Quantum Information, Machine Learning and Knot Theory

Onkar Parrikar

Department of Physics \& Astronomy
University of Pennsylvania.

Math/Strings Regional Meeting at Duke University, 04/20/2019.

Based on

- V. Balasubramanian, J. R. Fliss, R.G. Leigh \& OP, JHEP 1704 (2017) 061, arXiv:1611.05460.
- V. Balasubramanian, M. DeCross, J. R. Fliss, Arjun Kar, R.G. Leigh \& OP, arXiv:1801.0113.
- V. Jejjala, A. Kar \& OP, arXiv:1902.05547.

Part 1: Quantum Information

Entanglement Entropy in Qubits: Brief Overview

- The basic example of an entangled state between two qubits is

$$
\left|\psi_{\mathrm{Bell}}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

Entanglement Entropy in Qubits: Brief Overview

- The basic example of an entangled state between two qubits is

$$
\left|\psi_{\text {Bell }}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

- If we trace over one of the qubits, we obtain a mixed state

$$
\rho=\operatorname{Tr}_{2}\left|\psi_{\text {Bell }}\right\rangle\left\langle\psi_{\text {Bell }}\right|=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| .
$$

Entanglement Entropy in Qubits: Brief Overview

- The basic example of an entangled state between two qubits is

$$
\left|\psi_{\text {Bell }}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

- If we trace over one of the qubits, we obtain a mixed state

$$
\rho=\operatorname{Tr}_{2}\left|\psi_{\text {Bell }}\right\rangle\left\langle\psi_{\text {Bell }}\right|=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| .
$$

- We can associate an entropy to it, namely the Von-Neumann entropy, often called the entanglement entropy

$$
S(\rho)=-\operatorname{Tr}_{1}(\rho \ln \rho)=\ln (2)
$$

Entanglement Entropy in Qubits: Brief Overview

- The basic example of an entangled state between two qubits is

$$
\left|\psi_{\mathrm{Bell}}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

- If we trace over one of the qubits, we obtain a mixed state

$$
\rho=\operatorname{Tr}_{2}\left|\psi_{\text {Bell }}\right\rangle\left\langle\psi_{\text {Bell }}\right|=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| .
$$

- We can associate an entropy to it, namely the Von-Neumann entropy, often called the entanglement entropy

$$
S(\rho)=-\operatorname{Tr}_{1}(\rho \ln \rho)=\ln (2)
$$

- This is to be contrasted against unentangled product states like

$$
|0\rangle \otimes|0\rangle, \quad|0\rangle \otimes|1\rangle, \quad|+\rangle \otimes|+\rangle \text { etc. }
$$

Entanglement Entropy in Qubits: Brief Overview

- With more qubits, one can construct more interesting entangled states. For example, with three qubits we have [Dur et al '00]

$$
\begin{gathered}
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \\
|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle)
\end{gathered}
$$

Entanglement Entropy in Qubits: Brief Overview

- With more qubits, one can construct more interesting entangled states. For example, with three qubits we have [Dur et al '00]

$$
\begin{gathered}
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \\
|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle)
\end{gathered}
$$

- The GHZ state has the property that if we trace over one qubit, then the reduced state is separable, i.e., it is a classical mixture of product states:

$$
\operatorname{Tr}_{3}|G H Z\rangle\langle G H Z|=\frac{1}{2}|00\rangle\langle 00|+\frac{1}{2}|11\rangle\langle 11| .
$$

Entanglement Entropy in Qubits: Brief Overview

- With more qubits, one can construct more interesting entangled states. For example, with three qubits we have [Dur et al '00]

$$
\begin{gathered}
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) . \\
|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) .
\end{gathered}
$$

- The GHZ state has the property that if we trace over one qubit, then the reduced state is separable, i.e., it is a classical mixture of product states:

$$
\operatorname{Tr}_{3}|G H Z\rangle\langle G H Z|=\frac{1}{2}|00\rangle\langle 00|+\frac{1}{2}|11\rangle\langle 11| .
$$

- On the contrary, the W-state is not separable:

$$
\operatorname{Tr}_{3}|W\rangle\langle W|=\frac{1}{3}|00\rangle\langle 00|+\frac{2}{3}\left|\Psi^{+}\right\rangle\left\langle\Psi^{+}\right|, \quad\left|\Psi^{+}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} .
$$

Entanglement in Topological Quantum Field Theory

- We will study entanglement structure of a certain class of states in Chern-Simons theory.

Entanglement in Topological Quantum Field Theory

- We will study entanglement structure of a certain class of states in Chern-Simons theory.
- The action for $d=3$ Chern-Simons gauge theory at level k is given by [Witten '89]

$$
S_{C S}[A]=\frac{k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Entanglement in Topological Quantum Field Theory

- We will study entanglement structure of a certain class of states in Chern-Simons theory.
- The action for $d=3$ Chern-Simons gauge theory at level k is given by [Witten '89]

$$
S_{C S}[A]=\frac{k}{4 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

- We will consider the theory for gauge groups $U(1)$ and $S U(2)$.

Which states?

