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Pairing between spinless fermions can generate Majorana fermion excitations that exhibit intriguing

properties arising from nonlocal correlations. But, simple models indicate that nonlocal correlation

between Majorana fermions becomes unstable at nonzero temperatures. We address this issue by showing

that anisotropic interactions between dipolar fermions in optical lattices can be used to significantly

enhance thermal stability. We construct a model of oriented dipolar fermions in a square optical lattice.

We find that domains established by strong interactions exhibit enhanced correlation between Majorana

fermions over large distances and long times even at finite temperatures, suitable for stable redundancy

encoding of quantum information. Our approach can be generalized to a variety of configurations and

other systems, such as quantum wire arrays.
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Introduction.—The wide variety of optical lattice ge-
ometries offers unprecedented tunability in manipulating
quantum degenerate gases into complex quantum states
[1]. Recent developments in the cooling of molecules
(e.g., 40K87Rb) [2] and magnetic atoms (e.g., 161Dy) [3]
imply that anisotropy in dipolar interactions will soon
provide further opportunity to explore some of the most
elusive yet compelling quantum states, entangled
Majorana fermions (MFs).

Seminal lattice models demonstrate particlelike excita-
tions that behave as MFs thanks to nonlocal symmetries
[4,5]. They entangle with each other over large distances
through string operator (SO) correlations. In simple models,
SOs have straightforward definitions, e.g., fermion parity
[4], with nontrivial consequences. They signal underlying
topological order with fascinating properties that have moti-
vated proposals for topologically protected qubits [5,6]. The
crossing of SOs is responsible for unusual anyonic braid
statistics [5,7]. And, SOs connecting these excitations also
underlie theories of quantum state teleportation [8,9].

The zero-temperature properties of models hosting
topological order set the stage for work connected to
experiments. Kitaev’s two-dimensional (2D) toric code
Hamiltonian [5] motivated early proposals in optical latti-
ces [10–12]. But, the 1D Kitaev chain model [4] is one
of the simplest models supporting MF excitations.
Anticipation of nonlocal MF properties in 1D led to ex-
perimental proposals and experiments in both optical lat-
tices [13–15] and solids [4,16,17]. But, prospects for
observing the nonlocal correlation of MF pairs over long
times and distances hinge on the stability of SOs [7,18].

SOs in important lattice models are unstable at nonzero
temperatures. For example, SOs in the 2D toric code model
vanish at long times and distances because of thermal
excitations [7,18–20]. Recent work also argues that MFs
in lattice models of topological p-wave superconductors

are sensitive to thermal fluctuations [21,22]. A general
theorem [20] sets strict criteria for nonlocal correla-
tions to remain resilient against thermal fluctuations.
Fortunately, recent calculations indicate that topological
phases can be enhanced through disorder [23] and prox-
imity coupling [24,25] to a reservoir in topological super-
conducting wires [16]. There are also proposals to go
beyond 1D wires to multichannel or 2D MF arrays [26].
We propose that dipolar interactions in optical lattices

[27] offer a powerful tool to stabilize the SOs in MF
models. We show that anisotropy in both the lattice and
dipolar interactions electrostatically copies SOs to force
excitations to form arrays of strings which we call domains
in this work. We thus propose a robust mechanism, the
formation of domains with redundant MF edges, as a route
to stabilize MFs, akin to quantum error correction schemes
using redundant qubits [28]. We pair two methods [quan-
tum Monte Carlo (QMC) calculations and mean field
theory] to solve a model of dipolar fermions to demonstrate
that domain formation in electrostatically coupled Kitaev
chains significantly enhances the stability of SOs. QMC
calculations here are unbiased and show the thermal stabil-
ity of domains, while our mean field theory (which agrees
with QMC calculations within regimes of applicability)
explicitly reveals MFs.
Model.—We first consider a Hubbard model of dipolar

fermions in an L� L optical lattice and then discuss a
specific parameter regime. In Fig. 1, fermions with dipolar
moment ~p can hop between nearest neighbor (NN) sites.
A large optical lattice depth along the y direction strongly
suppresses hopping in the y direction. Vxð�Þ ¼
D2ð1� 3cos2�Þ=r30 (Vy ¼ D2=r30) is the x (y) component

of the NN dipolar fermion interaction. Here, D2 � ~p2 and
r0 is a lattice constant. We can tune � so that the NN
dipolar interaction is attractive along the x direction. We
construct a Hubbard model capturing the above features:
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HD ¼ �X

i;j

ðtxayi;jaiþ1;j þ tya
y
i;jai;jþ1 þ H:c:Þ

þX

i;j

½Vxð�Þni;jniþ1;j þ Vyni;jni;jþ1 ��0ni;j�; (1)

where we have an open (periodic) boundary condition in the

x (y) directions.ayi;j creates a spinless fermion at the site (i, j),

and ni;j ¼ ayi;jai;j. tx (ty) is the hopping energy between NN
sites in the x (y) direction. �0 is the chemical potential.

