0} a_{5}\left(a_{4}^{2} a_{5}-a_{3} a_{4} a_{7}+a_{3}^{2} a_{8}\right) \\
& \cdot\left(a_{2} a_{6}^{2}-a_{1} a_{6} a_{9}+a_{0} a_{9}^{2}\right) .
\end{aligned}
$$

- Therefore we have \mathbb{Z}_{2} torsion
- We have four SU(2) singularities in codimension two

Discrete Shioda map and gauge locus

- The CICY equations are

$$
\begin{aligned}
& p_{1}=a_{2} z_{0}^{2} z_{4}^{2} z_{6}+a_{4} z_{0} z_{1} z_{5}^{2} z_{8}+a_{1} z_{0} z_{3} z_{4} z_{6}+a_{3} z_{0} z_{2} z_{5} z_{8}+a_{0} z_{3}^{2} z_{6}, \\
& p_{2}=a_{9} z_{0} z_{1} z_{4}^{2} z_{6}+a_{8} z_{1}^{2} z_{5}^{2} z_{8}+a_{6} z_{1} z_{3} z_{4} z_{6}+a_{7} z_{1} z_{2} z_{5} z_{8}+a_{5} z_{2}^{2} z_{8}
\end{aligned}
$$

- We have the following four codimension one, I_{2} singularities:

Discrete Shioda map and gauge locus

- The CICY equations are

$$
\begin{aligned}
& p_{1}=a_{2} z_{0}^{2} z_{4}^{2} z_{6}+a_{4} z_{0} z_{1} z_{5}^{2} z_{8}+a_{1} z_{0} z_{3} z_{4} z_{6}+a_{3} z_{0} z_{2} z_{5} z_{8}+a_{0} z_{3}^{2} z_{6} \\
& p_{2}=a_{9} z_{0} z_{1} z_{4}^{2} z_{6}+a_{8} z_{1}^{2} z_{5}^{2} z_{8}+a_{6} z_{1} z_{3} z_{4} z_{6}+a_{7} z_{1} z_{2} z_{5} z_{8}+a_{5} z_{2}^{2} z_{8}
\end{aligned}
$$

- We have the following four codimension one, I_{2} singularities:
- toric locus I_{2} locus $L_{1}: a_{0}=0$

$$
p_{1}^{(1)}=p^{\prime} \cdot z_{0}
$$

Discrete Shioda map and gauge locus

- The CICY equations are

$$
\begin{aligned}
& p_{1}=a_{2} z_{0}^{2} z_{4}^{2} z_{6}+a_{4} z_{0} z_{1} z_{5}^{2} z_{8}+a_{1} z_{0} z_{3} z_{4} z_{6}+a_{3} z_{0} z_{2} z_{5} z_{8}+a_{0} z_{3}^{2} z_{6} \\
& p_{2}=a_{9} z_{0} z_{1} z_{4}^{2} z_{6}+a_{8} z_{1}^{2} z_{5}^{2} z_{8}+a_{6} z_{1} z_{3} z_{4} z_{6}+a_{7} z_{1} z_{2} z_{5} z_{8}+a_{5} z_{2}^{2} z_{8}
\end{aligned}
$$

- We have the following four codimension one, I_{2} singularities:
- toric locus I_{2} locus $L_{2}: a_{5}=0$

$$
p_{2}=p_{2}^{\prime} \cdot z_{1}
$$

Discrete Shioda map and gauge locus

- The CICY equations are

$$
\begin{aligned}
& p_{1}=a_{2} z_{0}^{2} z_{4}^{2} z_{6}+a_{4} z_{0} z_{1} z_{5}^{2} z_{8}+a_{1} z_{0} z_{3} z_{4} z_{6}+a_{3} z_{0} z_{2} z_{5} z_{8}+a_{0} z_{3}^{2} z_{6} \\
& p_{2}=a_{9} z_{0} z_{1} z_{4}^{2} z_{6}+a_{8} z_{1}^{2} z_{5}^{2} z_{8}+a_{6} z_{1} z_{3} z_{4} z_{6}+a_{7} z_{1} z_{2} z_{5} z_{8}+a_{5} z_{2}^{2} z_{8}
\end{aligned}
$$

- We have the following four codimension one, I_{2} singularities:
- non-toric I_{2} locus $L_{3}: a_{4}^{2} a_{5}-a_{3} a_{4} a_{7}+a_{3}^{2} a_{8}=0$ the following combination factorizes:

$$
a_{3} a_{4} z_{0} z_{5} p_{2}-\left(a_{4} a_{5} z_{2}+a_{3} a_{8} z_{1} z_{5}\right) p_{1}=p^{(2)} \cdot z_{6}
$$

Discrete Shioda map and gauge locus

- The CICY equations are

$$
\begin{aligned}
& p_{1}=a_{2} z_{0}^{2} z_{4}^{2} z_{6}+a_{4} z_{0} z_{1} z_{5}^{2} z_{8}+a_{1} z_{0} z_{3} z_{4} z_{6}+a_{3} z_{0} z_{2} z_{5} z_{8}+a_{0} z_{3}^{2} z_{6} \\
& p_{2}=a_{9} z_{0} z_{1} z_{4}^{2} z_{6}+a_{8} z_{1}^{2} z_{5}^{2} z_{8}+a_{6} z_{1} z_{3} z_{4} z_{6}+a_{7} z_{1} z_{2} z_{5} z_{8}+a_{5} z_{2}^{2} z_{8}
\end{aligned}
$$

- We have the following four codimension one, I_{2} singularities:
- non-toric I_{2} locus $L_{4}: a_{2} a_{6}^{2}-a_{1} a_{6} a_{9}+a_{0} a_{9}^{2}=0$ the following combination factorizes:

$$
a_{6} a_{9} z_{1} z_{4} p_{1}-\left(a_{0} a_{9} z_{3}+a_{2} a_{6} z_{0} z_{4}\right) p_{2}=p^{(3)} \cdot z_{8}
$$