- The states we will consider are created by performing the Euclidean path integral of Chern-Simons theory on 3-manifolds M_{n} with boundary consisting of n copies of T^{2}.

Which states?

- The states we will consider are created by performing the Euclidean path integral of Chern-Simons theory on 3-manifolds M_{n} with boundary consisting of n copies of T^{2}.

- For a given M_{n} of this form, the path-integral of Chern-Simons theory on M_{n} defines a state

$$
\begin{gathered}
|\Psi\rangle \in \mathcal{H}\left(T^{2}\right) \otimes \mathcal{H}\left(T^{2}\right) \otimes \ldots \otimes \mathcal{H}\left(T^{2}\right) \\
\Psi\left[A_{(0)}\right]=\int_{\left.A\right|_{\Sigma}=A_{(0)}}[D A] e^{i S_{C S}[A]}
\end{gathered}
$$

Link-Complements

- Clearly, the choice of M_{n} is far from unique. But there is a simple way to construct such manifolds.

Link-Complements

- Clearly, the choice of M_{n} is far from unique. But there is a simple way to construct such manifolds.
- We start with a closed 3-manifold (i.e., a compact 3-manifold without boundary) X, and an n-component link in X

$$
\mathcal{L}^{n}=L_{1} \cup L_{2} \cup \cdots L_{n}
$$

Link-Complements

- Clearly, the choice of M_{n} is far from unique. But there is a simple way to construct such manifolds.
- We start with a closed 3-manifold (i.e., a compact 3-manifold without boundary) X, and an n-component link in X

$$
\mathcal{L}^{n}=L_{1} \cup L_{2} \cup \cdots L_{n}
$$

- Let us take X to be the 3 -sphere S^{3} for simplicity.

Link-Complements

- We then remove a tubular neighbourhood $N\left(\mathcal{L}^{n}\right)$ of \mathcal{L}^{n} from S^{3}.

Link-Complements

- We then remove a tubular neighbourhood $N\left(\mathcal{L}^{n}\right)$ of \mathcal{L}^{n} from S^{3}.
- The manifold $M_{n}=S^{3}-N\left(\mathcal{L}^{n}\right)$ is called the link complement of \mathcal{L}^{n}.

Link-Complements

- We then remove a tubular neighbourhood $N\left(\mathcal{L}^{n}\right)$ of \mathcal{L}^{n} from S^{3}.
- The manifold $M_{n}=S^{3}-N\left(\mathcal{L}^{n}\right)$ is called the link complement of \mathcal{L}^{n}.
- It has the desired property, namely that

$$
\partial M_{n}=T^{2} \cup T^{2} \cup \cdots \cup T^{2}
$$

Link-Complements

- We then remove a tubular neighbourhood $N\left(\mathcal{L}^{n}\right)$ of \mathcal{L}^{n} from S^{3}.
- The manifold $M_{n}=S^{3}-N\left(\mathcal{L}^{n}\right)$ is called the link complement of \mathcal{L}^{n}.
- It has the desired property, namely that

$$
\partial M_{n}=T^{2} \cup T^{2} \cup \cdots \cup T^{2}
$$

- The path-integral of Chern-Simons theory on the link-complement assigns to a link \mathcal{L}^{n} in S^{3} a state $\left|\mathcal{L}^{n}\right\rangle \in \mathcal{H}\left(T^{2}\right)^{\otimes n}$.

The Hilbert space on a Torus

- Before moving further, let us recall some details about the Hilbert space of CS theory on a torus [Witten '89].

The Hilbert space on a Torus

- Before moving further, let us recall some details about the Hilbert space of CS theory on a torus [Witten '89].
- To construct a basis, we perform the path-integral on the "interior" solid torus, with a Wilson line in an integrable representation R_{j} placed along the non-contractible cycle in the bulk. We call this state $|j\rangle$.

The Hilbert space on a Torus

- Before moving further, let us recall some details about the Hilbert space of CS theory on a torus [Witten '89].
- To construct a basis, we perform the path-integral on the "interior" solid torus, with a Wilson line in an integrable representation R_{j} placed along the non-contractible cycle in the bulk. We call this state $|j\rangle$.

- The Hilbert space is finite dimensional for compact groups. (For $S U(2)$, the basis is labelled by spins $j=0, \frac{1}{2}, \cdots \frac{k}{2}$.)

Back to Link complements

- Now we can write the state prepared by path integration on the link complement $S^{3}-\mathcal{L}^{n}$ in this basis as:

$$
\left|\mathcal{L}^{n}\right\rangle=\sum_{j_{1}, \cdots, j_{n}} C_{\mathcal{L}^{n}}\left(j_{1}, j_{2}, \cdots j_{n}\right)\left|j_{1}\right\rangle \otimes\left|j_{2}\right\rangle \cdots \otimes\left|j_{n}\right\rangle
$$

Back to Link complements

- Now we can write the state prepared by path integration on the link complement $S^{3}-\mathcal{L}^{n}$ in this basis as:

$$
\left|\mathcal{L}^{n}\right\rangle=\sum_{j_{1}, \cdots, j_{n}} C_{\mathcal{L}^{n}}\left(j_{1}, j_{2}, \cdots j_{n}\right)\left|j_{1}\right\rangle \otimes\left|j_{2}\right\rangle \cdots \otimes\left|j_{n}\right\rangle
$$