For a range of � yielding Vx < 0, the ground state of
Eq. (1) is stable and exhibits p-wave pairing. For tx ¼ ty,

functional renormalization group [29] andmean field theory
[30] calculations show a BCS paired state for long-range
dipolar interactions consistent with short-range interactions
in Eq. (1) [21]. p-wave pairing between neighbors along
x rows can be modeled by real-space attraction:

expði�i;jÞj�jayiþ1;ja
y
i;j þ H:c:, where �i;j and j�j are the

phase and magnitude of the pairing field within an x row.
But, for ty � tx, the system can be analyzed with Luttinger

liquid theory to show that weakly coupled 1D dipolar sys-
tems also possess p-wave pairing order with algebraically
decaying pairing correlations [31]. For ty � j�j, Josephson
tunneling between paired states contributes an energy:
�� t2y cosð�i;j ��i;jþ1Þ, which aligns the phase of the

pairing field between each x row �i;j ��i;jþ1 ! 0.

Hereafter, we assume a uniform pairing field to motivate a
thermally stable MF model. Increasing ty should adiabati-

cally connect the coupled 1D [31] and 2D square lattice
limits [29,30].

Effective model.—We perform a mean field decoupling
of the attractive dipolar interaction term in Eq. (1) to
establish the centerpiece of our study [32]:

HF ¼ X

j

Hj
K þ Vy

X

i;j

�
ni;j � 1

2

��
ni;jþ1 � 1

2

�
; (2)

where the Hamiltonian for the jth Kitaev chain is

Hj
K ¼ �t

P
iðayi;j � ai;jÞðayiþ1;j þ aiþ1;jÞ ��ni;j. At the

Hartree-Fock level, the chemical potential renormalizes to
� ¼ �0 þ 2hni;jijVxð�Þj � Vy=2 and the hopping becomes

t ¼ tx � jVxð�Þjhayiþ1;jai;ji, which is our energy unit. In

Eq. (2), we tuned Vx to match the pairing term with the

renormalized hopping by setting tx ¼ jVxð�Þjhayiþ1;ja
y
i;j þ

ayiþ1;jai;ji. MFs can arise away from this particular point,

which is guaranteed by the presence of a gap in the energy
spectrum of HF [33]. ty is energetically negligible but is

included as a second order effect by setting �i;j ¼ 0. We

work near half-filling hni ¼ 1=2, i.e., � ¼ 0.
Equation (2) describes an array of strongly interacting

Kitaev chains, whose ground state is 2L-fold degenerate
[32], which is not explicit in Eq. (1). Our direct QMC
simulations on Eq. (1) show the emergence of precisely
the same set of degeneracies expected from Eq. (2) for the
parameters given by the Hartree-Fock decoupling [32,34].
Mechanism for stabilizing MFs.—Equation (2) is a

highly nontrivial many-body model. It maps onto an in-
tractable quantum spin compass model [32,33]. Below, we
argue that the interchain interactions stabilize correlation
between edge y columns of MFs.
We use mean field theory to show that Eq. (2) reduces to

a MF model [32]. Consider a pair of MF operators c2i;j and

c2i�1;j for each site of the lattice (i, j), where ayi;j ¼
ðc2i�1;j � ic2i;jÞ=2 [4]. We impose a mean field decoupling

of the Vy term, using a two-site unit cell along the y

direction. Each site of the unit cell corresponds to sublat-
tice A or B. We thus have H�

M ¼ it
P

ic2i;�c2iþ1;� þ
ði ~��=2Þ

P
ic2i�1;�c2i;�, where � 2 fA; Bg denotes sub-

lattice and the renormalized chemical potential ~�� ¼
�þ iVyhc2i�1;�c2i;�i. Furthermore, we can show [32]

that the ground state avoids strong Vy by setting

hc2i�1;�c2i;�i ¼ 0 for Vy > 4t. This leads to two columns

of localized MF states, one at each edge.
Solutions of HM exhibit domains with MF edge states

along y columns (Fig. 2) [32]. Note that the Vy term in

Eq. (2) leads to a chemical potential staggered along y
columns, which binds MFs along y but leaves them to
propagate along x. An energy penalty �Vy will result if

only one row changes its parity. The inter-row interaction
therefore increases the dimension of the MF edge state
(from a point particle to a y column) to establish the
mechanism for enhancing the stability of the nonlocal
MF state against thermal fluctuations. The entire ground
state can thus be regarded as a redundantly encoded qubit
of several MFs. Along these lines, mean field theory sug-
gests the following Gutzwiller projected wave function:Q

L
i;j¼1ð1� ni;jni;jþ1Þ�j

BCS, where �j
BCS is the BCS wave

function hosting MFs in the jth x row.
Thermally stable nonlocal correlation implies that y

columns of MF pairs at i ¼ 1 and i ¼ L host real dipoles
in a superposition that remains robust against thermal
excitations. To establish robustness, we note that the

FIG. 1 (color online). Schematic of dipolar fermions (spheres)
in a 2D optical lattice. Dipolar moments ~p (arrows on each
sphere) align along an applied field, at an angle �with the x axis.
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Hilbert space of Eq. (2) possesses a spectral gap �E above
a degenerate manifold of states for the parameters we
consider here [33]. But, the entropy gain S in the free
energy cost to create excitations �E� TS can overwhelm
the energy gap, depending on the effective dimensionality
of excitations. Strong interactions Vy > 4t require the cre-

ation of entire domains (with a perimeter �L, �E� L,
and S� L) to destroy nonlocal correlations, as opposed to
�E�Oð1Þ and S� logL for Vy < 4t. Favorable entropy

scaling implies that nonlocal correlation between MF y
columns in 2D is much more thermodynamically stable
than between pairs of individual MFs in 1D.

