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We generalize the imaginary-chemical-potential quantum Monte CarlosQMCd method proposed by Dagotto
et al. fPhys. Rev. B41, R811s1990dg to systems without particle-hole symmetry. The generalized method is
tested by comparing the results of the QMC simulations and exact diagonalization on small Hubbard mol-
ecules, such as tetrahedron and truncated tetrahedron. Results of the application of the method to the C60

Hubbard molecule are discussed.
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I. INTRODUCTION

Knowledge of the evolution of energy levels with doping
in strongly correlated systems is of significant importance for
understanding the physical mechanisms leading to their un-
conventional properties. For example, information about the
changes in the ground-state energy of model electron sys-
tems ssuch as the Hubbard modeld upon electron or hole
doping may be used to confirm or disprove hypotheses about
the origin of the pairing mechanism, eventually leading to
superconductivity. As accessing this information analytically
usually requires the use of various approximations, numeri-
cal techniques are often the only tools which can provide
unbiased estimates for the observables of interest.

We have recently applied the auxiliary-field quantum
Monte CarlosAFQMCd method on a C60 molecule to extract
the electronic binding energiesf1g. The AFQMC method has
been widely used in Hubbard Hamiltonian simulations since
its introduction by Blankenbecleret al. f2,3g and its further
development by Hirschf4g and Whiteet al. f5g. Being a
finite-temperature technique, the AFQMC method does not
allow easy access to the physical observables, not repre-
sented by thermodynamic averages, such as energy gaps. A
convenient procedure to extract this additional information
from the AFQMC data was proposed by Dagottoet al. f6g,
who introduced imaginary chemical potentials in AFQMC
simulations. It was then used to extract the charge gaps of the
one-band Hubbard model on finite two-dimensionals2Dd
square lattices.

In the present paper we generalize this formalism to sys-
tems without particle-hole symmetry, such as the tetrahe-
dron, truncated tetrahedron, and C60 molecules. The canoni-
cal partition function ratios are obtained from the expansions
of the AFQMC determinant ratios for a set of finite tempera-
turesT, which are subsequently used to extract charge gaps
at low temperatures. This generalization results in the ap-
pearance of an extra phase factor in the expansion of the
determinant ratios, which reduces to unity in the particle-
hole symmetric systems.

The rest of the paper is organized as follows. First, we
briefly describe the imaginary-chemical-potential QMC
sICPQMCd formalism. Then simulation results on some
Hubbard molecules are presented to illustrate our method.
The results are compared with the data obtained by exact
diagonalizationsEDd on small molecules and the projector
QMC sPQMCd method on larger ones.

II. METHODOLOGY

We start with an expansion of the grand canonical parti-
tion functionZGCsmd in terms of canonical partition functions
ZCsnd f6g:

ZGCsmd = Tr e−bsĤ−mN̂d = ebmN o
n=−N

N

ebmnZCsnd, s1d

whereb=1/skBTd is the inverse temperature,m is the chemi-
cal potential,n is the deviation of the particle number from
half-filling spositive or negative, denoting electron or hole

doping, respectivelyd in a canonical ensemble,N̂ is the elec-
tron number operator, andN is the number of spatial lattice

sites in the system.Ĥ is the usual one-band Hubbard Hamil-
tonian:

H = − o
ki j ls

tijscis
† cjs + H.c.d + Uo

i

ni↑ni↓ −
U

2 o
is

nis. s2d

The summation in the hopping termtij is performed over all
nearest-neighbor pairs of the Hubbard molecule. For the C60
molecule we have settij = t for the links between the penta-
gons and hexagons andtij =1.2t for the links between hexa-
gons. In all other casestij was set equal tot for all links, with
t used as an energy unit.U is the on-site Coulomb repulsion
sHubbardd term, and an extra diagonal term has been added
to the Hamiltonian so thatm=0 corresponds to half-filling on
bipartite lattices.