- A little bit of thought shows that

$$
C_{\mathcal{L}^{n}}\left(j_{1}, \cdots, j_{n}\right)=\left\langle\operatorname{Tr}_{R_{j_{1}}^{*}}\left(e^{\oint_{L_{1}} A}\right) \cdots \operatorname{Tr}_{R_{j_{n}}^{*}}\left(e^{\oint_{L_{n}} A}\right)\right\rangle_{S^{3}}
$$

Back to Link complements

- Now we can write the state prepared by path integration on the link complement $S^{3}-\mathcal{L}^{n}$ in this basis as:

$$
\left|\mathcal{L}^{n}\right\rangle=\sum_{j_{1}, \cdots, j_{n}} C_{\mathcal{L}^{n}}\left(j_{1}, j_{2}, \cdots j_{n}\right)\left|j_{1}\right\rangle \otimes\left|j_{2}\right\rangle \cdots \otimes\left|j_{n}\right\rangle
$$

- A little bit of thought shows that

$$
C_{\mathcal{L}^{n}}\left(j_{1}, \cdots, j_{n}\right)=\left\langle\operatorname{Tr}_{R_{j_{1}}^{*}}\left(e^{\oint_{L_{1}} A}\right) \cdots \operatorname{Tr}_{R_{j_{n}}^{*}}\left(e^{\oint_{L_{n}} A}\right)\right\rangle_{S^{3}}
$$

- These are called colored link invariants. (For $G=S U(2)$ they are called colored Jones polynomials.)

Entanglement Entropy

- We wish to study the entanglement structure of these states.

Entanglement Entropy

- We wish to study the entanglement structure of these states.
- So we partition the n-component link into an m-component sub-link \mathcal{L}_{A}^{m} and the rest $\mathcal{L}_{\bar{A}}^{n-m}$.

Entanglement Entropy

- We wish to study the entanglement structure of these states.
- So we partition the n-component link into an m-component sub-link \mathcal{L}_{A}^{m} and the rest $\mathcal{L}_{\bar{A}}^{n-m}$.

- The reduced density matrix is obtained by tracing out \bar{A} :

$$
\rho_{A}=\frac{1}{\left\langle\mathcal{L}_{n} \mid \mathcal{L}_{n}\right\rangle} \operatorname{Tr}_{\mathcal{L}_{\bar{A}}}\left|\mathcal{L}^{n}\right\rangle\left\langle\mathcal{L}^{n}\right|
$$

Entanglement Entropy

- We wish to study the entanglement structure of these states.
- So we partition the n-component link into an m-component sub-link \mathcal{L}_{A}^{m} and the rest $\mathcal{L}_{\bar{A}}^{n-m}$.

- The reduced density matrix is obtained by tracing out \bar{A} :

$$
\rho_{A}=\frac{1}{\left\langle\mathcal{L}_{n} \mid \mathcal{L}_{n}\right\rangle} \operatorname{Tr}_{\mathcal{L}_{\bar{A}}}\left|\mathcal{L}^{n}\right\rangle\left\langle\mathcal{L}^{n}\right|
$$

- The entanglement entropy is given by the Von Neumann entropy of this density matrix:

$$
S_{E E}=-\operatorname{Tr}_{\mathcal{L}_{A}}\left(\rho_{A} \ln \rho_{A}\right)
$$

Example 0: The Unlink

- To see why these entropies are potentially interesting, we consider the simple but illuminating example of the unlink.

Example 0: The Unlink

- To see why these entropies are potentially interesting, we consider the simple but illuminating example of the unlink.
- So take \mathcal{L}^{n} to be n un-linked knots.

Example 0: The Unlink

- To see why these entropies are potentially interesting, we consider the simple but illuminating example of the unlink.
- So take \mathcal{L}^{n} to be n un-linked knots.

- It is well-known that the colored link-invariant of the unlink factorizes (up to an overall constant) [Witten '89]

$$
\left|\mathcal{L}^{n}\right\rangle \propto\left|L_{1}\right\rangle \otimes\left|L_{2}\right\rangle \cdots \otimes\left|L_{n}\right\rangle
$$

Example 0: The Unlink

- To see why these entropies are potentially interesting, we consider the simple but illuminating example of the unlink.
- So take \mathcal{L}^{n} to be n un-linked knots.

- It is well-known that the colored link-invariant of the unlink factorizes (up to an overall constant) [Witten '89]

$$
\left|\mathcal{L}^{n}\right\rangle \propto\left|L_{1}\right\rangle \otimes\left|L_{2}\right\rangle \cdots \otimes\left|L_{n}\right\rangle
$$

- Consequently all the entanglement entropies vanish. This is our first hint that quantum entanglement is tied in with topological linking.

Example 0: The Unlink

- To see why these entropies are potentially interesting, we consider the simple but illuminating example of the unlink.
- So take \mathcal{L}^{n} to be n un-linked knots.