Discrete Shioda map and gauge locus

- The CICY equations are

$$
\begin{aligned}
& p_{1}=a_{2} z_{0}^{2} z_{4}^{2} z_{6}+a_{4} z_{0} z_{1} z_{5}^{2} z_{8}+a_{1} z_{0} z_{3} z_{4} z_{6}+a_{3} z_{0} z_{2} z_{5} z_{8}+a_{0} z_{3}^{2} z_{6} \\
& p_{2}=a_{9} z_{0} z_{1} z_{4}^{2} z_{6}+a_{8} z_{1}^{2} z_{5}^{2} z_{8}+a_{6} z_{1} z_{3} z_{4} z_{6}+a_{7} z_{1} z_{2} z_{5} z_{8}+a_{5} z_{2}^{2} z_{8}
\end{aligned}
$$

- We have the following four codimension one, I_{2} singularities:
- The multisections intersect the fiber and hence we have to orthogonolize the discrete Shioda map;

$$
\sigma_{D, 4}^{(2)}=\left[z_{4}\right]+\frac{1}{2}\left(\left[z_{1}\right]+\left[z_{6}\right]\right)
$$

The matter spectrum

Matter locus 1,
$a_{0}=a_{5}=0$

Matter locus 5 ,
$a_{5}=a_{4} a_{7}-a_{3} a_{8}=0$

Matter locus 2,
$a_{0}=a_{6}=0$

Matter locus 6,
$a_{0}=0, L_{2}$

Matter locus 3 ,
$a_{0}=a_{2} a_{6}-a_{1} a_{9}=0$

Matter locus 7,
$a_{5}=0, L_{3}$

Matter locus 4,

$$
a_{5}=a_{3}=0
$$

Matter locus 8,
L_{2}, L_{3}

The matter spectrum

Locus	(f, g, Δ)	$S U(2)^{4} \times \mathbb{Z}_{2}$ Rep.
$a_{0}=0, a_{5}=0$	$(0,0,4)$	$(\mathbf{2 , 2 , 1 , 1})_{\frac{1}{2}}$
$a_{0}=0, a_{6}=0$	$(0,0,4)$	$(\mathbf{2 , 1 , 1 , 2})_{1}$
$a_{0}=0$, $a_{2} a_{6}-a_{1} a_{9}=0$	$(0,0,4)$	$(\mathbf{2 , 1 , 1 , 2})_{0}^{\prime}$
$a_{5}=0, a_{3}=0$	$(0,0,4)$	$(\mathbf{1 , 2 , 2 , 1})_{0}$
$a_{5}=0$, $a_{4} a_{7}-a_{3} a_{8}=0$	$(0,0,4)$	$(\mathbf{1 , 2 , 2 , 1})_{1}^{\prime}$
$a_{0}=0$, $a_{4}^{2} a_{5}-a_{3} a_{4} a_{7}+a_{3}^{2} a_{8}=0$	$(0,0,4)$	$(\mathbf{2 , 1 , 2 , 1})_{-\frac{1}{2}}$
$a_{5}=0$, $a_{2} a_{6}^{2}-a_{1} a_{6} a_{9}+a_{0} a_{9}^{2}=0$	$(0,0,4)$	$(\mathbf{1 , 2 , 1 , 2})_{\frac{1}{2}}$
$a_{4}^{2} a_{5}-a_{3} a_{4} a_{7}+a_{3}^{2} a_{8}=0$, $a_{2} a_{6}^{2}-a_{1} a_{6} a_{9}+a_{0} a_{9}^{2}=0$	$(0,0,4)$	$(\mathbf{1 , 1 , 2 , 2})_{\frac{1}{2}}$

The matter spectrum

- Only bifundamental matter
- All matter curves distinguished by a unique quantum number \checkmark

$$
\begin{array}{ll}
(\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{2})_{1}, & (\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{2})_{0}^{\prime} \\
(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{1}, & (\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{0}^{\prime}
\end{array}
$$

- The \mathbb{Z}_{2} also restricts the Yukawa couplings as expected

$$
\begin{aligned}
& Y_{1}:(\mathbf{2}, \mathbf{2}, \mathbf{1}, \mathbf{1})_{\frac{1}{2}} \cdot(\mathbf{2}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-\frac{1}{2}} \cdot(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{0}, \\
& Y_{2}:(\mathbf{2}, \mathbf{2}, \mathbf{1}, \mathbf{1})_{\frac{1}{2}} \cdot \overline{(\mathbf{2}, \mathbf{1}, \mathbf{2}, \mathbf{1})_{-\frac{1}{2}}} \cdot(\mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1})_{1}^{\prime} .
\end{aligned}
$$

- Without the \mathbb{Z}_{2} symmetry the geometric different Yukawa couplings would be the same

Summary and Outlook

- We have given strong evidence, that genus-one curves with multi-sections are mirror-dual to fibers with Mordell-Weil torsion of the same degree
- Combinatorial explanation in 2D toric ambient spaces
- We have explicitly checked the conjecture for all $\mathbf{3 1 4 5}$ cases of codimension two curves
- The combinatorial explanation does not fully carry over to 3D
- We find fibers with new features:
- Equivalent realizations of the same elliptic curve
- A fiber with a non-toric zero-section
- Genus-one fibers with torsion sections in their Jacobian
- We have fully analyzed a self-dual genus one curve that admits quotient and discrete symmetries

Outlook

- Can we proof the conjecture in general?
- Is there a physical explanation?
- Can we classify discrete symmetries in F-theory via their mirror dual torsion?

