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Part 1: Quantum Information
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Entanglement Entropy in Qubits: Brief Overview

The basic example of an entangled state between two qubits is

|ψBell〉 =
1√
2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
.

If we trace over one of the qubits, we obtain a mixed state

ρ = Tr2|ψBell〉〈ψBell| =
1

2
|0〉〈0|+ 1

2
|1〉〈1|.

We can associate an entropy to it, namely the Von-Neumann
entropy, often called the entanglement entropy

S(ρ) = −Tr1

(
ρ ln ρ

)
= ln(2).

This is to be contrasted against unentangled product states like

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |+〉 ⊗ |+〉 etc.
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Entanglement Entropy in Qubits: Brief Overview

With more qubits, one can construct more interesting entangled
states. For example, with three qubits we have [Dur et al ’00]

|GHZ〉 =
1√
2

(
|000〉+ |111〉

)
.

|W 〉 =
1√
3

(
|001〉+ |010〉+ |100〉

)
.

The GHZ state has the property that if we trace over one qubit,
then the reduced state is separable, i.e., it is a classical mixture of
product states:

Tr3|GHZ〉〈GHZ| =
1

2
|00〉〈00|+ 1

2
|11〉〈11|.

On the contrary, the W-state is not separable:

Tr3|W 〉〈W | =
1

3
|00〉〈00|+ 2

3
|Ψ+〉〈Ψ+|, |Ψ+〉 =

|01〉+ |10〉√
2

.
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Entanglement in Topological Quantum Field Theory

We will study entanglement structure of a certain class of states in
Chern-Simons theory.

The action for d = 3 Chern-Simons gauge theory at level k is given
by [Witten ’89]

SCS [A] =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
We will consider the theory for gauge groups U(1) and SU(2).
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Which states?

The states we will consider are created by performing the
Euclidean path integral of Chern-Simons theory on 3-manifolds
Mn with boundary consisting of n copies of T 2.

M3

T 2

For a given Mn of this form, the path-integral of Chern-Simons
theory on Mn defines a state

|Ψ〉 ∈ H(T 2)⊗H(T 2)⊗ ...⊗H(T 2)

Ψ[A(0)] =

∫
A|Σ=A(0)

[DA] eiSCS [A]
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Link-Complements

Clearly, the choice of Mn is far from unique. But there is a simple
way to construct such manifolds.

We start with a closed 3-manifold (i.e., a compact 3-manifold
without boundary) X, and an n-component link in X

Ln = L1 ∪ L2 ∪ · · ·Ln

L1

L2

L3

X

Let us take X to be the 3-sphere S3 for simplicity.
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Link-Complements

We then remove a tubular neighbourhood N(Ln) of Ln from S3.

The manifold Mn = S3 −N(Ln) is called the link complement of
Ln.

It has the desired property, namely that

∂Mn = T 2 ∪ T 2 ∪ · · · ∪ T 2.

The path-integral of Chern-Simons theory on the link-complement
assigns to a link Ln in S3 a state |Ln〉 ∈ H(T 2)⊗n.
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The Hilbert space on a Torus

Before moving further, let us recall some details about the Hilbert
space of CS theory on a torus [Witten ’89].

To construct a basis, we perform the path-integral on the
“interior” solid torus, with a Wilson line in an integrable
representation Rj placed along the non-contractible cycle in the
bulk. We call this state |j〉.

X

j

The Hilbert space is finite dimensional for compact groups. (For
SU(2), the basis is labelled by spins j = 0, 1

2 , · · · k2 .)
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Back to Link complements

Now we can write the state prepared by path integration on the
link complement S3 − Ln in this basis as:

|Ln〉 =
∑

j1,··· ,jn

CLn(j1, j2, · · · jn)|j1〉 ⊗ |j2〉 · · · ⊗ |jn〉

A little bit of thought shows that

CLn(j1, · · · , jn) =
〈

TrR∗
j1

(e
∮
L1

A
) · · ·TrR∗

jn
(e

∮
Ln

A)
〉
S3

R⇤
j1

R⇤
j2

R⇤
j3

These are called colored link invariants. (For G = SU(2) they are
called colored Jones polynomials.)
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Entanglement Entropy

We wish to study the entanglement structure of these states.

So we partition the n-component link into an m-component
sub-link LmA and the rest Ln−m

Ā
.