- It is well-known that the colored link-invariant of the unlink factorizes (up to an overall constant) [Witten '89]

$$
\left|\mathcal{L}^{n}\right\rangle \propto\left|L_{1}\right\rangle \otimes\left|L_{2}\right\rangle \cdots \otimes\left|L_{n}\right\rangle
$$

- Consequently all the entanglement entropies vanish. This is our first hint that quantum entanglement is tied in with topological linking.
- Remark: The entanglement entropies are all framing independent.

Example 1: $G=U(1)_{k}$

- For $G=U(1)$, we can give a completely general formula for the entropy of a bi-partition of a general n-link \mathcal{L}^{n} :

$$
\mathcal{L}_{A}^{m}=L_{1} \cup L_{2} \cup \cdots \cup L_{m}, \mathcal{L}_{\bar{A}}^{n-m}=L_{m+1} \cup L_{m+2} \cup \cdots \cup L_{n}
$$

Example 1: $G=U(1)_{k}$

- For $G=U(1)$, we can give a completely general formula for the entropy of a bi-partition of a general n-link \mathcal{L}^{n} :

$$
\mathcal{L}_{A}^{m}=L_{1} \cup L_{2} \cup \cdots \cup L_{m}, \mathcal{L}_{\bar{A}}^{n-m}=L_{m+1} \cup L_{m+2} \cup \cdots \cup L_{n}
$$

- To state the answer for the entropy, we first define the linking matrix between the two sublinks

$$
\boldsymbol{G}_{A, \bar{A}}=\left(\begin{array}{cccc}
\ell_{1, m+1} & \ell_{2, m+1} & \cdots & \ell_{m, m+1} \\
\ell_{1, m+2} & \ell_{2, m+2} & \cdots & \ell_{m, m+2} \\
\vdots & \vdots & & \vdots \\
\ell_{1, n} & \ell_{2, n} & \cdots & \ell_{m, n}
\end{array}\right)
$$

Example 1: $G=U(1)_{k}$

- For $G=U(1)$, we can give a completely general formula for the entropy of a bi-partition of a general n-link \mathcal{L}^{n} :

$$
\mathcal{L}_{A}^{m}=L_{1} \cup L_{2} \cup \cdots \cup L_{m}, \mathcal{L}_{\bar{A}}^{n-m}=L_{m+1} \cup L_{m+2} \cup \cdots \cup L_{n}
$$

- To state the answer for the entropy, we first define the linking matrix between the two sublinks

$$
\boldsymbol{G}_{A, \bar{A}}=\left(\begin{array}{cccc}
\ell_{1, m+1} & \ell_{2, m+1} & \cdots & \ell_{m, m+1} \\
\ell_{1, m+2} & \ell_{2, m+2} & \cdots & \ell_{m, m+2} \\
\vdots & \vdots & & \vdots \\
\ell_{1, n} & \ell_{2, n} & \cdots & \ell_{m, n}
\end{array}\right)
$$

- Then, the entanglement entropy is given by

Example 1: $G=U(1)_{k}$

- For $G=U(1)$, we can give a completely general formula for the entropy of a bi-partition of a general n-link \mathcal{L}^{n} :

$$
\mathcal{L}_{A}^{m}=L_{1} \cup L_{2} \cup \cdots \cup L_{m}, \mathcal{L}_{\bar{A}}^{n-m}=L_{m+1} \cup L_{m+2} \cup \cdots \cup L_{n}
$$

- To state the answer for the entropy, we first define the linking matrix between the two sublinks

$$
\boldsymbol{G}_{A, \bar{A}}=\left(\begin{array}{cccc}
\ell_{1, m+1} & \ell_{2, m+1} & \cdots & \ell_{m, m+1} \\
\ell_{1, m+2} & \ell_{2, m+2} & \cdots & \ell_{m, m+2} \\
\vdots & \vdots & & \vdots \\
\ell_{1, n} & \ell_{2, n} & \cdots & \ell_{m, n}
\end{array}\right)
$$

- Then, the entanglement entropy is given by

Claim

$$
S_{E E}=\ln \left(\frac{k^{m}}{\left|\operatorname{ker} \boldsymbol{G}_{A, \bar{A}}\right|}\right)
$$

Minimal Genus Bound

- The entanglement entropy measures the obstruction to the splitting of a link between its sublink.

Minimal Genus Bound

- The entanglement entropy measures the obstruction to the splitting of a link between its sublink.
- Given an n-component link $\mathcal{L}^{n} \subset S^{3}$ and a bi-parition $\mathcal{L}^{n}=\mathcal{L}_{A}^{m} \cup \mathcal{L}_{\bar{A}}^{n-m}$, a separating surface Σ is a connected, compact, oriented two-dimensional surface-without-boundary such that \mathcal{L}_{A}^{m} in contained inside Σ, and $\mathcal{L}_{\bar{A}}^{n-m}$ is contained outside Σ.

$$
\mathrm{g}=0
$$

$g=1$

$$
\mathrm{g}=2
$$

Minimal Genus Bound

- The entanglement entropy measures the obstruction to the splitting of a link between its sublink.
- Given an n-component link $\mathcal{L}^{n} \subset S^{3}$ and a bi-parition $\mathcal{L}^{n}=\mathcal{L}_{A}^{m} \cup \mathcal{L}_{\bar{A}}^{n-m}$, a separating surface Σ is a connected, compact, oriented two-dimensional surface-without-boundary such that \mathcal{L}_{A}^{m} in contained inside Σ, and $\mathcal{L}_{\bar{A}}^{n-m}$ is contained outside Σ.