Following Dagottoet al. f6g, we analytically continue Eq.
s1d to the imaginary chemical potentialm→ il, wherel is
real. Then the inverse Fourier transform of Eq.s1d gives

ZCsnd =
b

2p
E

0

2p/b

dle−iblsn+NdZGCsm = ild. s3d

In the AFQMC method the grand canonical partition func-
tion is given by
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ZGCsmd = o
hsj

p
a=±1

detf1 + BLsadBL−1sad ¯ B1sadg

= o
hsj

detOshsj,md↑ detOshsj,md↓, s4d

where the fermion degrees of freedom have been traced out
and theBl matrices are defined as

Blsad = e−DtKeVasld, s5d

sKdi j = H− tij for i, j nearest neighbors,

0 otherwise,
J s6d

Vij
asld = di jfgasisld + mDtg. s7d

Here Dt is the imaginary time discretization interval and
tanh2sg /2d=tanhsDtU /4d. Thus, the original problem of tak-
ing a trace over fermionic degrees of freedom has been re-
placed by a problem of tracing over auxiliary Ising variables
sisld, introduced at every space-time pointsi , lDtd. Inserting
Eq. s4d into Eq. s3d, we get

ZCsnd = o
hsj

b

2p
E

0

2p/b

dle−iblsn+Nd detOshsj,ild↑

3 detOshsj,ild↓. s8d

Dividing Eq. s8d by ZGCsm=0d from Eq. s4d yields

ZCsnd
ZGCs0d

= o
hsj

Pshsj,0d
b

2p
E

0

2p/b

dle−iblnLsbld, s9d

where

Lsbld ; e−iblNdetOshsj,ild↑ detOshsj,ild↓
detOshsj,0d↑ detOshsj,0d↓

s10d

and

Pshsj,0d =
detOshsj,0d↑ detOshsj,0d↓

ohsj detOshsj,0d↑ detOshsj,0d↓
s11d

is the probability distribution forZGCs0d. Since there is al-
ways an energy gap above and below half-filling for any
finite system, we expect the fermion determinants to be
nearlyl independent at low temperatures. Therefore, we can
generate the Ising field configurationshsj for l=0 and use
these configurations to calculate system properties atlÞ0.

Similar to the expansion in Eq.s1d, we expect that the
determinant ratioLsbld in Eq. s10d can be expressed as a
complex Fourier series in the particle numbern:

Lsbld = c0shsjd + o
n=1

N

fcnshsjd + c−nshsjdgcossblnd

+ io
n=1

N

fcnshsjd − c−nshsjdgsinsblnd, s12d

wherens−nd represents a doping ofn electronssholesd with
respect to half-filling. Equations12d is real for systems with
particle-hole symmetry, since thencnshsjd=c−nshsjd. When

we substitute Eq.s12d back into Eq. s9d, we see that
ZCsnd /ZGCs0d=kcnl, where the averagek¯l is over the Ising
field configurationshsj generated from the probability distri-
butionPshsj ,0d. In the case of negative weight we replaceP
by its absolute valueuPu and include a signS=P/ uPu in the
average:ZCsnd /ZGCs0d=kcnSl / kSl. The averagek¯l now re-
fers to the probability distributionuPu. As we are interested in
regions near half-filling, the sign problem does not limit the
applicability of our method.

At low temperatures the canonical partition function ratio
will be dominated byDn,0=Esnd−Es0d, the energy difference
between the ground states for the two fillings, and will take
the form f6g

ZCsnd
ZCs0d

=
kcnl
kc0l

→ dn,0e
−bDn,0 asb → `, s13d

where dn,0=dn/d0, with dn being the degeneracy of the
ground state at fillingn. When there is an energy level close
to the ground statesproduced by the elementary excitations
such as spin wavesd, we include it explicitly in the fitting
expressions:

ZCsnd
ZCs0d

=
kcnl
kc0l

→ dn,0e
−bDn,0 + fn,0e

−bDsw
n

1 + f0,0e
−bDsw

0 asb @
1

Dn,0
,

1

Dsw
n .

s14d

Here fn,0=dsw
n /d0, wheredsw

n is the degeneracy of the spin-
wave state at fillingn and Dsw

n =Eswsnd−Es0d are the spin-
wave gaps at fillingn with respect to the ground state at
half-filling.