Ln = Lm
A [ Ln�m

Ā

The reduced density matrix is obtained by tracing out Ā:

ρA =
1

〈Ln|Ln〉
TrLĀ |Ln〉〈Ln|

The entanglement entropy is given by the Von Neumann entropy
of this density matrix:

SEE = −TrLA(ρA ln ρA)
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Example 0: The Unlink

To see why these entropies are potentially interesting, we consider
the simple but illuminating example of the unlink.

So take Ln to be n un-linked knots.

It is well-known that the colored link-invariant of the unlink
factorizes (up to an overall constant) [Witten ’89]

|Ln〉 ∝ |L1〉 ⊗ |L2〉 · · · ⊗ |Ln〉.

Consequently all the entanglement entropies vanish. This is our
first hint that quantum entanglement is tied in with topological
linking.

Remark: The entanglement entropies are all framing
independent.
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Example 1: G = U(1)k

For G = U(1), we can give a completely general formula for the
entropy of a bi-partition of a general n-link Ln:

LmA = L1 ∪ L2 ∪ · · · ∪ Lm, Ln−mĀ
= Lm+1 ∪ Lm+2 ∪ · · · ∪ Ln

To state the answer for the entropy, we first define the linking
matrix between the two sublinks

GA,Ā =


`1,m+1 `2,m+1 · · · `m,m+1

`1,m+2 `2,m+2 · · · `m,m+2
...

...
...

`1,n `2,n · · · `m,n


Then, the entanglement entropy is given by

Claim

SEE = ln

(
km

|kerGA,Ā|

)
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GA,Ā =


`1,m+1 `2,m+1 · · · `m,m+1

`1,m+2 `2,m+2 · · · `m,m+2
...

...
...

`1,n `2,n · · · `m,n



Then, the entanglement entropy is given by

Claim

SEE = ln

(
km

|kerGA,Ā|
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Minimal Genus Bound

The entanglement entropy measures the obstruction to the
splitting of a link between its sublink.

Given an n-component link Ln ⊂ S3 and a bi-parition
Ln = LmA ∪ Ln−mĀ

, a separating surface Σ is a connected, compact,
oriented two-dimensional surface-without-boundary such that LmA
in contained inside Σ, and Ln−m

Ā
is contained outside Σ.

g=0 g=1 g=2

The separating surface is not unique, but there is a unique such
surface of minimal-genus.
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Ā
is contained outside Σ.

g=0 g=1 g=2

The separating surface is not unique, but there is a unique such
surface of minimal-genus.

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 15 / 32



Minimal Genus Bound

The entanglement entropy measures the obstruction to the
splitting of a link between its sublink.

Given an n-component link Ln ⊂ S3 and a bi-parition
Ln = LmA ∪ Ln−mĀ
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Minimal Genus Bound...

We claim the following general bound:

Claim

min (gΣ) ≥ ck SEE ,

where ck is a positive constant which depends on the level k.

This can be proved by cutting open the path-integral along
separating surfaces:

This is reminscent of the area-law bounds in tensor network
descriptions of critical states [Nozaki et al ’12, Pastawski et al ’15].
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Classifying Entanglement Structure of Links

We begin with some definitions:

A link will be called GHZ-like if the reduced density matrix
obtained by tracing out any sub-factor is mixed (i.e., has a
non-trivial entropy) but is separable (i.e., a convex combination of
product states) on all the remaining sub-factors.

E.g.,

|GHZ〉 =
1√
2

(|000〉+ |111〉) .

A link will be called W-like if the reduced density matrix obtained
by tracing out any sub-factor is mixed, but is not always separable
on the remaining sub-factors.

E.g.,

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) .
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Classifying Entanglement Structure of Links

From the knot theory side, we will focus on two important
topological classes of links, namely torus links and hyperbolic links.

In fact, all non-split, alternating, prime links are either torus or
hyperbolic [Menasco ’84].
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Torus links

Torus links are links which can be drawn on the surface of a torus
without self-intersections.

22
1 42

1 63
3

The following general result is true:

Claim

All torus links (with three of more components) have a GHZ-like
entanglement structure.

This can be proved by using the special structure of the colored
link invariants of torus links [Labadista et al’ 00].
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Hyperbolic Links

Hyperbolic links are links whose link-complements admit a
hyperbolic structure.

52
1 63

2

In contrast with torus links, we cannot study the entanglement
structure of hyperbolic links in complete generality.