$\mathrm{g}=0$

$g=1$

$$
\mathrm{g}=2
$$

- The separating surface is not unique, but there is a unique such surface of minimal-genus.

Minimal Genus Bound...

- We claim the following general bound:

Claim

$$
\min \left(g_{\Sigma}\right) \geq c_{k} S_{E E}
$$

where c_{k} is a positive constant which depends on the level k.

Minimal Genus Bound...

- We claim the following general bound:

Claim

$$
\min \left(g_{\Sigma}\right) \geq c_{k} S_{E E}
$$

where c_{k} is a positive constant which depends on the level k.

- This can be proved by cutting open the path-integral along separating surfaces:

Minimal Genus Bound...

- We claim the following general bound:

Claim

$$
\min \left(g_{\Sigma}\right) \geq c_{k} S_{E E}
$$

where c_{k} is a positive constant which depends on the level k.

- This can be proved by cutting open the path-integral along separating surfaces:

- This is reminscent of the area-law bounds in tensor network descriptions of critical states [Nozaki et al '12, Pastawski et al '15].

Classifying Entanglement Structure of Links

- We begin with some definitions:

Classifying Entanglement Structure of Links

- We begin with some definitions:
- A link will be called GHZ-like if the reduced density matrix obtained by tracing out any sub-factor is mixed (i.e., has a non-trivial entropy) but is separable (i.e., a convex combination of product states) on all the remaining sub-factors.

Classifying Entanglement Structure of Links

- We begin with some definitions:
- A link will be called GHZ-like if the reduced density matrix obtained by tracing out any sub-factor is mixed (i.e., has a non-trivial entropy) but is separable (i.e., a convex combination of product states) on all the remaining sub-factors.
- E.g.,

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

Classifying Entanglement Structure of Links

- We begin with some definitions:
- A link will be called GHZ-like if the reduced density matrix obtained by tracing out any sub-factor is mixed (i.e., has a non-trivial entropy) but is separable (i.e., a convex combination of product states) on all the remaining sub-factors.
- E.g.,

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

- A link will be called W-like if the reduced density matrix obtained by tracing out any sub-factor is mixed, but is not always separable on the remaining sub-factors.

Classifying Entanglement Structure of Links

- We begin with some definitions:
- A link will be called GHZ-like if the reduced density matrix obtained by tracing out any sub-factor is mixed (i.e., has a non-trivial entropy) but is separable (i.e., a convex combination of product states) on all the remaining sub-factors.
- E.g.,

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
$$

- A link will be called W-like if the reduced density matrix obtained by tracing out any sub-factor is mixed, but is not always separable on the remaining sub-factors.
- E.g.,

$$
|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) .
$$

Classifying Entanglement Structure of Links

- From the knot theory side, we will focus on two important topological classes of links, namely torus links and hyperbolic links.

Classifying Entanglement Structure of Links

- From the knot theory side, we will focus on two important topological classes of links, namely torus links and hyperbolic links.
- In fact, all non-split, alternating, prime links are either torus or hyperbolic [Menasco '84].

Torus links

- Torus links are links which can be drawn on the surface of a torus without self-intersections.

4_{1}^{2}

6_{3}^{3}

Torus links

- Torus links are links which can be drawn on the surface of a torus without self-intersections.

6_{3}^{3}
- The following general result is true:

Torus links

- Torus links are links which can be drawn on the surface of a torus without self-intersections.

- The following general result is true:

Claim

All torus links (with three of more components) have a GHZ-like entanglement structure.

Torus links

- Torus links are links which can be drawn on the surface of a torus without self-intersections.

- The following general result is true:

Claim

All torus links (with three of more components) have a GHZ-like entanglement structure.

- This can be proved by using the special structure of the colored link invariants of torus links [Labadista et al' 00].

Hyperbolic Links

- Hyperbolic links are links whose link-complements admit a hyperbolic structure.

Hyperbolic Links

- Hyperbolic links are links whose link-complements admit a hyperbolic structure.

- In contrast with torus links, we cannot study the entanglement structure of hyperbolic links in complete generality.

Hyperbolic Links

- Hyperbolic links are links whose link-complements admit a hyperbolic structure.

5_{1}^{2}

- In contrast with torus links, we cannot study the entanglement structure of hyperbolic links in complete generality.

Conjecture

Hyperbolic links (with three of more components) have a W-like entanglement structure.

Entanglement Negativity

- In order to test this, we need to use entanglement negativity [Peres '96, Vidal \& Werner '02, Rangamani \& Rota '15].