QMC test of thermal stability.—We test the robustness of
SOs of MFs with QMC simulations [35] on Eq. (2) [32].
The nonlocal correlation between edge states at i ¼ 1 and
i ¼ L is captured by a set of L SOs that stretch across

each x row: Pj �
Q

L
i¼1ð1� 2ni;jÞ ¼ ð�1Þ

P
i
ni;j , where

j ¼ 1; 2; . . . ; L along y. Pj is equivalent to the fermion

parity for the jth row.
The expectation values of the SOs Pj act as order

parameters. Unique values hPji ¼ �1 can be used to

define each sector and therefore indicate stability in the
nonlocal correlations between MFs. But, hPi ¼ 0 indicates
that thermal excitations destroy any distinction between
sectors. We compute hPji to show spontaneous breaking of

these discrete symmetries for Vy > 4t even at nonzero

temperatures. To detect such a symmetry breaking, we
perturb the above spinless fermion model with a weak

global field: H ¼ HF � ~h
P

L
j¼1 Pj. The global field P ¼

L�1
P

L
j¼1 Pj imposes a splitting between the otherwise

degenerate states. We define ~h ¼ hL to ensure that the
perturbing term imposes a nonzero energy splitting per
particle h between degenerate sectors even in the limit
L ! 1. h > 0 favors hPi ¼ 1.
We first compute hPi in the limit Vy < 4t using QMC

calculations. For Vy ¼ 3:2t, we find hPi ! 0 with increas-

ing L. This indicates that the SOs in 1D x rows alone are
extremely sensitive to thermal fluctuations, as expected
from the entropy argument above, even with �i;j held

constant. Our calculations are time independent. One
may find jhPij> 0 at short times.
We now calculate hPi in the strongly interacting case

Vy ¼ 4:8t, where we expect arrays of strings to form stable

domains. Figure 2 shows hPi at low and high temperatures.
At high T, the bottom panel shows that a large value of h is
needed to stabilize the SOs. But, at low T (top panel), we
find that very small fields tend to force all x rows to
spontaneously occupy the lowest energy state in the limit
h ! 0, which indicates that y columns of MFs located at
i ¼ 1 and i ¼ L can be prepared in a long-lasting
entangled state stretching over large distances even at finite
temperatures.
Thermal stability of domains.—The arrays of SOs defin-

ing domains are stable at low temperatures but eventually
break up at large T. To find the critical temperature for
domain formation, we define a string-string order parame-
ter that captures the ordering strength along the y direction:
hOi � L�2

P
L
j;j0¼1hPjPj0 i. The operator O is similar to the

static structure factor Sky /
P

L
j;j0¼1exp½�ikyðj�j0Þ�hnjnj0 i,

but with the replacement njnj0 ! PjPj0 and with wave

vector ky ¼ 0.

We look for long-range order in the susceptibility of
O: �O ¼ L2ðhO2i � hOi2Þ=T. A peak in �O versus T indi-
cates the critical temperature Tc at which the large domain
breaks up along the y direction. For Vy < 4t, we find no

peaks in our simulations and therefore no domain forma-
tion for weakly interacting chains, i.e., Tc ¼ 0.
We observe domain formation in �O for Vy > 4t. The

top panel of Fig. 3 shows �O as a function of temperature
for Vy ¼ 4:8t. Above Tc, the y columns of MFs are no

longer ordered. The bottom panel extracts Tc in the ther-
modynamic limit, yielding Tc ¼ 0:275ð4Þt. Our results
agree with studies on the quantum compass model, show-
ing a thermal phase transition in the universality class of
the 2D Ising model [36].
The robustness of the ground state degeneracy also

reveals the stability of the SOs. We denote each ground
state energy sector by EðP1; P2; . . .Þ. We found that this
degeneracy was not lifted with a weak staggered chemical
potential, interchain hopping, or a uniform chemical poten-
tial shift [34]. We present representative results for the
uniform chemical potential shift. Figure 4 shows the energy
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<
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>

L=4
L=6
L=8

0 0.01 0.02 0.03 0.04
h/t

0

0.5

<
P

>

T=0.08t

T=0.40t

FIG. 2 (color online). The thermal expectation value of SOs
from QMC calculations as a function of an applied global field
for several system sizes for Vy ¼ 4:8t and � ¼ 0. The top