Conjecture

Hyperbolic links (with three of more components) have a W-like
entanglement structure.
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Entanglement Negativity

In order to test this, we need to use entanglement negativity [Peres

’96, Vidal & Werner ’02, Rangamani & Rota ’15].

For a given (possibly mixed) density matrix ρ on a bi-partite
system, we define the partial transpose ρΓ:

〈j1, j2|ρΓ|j̃1, j̃2〉 = 〈j̃1, j2|ρ|j1, j̃2〉.

Then the negativity is defined as

N =
||ρΓ|| − 1

2
,

where ||A|| = Tr
(√

A†A
)

is the trace norm.

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 21 / 32



Entanglement Negativity

In order to test this, we need to use entanglement negativity [Peres

’96, Vidal & Werner ’02, Rangamani & Rota ’15].

For a given (possibly mixed) density matrix ρ on a bi-partite
system, we define the partial transpose ρΓ:

〈j1, j2|ρΓ|j̃1, j̃2〉 = 〈j̃1, j2|ρ|j1, j̃2〉.

Then the negativity is defined as

N =
||ρΓ|| − 1

2
,

where ||A|| = Tr
(√

A†A
)

is the trace norm.

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 21 / 32



Entanglement Negativity

In order to test this, we need to use entanglement negativity [Peres

’96, Vidal & Werner ’02, Rangamani & Rota ’15].

For a given (possibly mixed) density matrix ρ on a bi-partite
system, we define the partial transpose ρΓ:

〈j1, j2|ρΓ|j̃1, j̃2〉 = 〈j̃1, j2|ρ|j1, j̃2〉.

Then the negativity is defined as

N =
||ρΓ|| − 1

2
,

where ||A|| = Tr
(√

A†A
)

is the trace norm.

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 21 / 32



Back to hyperbolic links

A non-zero value of N is a sufficient (but not necessary) condition
for the reduced density matrix to be non-separable.

We numerically computed the entanglement negativities for 20
3-component hyperbolic links.
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Link Negativity at k = 3 Hyp. volume
L6a4 0.18547 7.32772
L6a5 0.11423 5.33349
L7a7 0.05008 7.70691
L8a16 0.097683 9.802
L8a18 0.189744 6.55174
L8a19 0.158937 10.667
L8n4 0.11423 5.33349
L8n5 0.18547 7.32772
L10a138 0.097683 10.4486
L10a140 0.0758142 12.2763
L10a145 0.11423 6.92738
L10a148 0.119345 11.8852
L10a156 0.0911946 15.8637
L10a161 0.0354207 7.94058
L10a162 0.0913699 13.464
L10a163 0.0150735 15.5509
L10n78 0.189744 6.55174
L10n79 0.097683 9.802
L10n81 0.15947 10.667
L10n92 0.11423 6.35459

We found in all the cases that the links had W-like entanglement. This
provides some evidence that hyperbolic links generically have W-like
entanglement.
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Part 2: Machine Learning
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The Volume conjecture

For a knot K, let JK,N (q) be the colored Jones polynomial, where
N = 2j is the color and

q = e
2πi
k+2 .

The volume conjecture states that: [Kashaev’97, Murakami’01, Gukov’05]

Volume conjecture

lim
N→∞

2π log |JK,N (e
2πi
N )|

N
= Vol(K) .

Note that the double-scaling limit k →∞, N →∞ with N/k = 1
is a weak-coupling but strong back-reaction limit.

In this limit, the colored Jones polynomial knows about the
hyperbolic volume.
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Generalized Volume conjecture?

This begs the question: does the ordinary Jones polynomial
(N = 1) also satisfy some version of the volume conjecture?

This is motivated by an observation due to Nathan Dunfield: if
one plots the volume v. log |JK(−1)|, there seems to be an
approximately linear dependence [Figure taken from Dunfield’s webpage]

But this only seems to work for alternating knots, and fails badly
for non-alternating knots.
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Generalized Volume conjecture?

Another hint is the “volumish” bound [Dasbach, Lin ’04], which
bounds the volume in terms of coefficients of the Jones polynomial:

JK(q) = anq
n + an+1q

n+1 + · · · am−1q
m−1 + amq

m

2v0 (max(|am−1|, |an+1|)− 1) < Vol < 10v0 (|am−1|+ |an+1| − 1)

But this bound is not very tight:
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Prediction from Volume-ish Bounds
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Further, the bounds are only proven for alternating knots.
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Machine Learning

Machine learning is the perfectly suited to this type of
pattern-recognition problem.