Entanglement Negativity

- In order to test this, we need to use entanglement negativity [Peres '96, Vidal \& Werner '02, Rangamani \& Rota '15].
- For a given (possibly mixed) density matrix ρ on a bi-partite system, we define the partial transpose ρ^{Γ} :

$$
\left\langle j_{1}, j_{2}\right| \rho^{\Gamma}\left|\tilde{j}_{1}, \tilde{j}_{2}\right\rangle=\left\langle\tilde{j}_{1}, j_{2}\right| \rho\left|j_{1}, \tilde{j}_{2}\right\rangle
$$

Entanglement Negativity

- In order to test this, we need to use entanglement negativity [Peres '96, Vidal \& Werner '02, Rangamani \& Rota '15].
- For a given (possibly mixed) density matrix ρ on a bi-partite system, we define the partial transpose ρ^{Γ} :

$$
\left\langle j_{1}, j_{2}\right| \rho^{\Gamma}\left|\tilde{j}_{1}, \tilde{j}_{2}\right\rangle=\left\langle\tilde{j}_{1}, j_{2}\right| \rho\left|j_{1}, \tilde{j}_{2}\right\rangle
$$

- Then the negativity is defined as

$$
\mathcal{N}=\frac{\left\|\rho^{\Gamma}\right\|-1}{2}
$$

where $\|A\|=\operatorname{Tr}\left(\sqrt{A^{\dagger} A}\right)$ is the trace norm.

Back to hyperbolic links

- A non-zero value of \mathcal{N} is a sufficient (but not necessary) condition for the reduced density matrix to be non-separable.

Back to hyperbolic links

- A non-zero value of \mathcal{N} is a sufficient (but not necessary) condition for the reduced density matrix to be non-separable.
- We numerically computed the entanglement negativities for 20 3 -component hyperbolic links.

Link	Negativity at $k=3$	Hyp. volume
L6a4	0.18547	7.32772
L6a5	0.11423	5.33349
L7a7	0.05008	7.70691
L8a16	0.097683	9.802
L8a18	0.189744	6.55174
L8a19	0.158937	10.667
L8n4	0.11423	5.33349
L8n5	0.18547	7.32772
L10a138	0.097683	10.4486
L10a140	0.0758142	12.2763
L10a145	0.11423	6.92738
L10a148	0.119345	11.8852
L10a156	0.0911946	15.8637
L10a161	0.0354207	7.94058
L10a162	0.0913699	13.464
L10a163	0.0150735	15.5509
L10n78	0.189744	6.55174
L10n79	0.097683	9.802
L10n81	0.15947	10.667
L10n92	0.11423	6.35459

We found in all the cases that the links had W-like entanglement. This provides some evidence that hyperbolic links generically have W-like entanglement.

Part 2: Machine Learning

The Volume conjecture

- For a knot K, let $J_{K, N}(q)$ be the colored Jones polynomial, where $N=2 j$ is the color and

$$
q=e^{\frac{2 \pi i}{k+2}} .
$$

The Volume conjecture

- For a knot K, let $J_{K, N}(q)$ be the colored Jones polynomial, where $N=2 j$ is the color and

$$
q=e^{\frac{2 \pi i}{k+2}}
$$

- The volume conjecture states that: [Kashaev'97, Murakami'01, Gukov'05]

The Volume conjecture

- For a knot K, let $J_{K, N}(q)$ be the colored Jones polynomial, where $N=2 j$ is the color and

$$
q=e^{\frac{2 \pi i}{k+2}}
$$

- The volume conjecture states that: [Kashaev'97, Murakami'01, Gukov'05]

Volume conjecture

$$
\lim _{N \rightarrow \infty} \frac{2 \pi \log \left|J_{K, N}\left(e^{\frac{2 \pi i}{N}}\right)\right|}{N}=\operatorname{Vol}(K)
$$

The Volume conjecture

- For a knot K, let $J_{K, N}(q)$ be the colored Jones polynomial, where $N=2 j$ is the color and

$$
q=e^{\frac{2 \pi i}{k+2}}
$$

- The volume conjecture states that: [Kashaev'97, Murakami'01, Gukov'05]

Volume conjecture

$$
\lim _{N \rightarrow \infty} \frac{2 \pi \log \left|J_{K, N}\left(e^{\frac{2 \pi i}{N}}\right)\right|}{N}=\operatorname{Vol}(K)
$$

- Note that the double-scaling limit $k \rightarrow \infty, N \rightarrow \infty$ with $N / k=1$ is a weak-coupling but strong back-reaction limit.

The Volume conjecture

- For a knot K, let $J_{K, N}(q)$ be the colored Jones polynomial, where $N=2 j$ is the color and

$$
q=e^{\frac{2 \pi i}{k+2}}
$$

- The volume conjecture states that: [Kashaev'97, Murakami'01, Gukov'05]

Volume conjecture

$$
\lim _{N \rightarrow \infty} \frac{2 \pi \log \left|J_{K, N}\left(e^{\frac{2 \pi i}{N}}\right)\right|}{N}=\operatorname{Vol}(K)
$$

- Note that the double-scaling limit $k \rightarrow \infty, N \rightarrow \infty$ with $N / k=1$ is a weak-coupling but strong back-reaction limit.
- In this limit, the colored Jones polynomial knows about the hyperbolic volume.