(bottom) panel shows data for a characteristic low (high) tem-
perature. The insets show schematic examples of a MF domain
that breaks up into two MF domains at high temperatures. The
þ’s in the figures is fermion parity for the entire chain, and each
chain has the same parity for the one configuration drawn.
Empty dashed circles denote empty MF edge states; hatched
circles denote MF edge states occupied by one particle per row.
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splitting per particle of two different sectors of the Pj

operator: �E � Eð�1;�1; . . .Þ � Eð1; 1; . . .Þ, as a function
of �. The flat portion for �=t � 1 indicates a robust
degeneracy. Above � � 1:5t, the energy splitting acquires
a size dependence, as expected for�> �E. Inset (a) shows
that the particle density has weak linear dependence for
�=t � 1, which is also captured by the mean field theory.

Our results are consistent with the formation of a thermally
robust topological phase, shown in inset (b) of Fig. 4.
Detection in optical lattices.—Domain formation can be

observed directly in time-of-flight measurements. Noise
correlations between shots of individual time-of-flight im-
ages relate to Sk [37]. In the topological phase, we antici-
pate the formation of lines, rather than peaks, in noise
correlations because the Vy term correlates the density

along just the y direction for T < Tc. Observations of these
lines should therefore allow identification of Tc.
Correlation between MFs could be demonstrated

through nonlocal measures similar to those proposed in
quantum wires [9]. Local spectroscopic probes [13,15]
applied at each domain edge could be adapted to detect
the response of one domain edge when dipoles are added to
alternating Kitaev chains on the opposite edge. The particle
number parity in the opposite edge should respond with
signatures of nonlocal correlations in dynamics [9]. Recent
experiments using high resolution spectroscopy to measure
particle number parity [38] and SOs [39] could be used to
explicitly measure response.
Fluctuations in pairing.—We connected a model of

oriented fermionic dipoles [Eq. (1)] to a pairing model
[Eq. (2)]. The pairing model itself demonstrates signifi-
cantly enhanced stability of the MF state via domain for-
mation at T > 0. But, our specific implementation still
allows fluctuations of the pairing field between x rows.
Fortunately, the long-range dipolar interaction has been
found to enhance the stability of p-wave superfluidity [30].
Coherent reservoirs can further suppress pairing field

fluctuations via the proximity effect [14,15,25]. We can
show that an optical lattice geometry allowing proximity
coupling is possible [32].We note, however, that excitations
in the system may couple to those in the reservoir [24].
Conclusion.—We considered an effective model of ori-

ented dipolar fermions in a 2D lattice that allows hopping
along directions where the dipoles attract but suppresses
hopping along directions where dipoles repel. In the
p-wave superfluid regime, we model the system with
repulsive Kitaev chains. Each chain experiences a self-
consistently renormalized chemical potential due to its
neighbor to impose an energy penalty for excitations.
This energy penalty is the mechanism behind MF domain
formation and therefore enhances correlation between col-
umns of MFs along each domain edge. Unbiased QMC
calculations confirm that string operators defining nonlocal
MF states remain robust to thermal fluctuations.
Our approach generalizes to a variety of lattice geome-

tries and even other models with MFs, provided they take a

similar form:
P

aH
a
M þP

a;bV
a;b
int , where Ha

M defines a

model with MFs, Va;b
int creates domains with diagonal inter-

actions between models a and b, and Va;b
int does not com-

mute with Ha
M [20]. This class of Hamiltonians also applies

to Coulomb coupling in MFmodels of quantum wire arrays
or quasi-1D tubes containing topological superconductors.
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FIG. 3 (color online). Top: The susceptibility of the string-
string correlation function O from QMC simulations for differ-
ent L’s at Vy ¼ 4:8t and � ¼ 0. The SOs tend to order along the

y direction for T < Tc. The inset shows a schematic of an
ordered domain with MFs forming columns at the ends (dashed
lines). The domains shrink for T > Tc. Bottom: Tc extrapolated
to L ! 1. The solid line is a linear chi-squared fit.
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FIG. 4 (color online). The main panel plots the energy splitting
between two sectors defined by Pj ¼ �1 for all x rows as a

function of chemical potential for Eq. (2) at T ¼ 0:16t and Vy ¼
4:8t. Inset (a) shows a weak linear increase in density with
increasing � inside the topological phase (� & 1:5t). Inset
(b) shows a schematic phase diagram established by the lifting
of the degeneracy; see the horizontal arrow. The vertical arrow
indicates the thermal phase transition explored in Fig. 3. MFT
denotes the mean field theory result.
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Note added.—Recently, we became aware of work on
similar nonlocal order parameters [40].
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Derivation of Effective Model

In this section we derive the effective model HF

[Eq. (2) in the main text] from the dipolar model HD

[Eq. (1) in the main text] at the Hartree-Fock level. This
shows that, deep in the superfluid phase, HF captures
the essential physics of HD. All of our numerical calcu-
lations in the paper are performed on HF .