Based on the above discussion, we formulate the follow-
ing calculation procedure.

sid Generate the Ising field configurationhsj according to
the probability distributionPshsj ,0d in the AFQMC simula-
tion of ZGCs0d.

sii d Evaluate the average of the determinant ratio on the
left-hand side of Eq.s12d over the Ising field configurations
for a set ofl values.

siii d Fit the real and imaginary parts of Eq.s12d, respec-
tively, to determine the average values ofkcnl, n
=0, ±1, ±2, . . ..From now on we will refer to these values
simply ascn.

FIG. 1. Fit of real ssquaresd and imaginaryscirclesd parts of
determinant ratios according to Eq.s12d for a tetrahedron molecule.
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sivd Fit the canonical partition function ratios
ZCsnd /ZCs0d=cn/c0, n= ±1, ±2, . . ., with low-temperature
canonical partition function ratio expressionss13d or s14d to
obtain energy gaps. Below we will refer to these fits as linear
sLFd and nonlinearsNLFd, respectively.

III. APPLICATION

ICPQMC simulations have been carried out on tetrahe-
dron, cube, truncated tetrahedron, and C60 molecules. For
each molecule, we have run the simulations at temperatures
bt=2.0,2.5, . . . ,6.5,7.0. The imaginary chemical potential
il was chosen so that 0,l,p /b, and we used a set of 20
evenly distributedl values in this range. We have numeri-
cally checked that the real part of Eq.s12d is an even func-
tion aroundl=0, while the imaginary part is odd. Using this
property, we have mapped out the determinant ratio data for
l.0. For the special particle-hole symmetric case, such as a
2D square lattice, we have tested our programs for the
232 and 434 systems, reproducing the results of Ref.f6g.

A. Tetrahedron, cube, and truncated tetrahedron

Figure 1 displays the fit of the real and imaginary parts of
Eq. s12d for a tetrahedron moleculesC4d. Similar fits were
performed for data at all temperatures, generating a set of
coefficientscn. Knowledge of these coefficients enables us to
calculate the partition function ratios at various temperatures
and, at low temperatures, to linearly fit the logarithm of these
ratios to obtain the energy gaps and degeneracy ratios. Re-
sults of this procedure are presented in Fig. 2 and Table I. We
see thatD2,1 andD−2,−1 from LF agree nicely with ED, while

D−1,0 does not. A likely cause of this discrepancy is the ex-
istence of a highly degeneratesdsw

0 =9d spin-wave energy
level very closesDsw

0 =0.14258td to the ground statesd0=2d
at half-filling. Results of the fits for electronsn=1d and hole
sn=−1d doping are presented in Figs. 2sad and 2sbd, respec-
tively. The NLF’s were obtained using forms14d by fixing
the spin-wave and degeneracy parameters to the values found
by ED:

f1,0= 3, Dsw
1 = 1.18268t,

f0,0= 4.5, Dsw
0 = 0.14258t. s15d

In the case of hole doping the spin-wave term proportional to
f−1,0 in the numerator of Eq.s14d has been neglected.

Examining Fig. 2 we find that inclusion of spin waves
does not make a substantial difference: LF and NLF curves
are nearly overlapping(with a slight difference aroundbt
=2 for lnfZCs1d /ZCs0dg) and are very close to the exact val-
ues. This insensitivity to the fitting parameters makes accu-
rate extraction of energy gaps from partition function ratios
difficult.

Analogous simulations and LF-NLF fittings were per-
formed for cubesC8d and truncated tetrahedronsC12d mol-
ecules. The energy gaps measured using this procedure are
summarized in Table I. The fitting procedure for C60 is de-
scribed below.