A neural network is a function which is constructed by training on
several examples.

Suppose that we have a dataset D = {J1, J2, . . . , Jm}, and to every
element of D, there is an associated element in another set V:

A : {J1, J2, . . . , Jm} 7→ {v1, v2, . . . , vm} ⊂ V .

In our case, the Ji are the Jones polynomials of knots, and the vi
are the volumes of those knots.

A neural network fθ is a function (with an a priori chosen
architecture) which is designed to approximate the associations A
efficiently.
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Neural Net architecture

The architecture of the neural net looks as follows:

We encode the Jones polynomial in a vector ~JK = (an, · · · , am),
and feed it to the network:.

fθ( ~JK) =
∑
i

σ
(
W 2
θ · σ(W 1

θ · ~JK +~b1θ) +~b2θ

)i
,

where W j
θ and ~bjθ are the weight matrices and bias vectors, and σ

is a non-linear activation function.

The intermediate vectors are taken to be 100-dimensional.

The non-linear function is the logistic sigmoid: σ(x) = 1
1+e−x .

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 29 / 32



Neural Net architecture

The architecture of the neural net looks as follows:

We encode the Jones polynomial in a vector ~JK = (an, · · · , am),
and feed it to the network:.

fθ( ~JK) =
∑
i

σ
(
W 2
θ · σ(W 1

θ · ~JK +~b1θ) +~b2θ

)i
,

where W j
θ and ~bjθ are the weight matrices and bias vectors, and σ

is a non-linear activation function.

The intermediate vectors are taken to be 100-dimensional.

The non-linear function is the logistic sigmoid: σ(x) = 1
1+e−x .

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 29 / 32



Neural Net architecture

The architecture of the neural net looks as follows:

We encode the Jones polynomial in a vector ~JK = (an, · · · , am),
and feed it to the network:.

fθ( ~JK) =
∑
i

σ
(
W 2
θ · σ(W 1

θ · ~JK +~b1θ) +~b2θ

)i
,

where W j
θ and ~bjθ are the weight matrices and bias vectors, and σ

is a non-linear activation function.

The intermediate vectors are taken to be 100-dimensional.

The non-linear function is the logistic sigmoid: σ(x) = 1
1+e−x .

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 29 / 32



Neural Net architecture

The architecture of the neural net looks as follows:

We encode the Jones polynomial in a vector ~JK = (an, · · · , am),
and feed it to the network:.

fθ( ~JK) =
∑
i

σ
(
W 2
θ · σ(W 1

θ · ~JK +~b1θ) +~b2θ

)i
,

where W j
θ and ~bjθ are the weight matrices and bias vectors, and σ

is a non-linear activation function.

The intermediate vectors are taken to be 100-dimensional.

The non-linear function is the logistic sigmoid: σ(x) = 1
1+e−x .

Onkar Parrikar (UPenn) Math/Strings Regional Meeting 29 / 32



N = NetChain[{DotPlusLayer[100],
ElementwiseLayer[LogisticSigmoid], DotPlusLayer[100],

ElementwiseLayer[LogisticSigmoid], SummationLayer[]},
"Input" -> {17}];

For the network to learn A, we divide the dataset D into two
parts: a training set, T = {J1, J2, . . . , Jn} chosen at random from
D, and its complement, T c = {J ′1, J ′2, . . . , J ′m−n}.
The neural net is taught the associations on the training set by
tuning the internal parameters θ to approximate A as closely as
possible on T , by minimizing a suitable loss function:

h(θ) =
∑
i∈T
||fθ(Ji)− vi||2.
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h(θ) =
∑
i∈T
||fθ(Ji)− vi||2.
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Comparing with the true volumes

Finally, we assess the performance of the trained network by
applying it to the unseen inputs J ′i ∈ T c and comparing fθ(J

′
i) to

the true answers v′i = A(J ′i).
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By training on as little as 10% of data, the network can predict
the volume with an accuracy of 97.5%, for both alternating and
non-alternating knots.
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Summary

The robustness of the network suggests that there might be a
generalized volume conjecture which relates the hyperbolic volume
to the Jones polynomial, i.e., the weak-backreaction but possibly
strong-coupling regime.

Neural networks might provide a novel and useful technique to
search for mathematical relationships between topological
invariants.
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