The attractive interaction term along x-rows,
Vx(θ)ni,jni+1,j , in HD decouples in the Hartree-Fock
approximation:

ni,jni+1,j ≈ 〈ni,j〉ni+1,j + 〈ni+1,j〉ni,j
− 〈a†i,jai+1,j〉a†i+1,jai,j + 〈a†i,ja

†
i+1,j〉ai+1,jai,j

− C + h.c., (1)

where C ≡ 〈ni,j〉〈ni+1,j〉 − 〈a†i,jai+1,j〉〈a†i+1,jai,j〉 +

〈a†i,ja
†
i+1,j〉〈ai,jai+1,j〉. We define the renormalized chem-

ical potential µ = µ0+2〈ni,j〉|Vx(θ)|−Vy/2 and the renor-

malized hopping t = tx − |Vx(θ)|〈a†i+1,jai,j〉. We further
assume that by tuning Vx(θ) the renormalized hopping

t matches the pairing amplitude t = |Vx(θ)|〈a†i+1,ja
†
i,j〉.

As argued in the main text, we also take the ty = 0 limit
to arrive at the effective model HF in Eq. (2) of the main
text.

Ground State Degeneracy

In this section we show that the ground state of HF

in the main text is 2L fold degenerate for our cylindrical
geometry [1, 2] for ty = 0. We then discuss the ty → 0
limit. In the main text we defined a set of SOs Pj along
the x direction, which commute with HF . Similarly, we
define a set of SOs Qi along the y axis, which also com-
mute with HF ,

Qi =
∏
j

(2ãi,j), (2)

where i = 1, 2, · · · , L and

ãi,j ≡ Fi,j(a†i,j + ai,j)/2, (3)

where the transformation coefficients are given by:

Fi,j =
∏
j′<j

∏
k

(1− 2nk,j′)
∏
i′<i

(1− 2ni′,j). (4)

Note that the operator ãi,j corresponds to a spin 1
2 oper-

ator along the x direction in spin space, Sxi,j , based on the
Jordan-Wigner transformation [9]. One can check that
{Pj , Qi} = 0.

To see the degeneracy explicitly, suppose that we have
a common eigenstate φ0 ofHF andQi. If we act Pj on the
state φ0, we get φ1 = Pjφ0. Since Pj does not commute
with Qi, φ1 must be different from φ0. However, φ1 is
still an eigenstate of HF with the same eigenvalue as
φ0, because Pj commutes with HF . Each eigenstate is,
therefore, at least 2-fold degenerate. Furthermore, since
[PkPj , Qi] = 0, φ1 is also an eigenstate of the operator
product PkPj . We then have φ1 = Pjφ0 ∝ (PkPj)Pjφ0 =
Pkφ0, which means that acting Pk(k 6= j) on φ0 will
not generate a different state than φ1 = Pjφ0. Every
eigenstate, including the ground state, is therefore, 2-fold
degenerate.

Exact diagonalization studies in combination with Lth

order perturbation theory show that in the L → ∞
limit the low-lying 2L − 2 excited states will collapse
with the exact 2-fold degenerate ground state, thus form-
ing a 2L-fold degenerate ground state in the equivalent
spin-quantum compass model [2] (For a mapping to the
quantum compass model see the section “QMC Simu-
lations”). The gap between the ground state and the
low-lying 2L − 2 excited states was found to collapse as
∼ (2tx/Vy)L for Vy > 4tx [2]. Note that the 2L-fold
degeneracy arises even in the large Vy limit.

We now consider the ty → 0 limit, i.e., non-zero hop-
ping along the y direction. In our model, with ty = 0,
edge MFs are unable to hybridize with those in neighbor-
ing rows. In the ty → 0 limit we also observe a 2L degen-
eracy in spite of edge MF coupling (hybridization) effects
discussed in the literature [3]. Our model is different from
these works because it is very strongly interacting. Even
with a small ty hopping, we believe that hybridization is
still strongly suppressed because of the strong Vy term,
which will give a large energy penalty if a single fermion
hops between chains. We have performed direct numer-
ical simulations of Eq.(1) in the main text for various
lattice sizes, L = 4, 6, and 8, to confirm, within numeri-
cal accuracy, the emergence of such a set of degeneracies
in the ground state. For example, we find degeneracies
for tx = 1, Vy = 1.2, and Vx = −0.053, that are immune
to small ty perturbations.
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FIG. 1: (Color online.) QMC (L=4, 6, 8) and mean field
theory comparison of the staggered density (top), intra-x-row
hopping and pairing correlation function (middle), and the
inter-x-row density-density correlation function (bottom) at
Vy = 4.8t. We apply staggered chemical potentials µA and
µB to the A and B sublattices, respectively.

Validating a Mean Field Picture

To show the existence of MFs and domains we perform
a mean field decoupling of Eq. (2) in the main text along
the y direction. The mean field theory presented in this
section is in terms of real fermions but is equivalent to
the MF mean field theory presented in the next section,
Eq. (8), and in the main text. We then verify the mean
field theory by direct comparison with an unbiased QMC
analysis. Finally we will discuss the parameter regimes
of validity.