B. C60

Figure 3 shows a fit of the real and imaginary parts of Eq.
s12d for a C60 molecule. The imaginary parts of the determi-
nant ratios are positive forl.0, which is different from the
tetrahedron and truncated tetrahedron cases. The cause of
this difference is the relative size of electron and hole gaps in
the system. The larger the gaps, the smaller the correspond-
ing canonical partition function ratiosZCsnd /ZCs0d. For the
tetrahedron and truncated tetrahedron the electron gaps are
larger than the hole gaps, soc1,c−1. In contrast, for the C60
molecule the electron gap is smaller than the hole gap, so

FIG. 2. Fits of ICPQMC data for a tetrahedron molecule at low
temperatures for electronsad and holesbd doping. NLF forms forsad
andsbd are given by Eqs.s14d ands15d. ED results are also shown
for comparison.

TABLE I. ICPQMC results on tetrahedronsC4d, cubesC8d, trun-
cated tetrahedronsC12d, and C60 molecules.Dn,0=Esnd−Es0d is the
energy difference between the ground states of the two fillings. Data
marked by * are PQMC results, as described in Sec. III B.

LF NLF ED sPQMCd

C4 D1,0 0.85s1d 0.87s2d 0.82843

sU=2td D−1,0 −0.458s9d −0.358s9d −0.34949

D2,1 1.9s1d 2.0s1d 2.0

D−2,−1 −0.400s6d −0.397s6d −0.40466

C8 D±1,0 1.20s2d 1.27s2d 1.26224

sU=4td D±2,±1 1.44s3d 1.5s2d 1.27490

C12 D1,0 0.81s1d 0.997s7d 0.99596

sU=2td D−1,0 0.041s1d 0.10s1d 0.07408

C60 D1,0 0.43s5d 0.57s3d 0.561s7d*

sU=4td D−1,0 0.9s1d 0.88s4d 0.86s2d*
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c1.c−1. Therefore, the relative size of the canonical partition
function ratios results in a positive imaginary part of the
determinant ratios forl.0 in Fig. 3 due to Eq.s12d. Similar
fits were done for other temperatures, and the resulting ca-
nonical partition function parameterscn were obtained to cal-
culate the canonical partition function ratios. Unfortunately,
Eq. s14d contains too many fitting parameters to provide
unique fits to the data. Therefore, we had to rely on the
PQMC resultssat U=4td for the gap values,

D1,0= 0.561t, Dsw
0 = 1.06t,

Dsw
1 = 1.39t, Dsw

−1 = 1.54t, s16d

and on the analysis of the molecular orbital energy level
diagram sFig. 3 of Ref. 1d for the degeneracies and their
ratios:

d0 = 1, d1,0= 6, d−1,0= 10,

f1,0= 120, f−1,0= 10, f0,0= 30. s17d

We were able to demonstrate the consistency of the results
obtained by the two methodssICPQMC and PQMCd by em-
ploying the following procedure. We first let all three gap
values be free fitting parameters. Fitting results are then in
agreement with the PQMC results, albeit with rather large
uncertainties. Then we fill in the two PQMC gap valuesDsw

±1

andDsw
0 fEq. s16dg and letD±1,0 be the only free parameter.

This procedure, in general, yields the gap values consistent
with the ones previously obtained using PQMC methodf1g.
Detailed results are presented in Table I with representative
fits shown in Fig. 4.

IV. CONCLUSION

We have generalized the particle-hole symmetric
ICPQMC simulation of Dagottoet al. f6g to systems without
this symmetry, such as the tetrahedron, truncated tetrahedron,
and C60 molecule. Our simulations show that an accurate
canonical partition function ratio can be obtained through
this technique. Unfortunately, the fitting of these ratios to
obtain accurate energy gaps for C60 is impractical. Neverthe-
less, consistency between ED, PQMC, and ICPQMC meth-
ods has been found.
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FIG. 3. Fits of the realssquaresd and imaginaryscirclesd parts of
determinant ratios according to Eq.s12d for a C60 molecule.

FIG. 4. Fits of ICPQMC data for a C60 molecule at low tem-
peratures for electron and hole doping. Here e.sh.d denotes electron
sholed doping. For the behavior of ICPQMC sign average near half-
filling, see Fig. 2 of Ref.f1g.
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