Generalized Volume conjecture?

- This begs the question: does the ordinary Jones polynomial ($N=1$) also satisfy some version of the volume conjecture?

Generalized Volume conjecture?

- This begs the question: does the ordinary Jones polynomial ($N=1$) also satisfy some version of the volume conjecture?
- This is motivated by an observation due to Nathan Dunfield: if one plots the volume $\mathrm{v} . \log \left|J_{K}(-1)\right|$, there seems to be an approximately linear dependence [Figure taken from Dunfield's webpage]

Generalized Volume conjecture?

- This begs the question: does the ordinary Jones polynomial ($N=1$) also satisfy some version of the volume conjecture?
- This is motivated by an observation due to Nathan Dunfield: if one plots the volume $\mathrm{v} . \log \left|J_{K}(-1)\right|$, there seems to be an approximately linear dependence [Figure taken from Dunfield's webpage]

- But this only seems to work for alternating knots, and fails badly for non-alternating knots.

Generalized Volume conjecture?

- Another hint is the "volumish" bound [Dasbach, Lin '04], which bounds the volume in terms of coefficients of the Jones polynomial:

Generalized Volume conjecture?

- Another hint is the "volumish" bound [Dasbach, Lin '04], which bounds the volume in terms of coefficients of the Jones polynomial:

$$
\begin{gathered}
J_{K}(q)=a_{n} q^{n}+a_{n+1} q^{n+1}+\cdots a_{m-1} q^{m-1}+a_{m} q^{m} \\
2 v_{0}\left(\max \left(\left|a_{m-1}\right|,\left|a_{n+1}\right|\right)-1\right)<\mathrm{Vol}<10 v_{0}\left(\left|a_{m-1}\right|+\left|a_{n+1}\right|-1\right)
\end{gathered}
$$

Generalized Volume conjecture?

- Another hint is the "volumish" bound [Dasbach, Lin '04], which bounds the volume in terms of coefficients of the Jones polynomial:

$$
\begin{gathered}
J_{K}(q)=a_{n} q^{n}+a_{n+1} q^{n+1}+\cdots a_{m-1} q^{m-1}+a_{m} q^{m} \\
2 v_{0}\left(\max \left(\left|a_{m-1}\right|,\left|a_{n+1}\right|\right)-1\right)<\mathrm{Vol}<10 v_{0}\left(\left|a_{m-1}\right|+\left|a_{n+1}\right|-1\right)
\end{gathered}
$$

- But this bound is not very tight:

Further, the bounds are only proven for alternating knots.

Machine Learning

- Machine learning is the perfectly suited to this type of pattern-recognition problem.

Machine Learning

- Machine learning is the perfectly suited to this type of pattern-recognition problem.
- A neural network is a function which is constructed by training on several examples.

Machine Learning

- Machine learning is the perfectly suited to this type of pattern-recognition problem.
- A neural network is a function which is constructed by training on several examples.
- Suppose that we have a dataset $\mathcal{D}=\left\{J_{1}, J_{2}, \ldots, J_{m}\right\}$, and to every element of \mathcal{D}, there is an associated element in another set \mathcal{V} :

$$
A:\left\{J_{1}, J_{2}, \ldots, J_{m}\right\} \mapsto\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \subset \mathcal{V}
$$

Machine Learning

- Machine learning is the perfectly suited to this type of pattern-recognition problem.
- A neural network is a function which is constructed by training on several examples.
- Suppose that we have a dataset $\mathcal{D}=\left\{J_{1}, J_{2}, \ldots, J_{m}\right\}$, and to every element of \mathcal{D}, there is an associated element in another set \mathcal{V} :

$$
A:\left\{J_{1}, J_{2}, \ldots, J_{m}\right\} \mapsto\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \subset \mathcal{V}
$$

- In our case, the J_{i} are the Jones polynomials of knots, and the v_{i} are the volumes of those knots.

Machine Learning

- Machine learning is the perfectly suited to this type of pattern-recognition problem.
- A neural network is a function which is constructed by training on several examples.
- Suppose that we have a dataset $\mathcal{D}=\left\{J_{1}, J_{2}, \ldots, J_{m}\right\}$, and to every element of \mathcal{D}, there is an associated element in another set \mathcal{V} :

$$
A:\left\{J_{1}, J_{2}, \ldots, J_{m}\right\} \mapsto\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} \subset \mathcal{V}
$$

- In our case, the J_{i} are the Jones polynomials of knots, and the v_{i} are the volumes of those knots.
- A neural network f_{θ} is a function (with an a priori chosen architecture) which is designed to approximate the associations A efficiently.