To construct the mean field equations we divide the
lattice into 2 sublattices, A and B, along the y direction,
and decouple the interaction terms (staggered density as-
sumption). We obtain the following 4 coupled mean field
equations:

Hα
1 = −8t〈ãi+1,α〉ãi,α − µ̃α

(
ni,α −

1

2

)
,

Hα
2 = −t

∑
i

(
a†i,α − ai,α

)(
a†i+1,α + ai+1,α

)
−µ̃α

∑
i

ni,α, (5)

where µ̃α = µα−2Vy〈ni,α−1/2〉. µA and µB are applied
staggered chemical potentials for A and B sublattices.
In the spin language, the first equation defines a single
spin in a magnetic field while the second is a quantum
Ising model. We use the solutions of both of these models
[4, 5] to solve both models exactly and then the coupled
equations, Eqs. (5), through iteration.

Eqs. (5) assume a spatially uniform chemical potential
(for each sublattice). If this assumption is correct, it
implies that excitations for any given x-row are copied
to all other x rows to yield a domain. The existence of
domains of string operators is therefore implicit in the
mean field theory but we must validate Eq. (5) as a good
approximation to Eq. (2) in the main text to justify this
picture.

We validate Eqs. (5) by direct comparison with QMC
solutions to Eq. (2) in the main text. To compare we
compute correlation functions using both mean field the-
ory and QMC. The following local correlation functions
define quantum bond order along the x direction and
density bond order along the y direction.

rx ≡
1

4
〈(a†i,j − ai,j)(a

†
i+1,j + ai+1,j)〉,

ry ≡ 〈(
1

2
− ni,j)(ni,j+1 −

1

2
)〉. (6)

Under the spin mapping these correlation functions have
been studied in a corresponding spin model, the quantum
compass model [6, 7].

Fig. 1 shows that the mean field theory offers an excel-
lent approximation to the QMC results. The large value
of Vy leads to bond ordering along y (large ry). But the
non-zero values of rx show quantum correlations along
the x direction. Therefore both QMC and mean field
theory show that the y-columns superpose throughout
the lattice to yield a quantum entangled ground state
at non-zero temperatures. The good agreement between
QMC and mean field theory therefore supports the do-
main picture implicit in Eqs. (5).

There are, however, small differences between QMC
and mean field calculations for T/t < 4 in Fig. 1. This
is due to the fact that mean field calculations ignore
quantum fluctuations (and therefore underestimate rx)
at low temperatures and exaggerate the effects of classi-
cal Vy interactions (and therefore overestimate ry). De-
spite this drawback, mean field calculations for Vy > 4t
still capture the essential physics of the original model.
To be specific, at low temperatures both QMC and
mean field calculations give ry = 1/4, which means that
(〈ni,j〉 + 〈ni,j+1〉)/2 − 〈ni,jni,j+1〉 = 1/2. At half fill-
ing for a uniform system, i.e., 〈ni,j〉 + 〈ni,j+1〉 = 1, we
have 〈ni,jni,j+1〉 = 0, which shows that the system avoids
large Vy interactions. This explains why mean field cal-
culations are accurate in this regime.

The validity of our mean field theory crucially depends
on the order parameter assumption (staggered density in
a given column to avoid Vy interactions). Mean field the-
ory breaks down when different ordering appears. This is
shown in inset (a) of Fig. 4 in the main text for the large
µ/t limit. Here the topological phase disappears. In this
limit a new order parameter is required to capture the
effects of adding extra particles to the system.
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Mapping to Majorana Fermions

Here we prove that we can transform Eq. (2) in the
main text into an interacting MF model by introducing
two MF operators, c2i,j and c2i−1,j , for each site of the

lattice, (i, j) [8] with ca,bca′,b′ = −ca′,b′ca,b (for {a, b} 6=
{a′, b′}), ca,b = c†a,b and (ca,b)

2 = 1. The absence of
kinetics along the y direction implies that each particle
can be labeled with a specific x-row index, j. The MF
operators then relate to the physical fermion operators
by a complex superposition: a†i,j = (c2i−1,j − ic2i,j)/2.
We can now demonstrate the existence of edge states by
mapping Eq. (2) in the main text to MF space:

HM = it
∑
i,j

c2i,jc2i+1,j +
iµ

2

∑
i,j

c2i−1,jc2i,j

− Vy
4

∑
i,j

c2i−1,jc2i,jc2i−1,j+1c2i,j+1. (7)

Here we see that the first two terms equate to the Kitaev
chains [the first term

∑
j H

j
K in Eq. (2) in the main text]

and define a bilinear MF theory. States defined by the
dangling operators, c1,j and c2L,j , at the ends of each
x-row establish two-fold degenerate MF states that can
be entangled at T = 0.

Next we want to understand the effect of interactions,
Vy > 0, on the degenerate MF states in a mean field ap-
proximation (validated in the main text and in the pre-
vious section). We note that the MF correlation function
is directly related to the real fermion number operator:
CMi,j ≡ (i/2)c2i−1,jc2i,j = ni,j − 1/2. From the mean field
and QMC comparison result and discussions in the pre-
vious Supplementary Material section [see ry in Eq. (6)
and Fig. 1], we can see that at low temperatures for fixed
index i the MF correlation function CMi,j has alternating

values of 1
2 and − 1

2 along the y direction. This minimizes
the interaction energy. Therefore, we can do a mean field
decoupling of the Vy interaction term in the MF Hamil-
tonian, Eq. (7), to obtain the following Hamiltonian:

Hα
M = it

L−1∑
i=1

c2i,αc2i+1,α +
iµ̃α
2

L∑
i=1

c2i−1,αc2i,α, (8)

where α ∈ {A,B} indexes sublattices and µ̃α = µ +
Vy〈CMi,α〉.

Eq. (8) yields edge MFs only for certain parame-
ter regimes. To see where, we solve the eigenequation
Hα
Muα = 0 for the zero-energy eigenfunction uα of the

α’th Kitaev chain. One real-space solution is [8]:

uα ∝
(

1, 0,
µ̃α
2t
, 0,

(
µ̃α
2t

)2

, 0, · · ·
)
. (9)

Here we see that the edge MF survives for µ̃α/2t � 1.

At half filling (µ = 0) this gives highly localized edge
MFs, uα ∝ (1, 0, 0...). For Vy > 4t CMi,j oscillates in sign

for a single classical configuration but gives 〈CMi,j〉 = 0
in the quantum ground state. This shows that µ̃α = µ,
i.e., the chemical potential for each Kitaev chain is not
renormalized for Vy > 4t. But the situation is different
for Vy < 4t. Here we have µ̃α ∼ µ + Vy. In this regime,
the large chemical potential prevents the formation of
edge MFs.

QMC Simulations

In this section we describe our QMC simulations in
more detail. We first show that, after mapping Eq. (2)
in the main text to a spin model, we can compute cor-
relation functions using the Stochastic Series Expansion
(SSE) [10] combined with the quantum Wang-Landau
(QWL) algorithm [11]. QMC parameters are given. We
then discuss the nature of the sign problem that arises
when we add inter-chain tunneling to simulate Eq. (1) in
the main text.

We first show how to map Eq. (2) in the main text to
a spin model. We use a Jordan-Wigner transformation
that zig-zags through the lattice [9]:

ai,j =

( ∏
i′<i,j′

σzi′,j′

j−1∏
j′′=1

σzi,j′′

)
σ+
i,j ,

σzi,j = (−1)a
†
i,jai,j , (10)

where σx, σy, and σz are the Pauli matrices and σ± =
(σx ± iσy)/2, to map the model onto the quantum com-
pass model [9]:

HF =
∑
i,j

[
−tσxi,jσxi+1,j +

Vy
4
σzi,jσ

z
i,j+1 − µ0

1− σzi,j
2

]
To solve this model we perform QMC simulations with
SSE [10] combined with the QWL algorithm [11].

In the QWL approach the partition function is ex-
panded as a series in powers of β ≡ (kBT )−1:

Tre−βHF =

Nmax∑
n=0

S|g(n)|βn, (11)

where Nmax is the maximum expansion order. Nmax de-
termines the lowest temperature that can be reached in
the simulation and g(n) corresponds to the classical den-
sity of states. S is the overall sign. In the absence of
a sign problem we have S = 1 and g(n) = |g(n)|. In
the presence of a sign problem we have 〈S〉 < 1. Severe
sign problems, 〈S〉 → 0, prevent control of error in QMC
sampling. The quantum compass model does not have
a sign problem, implying that Eq. (2) in the main text
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does not have a sign problem.

The distribution of g(n) is obtained from a random
sampling protocol [11]. It can be used to estimate the
free energy, internal energy, entropy, heat capacity, and
other properties of the system. We note that to mea-
sure other physical quantities, e.g., the density, density-
density correlation, and the fermion parity operator, we
need to accumulate their distributions at every order of
the series expansion.

In simulating HF we find that the energy barrier be-
tween different fermion parity operator sectors is very
large. The large energy barrier dramatically increases
the autocorrelation time in conventional QMC simula-
tions with non-local updating. Without the QWL al-
gorithm, the energy autocorrelation time for Vy > 4t is
typically ∼ 103 − 104 MC sweeps, which is prohibitively
large for obtaining accurate QMC results. (We define 1
MC sweep as 1 diagonal update followed by Nmax/Lloop

loop updates with average loop length Lloop.) We find
that the QWL algorithm is necessary to reduce the auto-
correlation time in QMC by enabling tunneling between
different fermion parity sectors.