Neural Net architecture

- The architecture of the neural net looks as follows:

Neural Net architecture

- The architecture of the neural net looks as follows:

- We encode the Jones polynomial in a vector $\vec{J}_{K}=\left(a_{n}, \cdots, a_{m}\right)$, and feed it to the network:.

$$
f_{\theta}\left(\vec{J}_{K}\right)=\sum_{i} \sigma\left(W_{\theta}^{2} \cdot \sigma\left(W_{\theta}^{1} \cdot \vec{J}_{K}+\vec{b}_{\theta}^{1}\right)+\vec{b}_{\theta}^{2}\right)^{i}
$$

where W_{θ}^{j} and \vec{b}_{θ}^{j} are the weight matrices and bias vectors, and σ is a non-linear activation function.

Neural Net architecture

- The architecture of the neural net looks as follows:

- We encode the Jones polynomial in a vector $\vec{J}_{K}=\left(a_{n}, \cdots, a_{m}\right)$, and feed it to the network:

$$
f_{\theta}\left(\vec{J}_{K}\right)=\sum_{i} \sigma\left(W_{\theta}^{2} \cdot \sigma\left(W_{\theta}^{1} \cdot \vec{J}_{K}+\vec{b}_{\theta}^{1}\right)+\vec{b}_{\theta}^{2}\right)^{i}
$$

where W_{θ}^{j} and \vec{b}_{θ}^{j} are the weight matrices and bias vectors, and σ is a non-linear activation function.

- The intermediate vectors are taken to be 100-dimensional.

Neural Net architecture

- The architecture of the neural net looks as follows:

- We encode the Jones polynomial in a vector $\vec{J}_{K}=\left(a_{n}, \cdots, a_{m}\right)$, and feed it to the network:

$$
f_{\theta}\left(\vec{J}_{K}\right)=\sum_{i} \sigma\left(W_{\theta}^{2} \cdot \sigma\left(W_{\theta}^{1} \cdot \vec{J}_{K}+\vec{b}_{\theta}^{1}\right)+\vec{b}_{\theta}^{2}\right)^{i}
$$

where W_{θ}^{j} and \vec{b}_{θ}^{j} are the weight matrices and bias vectors, and σ is a non-linear activation function.

- The intermediate vectors are taken to be 100-dimensional.
- The non-linear function is the logistic sigmoid: $\sigma(x)=\frac{1}{1+e^{-x}}$.
$\mathrm{N}=$ NetChain[\{DotPlusLayer[100], ElementwiseLayer [LogisticSigmoid], DotPlusLayer [100], ElementwiseLayer [LogisticSigmoid], SummationLayer []\}, "Input" -> \{17\}];
$\mathrm{N}=$ NetChain[\{DotPlusLayer[100], ElementwiseLayer [LogisticSigmoid], DotPlusLayer [100], ElementwiseLayer [LogisticSigmoid], SummationLayer []\}, "Input" -> \{17\}];
- For the network to learn A, we divide the dataset \mathcal{D} into two parts: a training set, $T=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$ chosen at random from \mathcal{D}, and its complement, $T^{c}=\left\{J_{1}^{\prime}, J_{2}^{\prime}, \ldots, J_{m-n}^{\prime}\right\}$.
$\mathrm{N}=$ NetChain[\{DotPlusLayer[100], ElementwiseLayer [LogisticSigmoid], DotPlusLayer [100], ElementwiseLayer [LogisticSigmoid], SummationLayer []\}, "Input" -> \{17\}];
- For the network to learn A, we divide the dataset \mathcal{D} into two parts: a training set, $T=\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$ chosen at random from \mathcal{D}, and its complement, $T^{c}=\left\{J_{1}^{\prime}, J_{2}^{\prime}, \ldots, J_{m-n}^{\prime}\right\}$.
- The neural net is taught the associations on the training set by tuning the internal parameters θ to approximate A as closely as possible on T, by minimizing a suitable loss function:

$$
h(\theta)=\sum_{i \in T}\left\|f_{\theta}\left(J_{i}\right)-v_{i}\right\|^{2}
$$

Comparing with the true volumes

- Finally, we assess the performance of the trained network by applying it to the unseen inputs $J_{i}^{\prime} \in T^{c}$ and comparing $f_{\theta}\left(J_{i}^{\prime}\right)$ to the true answers $v_{i}^{\prime}=A\left(J_{i}^{\prime}\right)$.

Comparing with the true volumes

- Finally, we assess the performance of the trained network by applying it to the unseen inputs $J_{i}^{\prime} \in T^{c}$ and comparing $f_{\theta}\left(J_{i}^{\prime}\right)$ to the true answers $v_{i}^{\prime}=A\left(J_{i}^{\prime}\right)$.

- By training on as little as 10% of data, the network can predict the volume with an accuracy of 97.5%, for both alternating and non-alternating knots.

Summary

- The robustness of the network suggests that there might be a generalized volume conjecture which relates the hyperbolic volume to the Jones polynomial, i.e., the weak-backreaction but possibly strong-coupling regime.

Summary

- The robustness of the network suggests that there might be a generalized volume conjecture which relates the hyperbolic volume to the Jones polynomial, i.e., the weak-backreaction but possibly strong-coupling regime.
- Neural networks might provide a novel and useful technique to search for mathematical relationships between topological invariants.