We check the convergence of various physical quantities
in the simulation with respect to Nmax. We find that
local quantities such as internal energy, average density,
density-density correlation function, etc., converge much
faster than the non-local fermion parity operator, P , at
low temperatures, which usually requires a much larger
Nmax. In practice we find the following values for Nmax

to be enough for P to converge in our simulations in the
desired low temperature range: Nmax = 5000, 8000, and
10000 for L = 4, 6, and 8, respectively. A typical QMC
run on a single 2.53 GHz Intel Xeon CPU with the above
Nmax takes 1, 2, and 12 days, respectively, for the flat
histogram to converge within 10−6. We usually do 10
such runs to estimate the error bars of various physical
quantities for each set of parameters.

We now discuss simulation of Eq. (1) in the main
text. We map into a quantum spin model using the same
Jordan-Wigner transformation [9]:

HQS =
∑
i,j

{
− txσ−i,jσ

+
i+1,j − ty(−1)nd(i,j;i,j+1)σ−i,jσ

+
i,j+1

+ h.c.+
Vx(θ)

4
σzi,jσ

z
i+1,j +

Vy
4
σzi,jσ

z
i,j+1

− µ0

1− σzi,j
2

}
, (12)

where:

nd(i, j; i, j + 1) ≡
L∑

i′=i+1

(−1)ñi′,j +

i−1∑
i′=1

(−1)ñi′,j+1 , (13)

counts the number of down spins between sites (i, j) and
(i, j+ 1), exclusively. Here ñi′,j = 1(0) if there is a down
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FIG. 2: Plot of the potential defining a double well optical
lattice along the z direction for vz = −15ER, φ1 = 0, and
φ2 = 3π/2.

(up) spin at site (i′, j). For ty = 0, HQS reduces to the
quantum compass model discussed above (and therefore
Eq. (2) in the main text). But the ty term introduces a
sign problem in QMC simulations.

Despite the sign problem, the above quantum spin
model can also be simulated with SSE combined with
the QWL algorithm. We find that, for small ty, the sign
problem is not severe. For example, for an L = 4 system
and ty = tx/10, we find 〈S〉 > 0.2 for T > ty. For smaller
ty values, we can approach lower temperatures. We have
performed QMC simulations on the quantum spin model
for L = 4, 6, and 8 to detect the emergence of the ground
state degeneracy. We discuss an example result in the
section, “Ground State Degeneracy”.

System-Reservoir Optical Lattice Geometry

We show that an optical superlattice can be used to
host a 2D “system” lattice parallel to a 2D “reservoir”
lattice. The system lattice is an array of chains in the
x − y plane that allow strong tunneling along the x-
direction and weak tunneling along the y-direction. The
reservoir lattice is a square lattice with nearly equal tun-
neling along both the x and y direction. The increased
dimensionality of the reservoir strengthens the pair su-
perfluid in the reservoir. A tunable potential barrier con-
trols the tunneling between the system and the reservoir.

The optical lattice is formed from three laser beam
pairs: 1) a double well optical lattice potential, Vzz,
formed from the interference of counter propagating
beams along the z direction, 2) a pair of beams with the
same polarization counter-propagating in the x-z plane,
to form Vxz, and 3) a similar pair of beams but in the y-z
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FIG. 3: (Color online.) Plot of the total potential for the
system-reservoir optical lattice, Vtot. Points are plotted for
vtot < −10ER. The parameters are chosen to be: vz =
−15ER, vx = −0.5ER, vy = −1ER, φ1 = −(kπ + 2π/1.9),
and φ2 = −(kπ/2 + 2π/1.9).

plane, to form Vyz. If each beam pair does not interfere
then the total potential experienced by the particles is:
Vtot(x, y, z) = Vzz(z) + Vxz(x, z) + Vyz(y, z).

The system and reservoir are formed from the double
well lattice along the z direction. The potential Vzz can
be formed from the interference of two counter propa-
gating lasers with differing wavelengths. The distance
between the system and the reservoir can be changed
by using different laser wavelengths to define the double
well. We choose the wavelengths to differ by a factor of
2 to yield:

Vzz(z) =
vz
2

[cos (kz − φ1)− cos (kz/2− φ2)]

(14)

Here the wavevector of the primary lattice is k = 2π/λ.

This potential is plotted in Fig. 2.

We consider an arrangement where the potential es-
tablished by the remaining beam pairs is given by:

Vxz(x, z) = vx [cos (kx) + cos (kz)]
2

Vyz(y, z) = vy [cos (ky) + cos (kz)]
2

(15)

Because the beam pairs forming Vxz and Vyz each have
the same polarization, they interfere to form a node in the
z direction at the location of the reservoir. The reservoir
then experiences a nearly isotropic square lattice even
with vx 6= vy.

Fig. 3 plots an equipotential surface defined by Vtot.
The potentials are defined in units of the lattice recoil,
ER ≡ h2/2mλ2. Here m is the mass of the particles.
Fig. 3 shows a configuration where the particles in the
system lattice, near z = 0, have little tunneling along y
whereas the reservoir lattice, near z = −λ, is essentially
a 2D square lattice. This geometry allows a 2D dipolar
superfluid in the reservoir to be placed in close proximity
to the system lattice.
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